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A sequenc€a;) of integers iswell-spreadif the sumsa; +aj, fori < j, are all different. For a fixed positive integer
r, letW; (N) denote the maximum integarfor which there exists a well-spread sequenced < --- < a, < N with

a =a;j (modr) for alli, j. We give a new proof that (N) < (N/r)¥2+O((N/r)*/4); our approach improves
a bound of Ruzsalcta. Arith. 65 (1993), 259-283] by decreasing the implicit constant, essentially from3to
We apply this result to verify a conjecture of Jones et al. fris¢uss. Math. Graph Theo23 (2003), 287-307].
The application concerns the growth-rate of the maximum la4a) in a ‘most-efficient’ metric, injective edge-
labelling of K with the property that every Hamilton cycle has the same length; we prove rifat Q(n3/2) <
A(n) < 2n® 4-O(nB%/40),
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1 Introduction

Ostensibly our purpose is to prove a conjecture from [JKMWO03] concerning the growth-rate of the maxi-
mum label in a certain edge-labelling§f. The essential ingredient in the proof, Theofgm 4, determines
asymptotically the maximum ‘density’ of a finite, well-spread sequence of nonnegative integers. This
result was first proved (explicitly) by Ruzsa [Ruz93]; our proof improves upon his bound and as such may
be of independent interest.

Sets and sequences

We writeZ+ andN, respectively, for the sets of positive and nonnegative integers. Kbizig [Kot72] called

a sequences;) of integerswell-spreadif the sumsa; + a;, fori < j, are all differentweak Sidons used
synonymously, e.g., in [Ruz93]. He studied finite, well-spread sequences in part due to their relationship
with ‘magic valuations'—now called ‘edge-magic total labellings'—of graphs; see [PW99] for further
details. If we strengthen the condition and require that all the symsa;, for i < j, be distinct, then

(&) is called aSidon sequenceln connection with his studies in Fourier theory, Sidon [Sid32, Sid35]
considered these sequences under the raisequencesee [HR83] for a basic reference. Every Sidon
sequence is well-spread, but it is easy to construct examples to show that the converse is false: e.g.,
(1,2,3). We shall fix a modulus € Z* and consideconstant-residuéntegral sequences;), i.e., ones
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for whicha = a; (mod ) for all i, j; our application depends on the case 2, viz., theconstant-parity
sequences.

Our main number-theoretic contribution (Theorigm 4) concerns the asymptotic behaviour of the follow-
ing functions fromN ontoZ*:

W(N) := max{n: there is a well-spread sequence@; < --- < a, < N};
W (N) := max{n: thereis a constant-residue, well-spread sequertep< --- < a, < N}.

We useS, S, respectively, for the functions defined by replacing ‘well-spread’ by ‘Sidon’ in these defini-
tions. Several basic inequalities follow at once:

S(N) <W(N),S(N) <W(N) foreachN € N. 1)

Since the well-spread and Sidon properties are invariant under (integral) affine transformations, the max-
imum length of either type of sequence contained ir{A- 1)-term arithmetic progression is the same
as among an initial segment Nf+ 1 nonnegative integers. Thus,

so0-5([2]) v 2]).

Though we need onlW, for our graph labelling application, we shall state our number-theoretic results
in terms oW, since we prefer to display explicitly the dependence on the modulus

Graphs and labellings

Since we employ standard graph-theoretic notation, we refer the reader to any basic text—e.g. [Wes01]—
for omitted definitions. We usp]:={1,...,n} for the vertex set of a complete gragh. If Ais an edge
with endsi, j, then we writeA = ij. An edge-labellingf K, is a function\ : E(Kn) — ZT. We say thah
hasconstant Hamilton-weighthenever the value df ocg 1) A(A) is independent of the Hamilton cycle
H, and ismetricif it satisfies the triangle-inequality(ik) < A(ij) + A(jk) for every triplei, j,k € [n].
Our main graph-theoretic contribution (Theorgjn 6) verifies a conjecture from [JKMWO3] by determin-
ing the asymptotic growth-rate of the following function frém into Z+:
A(n):=min max A(A
(n):=mi amax A( );
the minimum being taken over all metric, injective edge-labellingsf K, having constant Hamilton-
weight.

Background

Let us begin with a celebrated result of Bsdand others on the ‘density’ of finite Sidon sequences. Here
and throughout this paper, all asymptotic assertions are contingent on the relevant parsnoetey (
tending to infinity.

Theorem 1 S(N) ~ N%2; e,

(170(1))Nl/2 <SN) < (1+o(1))Nl/2. 3)
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The upper bound irf {3)—in the fori®/2 + O(N%/4)—was proved by Eréis and Tuan [ET41], who
also established the lower bou(ity v/2 — o(1))N*/?; later Chowla[[Cho444, Cho44b] and independently
Erdds (1944, unpublished) applied a result of Singer [Sin38] (Thegijem 5 below) to improve the lower
bound to that in[(B). Bose and Chowla [BC63] proved a generalizatiop] of (3tsequences’; this
reference also provides a more accessible discussion of Chowla’s result. Eventuallydom{str69]
improved the upper bound /2 + N¥/4 4+ O(1). It remains open—and was given a price tag by@srd-
to decide whether, for every> 0, the inequalityS(N) < N%/2 + o(NE?) holds. See[[BS85,&91] for
further discussion and references. See [AK$81, Guy94, RUz98,15id32] Sid35] for a precise statement and
related progress on the corresponding infinite problem.

The following theorem from [JKMWQ03] provides a connection between sequences and labellings; see
also [KP03] and the references therein for antecedents of this result.

Theorem 2 For n > 3, a metric, injective edge-labelling of K, has constant Hamilton-weight if and
only if there is a constant-parity, well-spredtisequencéa; ) ; such that

.. a; + a;
Aj) = J

The sequencéy) is uniquely determined by.
Theorenj P shows that if we defingy, : Z™ — N by

for each edge ij of K

Wep(n) := min{an_1 +an : there exists a constant-parity, well-spré&édequencey < --- < an},

then

_ Yep(N)
2

A(n) for everyn > 3. 4)

We note in passing that for finite Sidon sequen@$, similar ‘sum-sets’{a; +a; | i < j} have been
investigated considerably; see [Ruz96] for recent results and further references. For our gtuayeof
additionally introduce the functioocy : Z* — N, defined by

Ocp(n) := min{a, : there exists a constant-parity, well-spré&dequence; < --- < an}.

Packing with 2-sums

The definition ofyic, exhibits a ‘packing flavour’; indeed, a variant @, using this terminology was
studied by Graham and Sloane [G580]. They defingd) to be the smallest nonnegative integesuch
that there exists an integral sequence & < --- < a, with the property that the sunas+ a;, fori < j,
belong to[0,N] and represent each element of this set at most once. dénotes ourjc, without the
constant-parity condition, theh = v4. Graham and Sloane tabulated the valg#) for n < 10, gave
exemplary sequences, and outlined a proof of

2n2 — 0O(n%/?) < vg(n) < 2n +O(n3%/23), (5)

They also considered the three functions that arise wkepis changed to < j (giving the Sidon version
of vy) or when the arithmetic is done moduly and the four functions resulting from changismallest
to largestandat mostto at least(giving the covering analogues of the four packing functions). By now
these eight functions enjoy a vast literature, much of which was cited already in[[GS80].

After proving our main graph-theoretic result (Theofgm 6), we shall indicate a slight improvement to
the upper bound irf [5). Similar improvements are possible in the bounds for the other packing functions.
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2 Well-spread sequences

Theorenﬂl ancBZ) show th&t(N) ~ (N/r)¥/2. The functiona exhibit the same asymptotic behaviour,
since Ruzsd [Ruz93] proved that a well-spread sequence contained in {ie.setN} contains at most
NY/2 + ANY/4 411 terms. An upper bound fak/(N) of the formN/2+ O(N/4) is also implicit in the
work of Graham and Sloane [GS80] and was probably known to these authors. Presently, we shall derive
this result again, in terms oft.

To get started, we need a cruder estimate:

Lemma 3 If N is sufficiently large, then MIN) < 2.001(N/r)%/2,

Proof. Letn =W (N) and 0< a; < --- < a, < N be a well-spread sequence with eacks k (mod r),
for some O< k < r. The sumsg + aj, fori < j, are distinct, at mosti®—r, congruent modulo to 2k,
and hence lie in the s¢@k+r,2k+ 2r,...,2k+ ¢r}, where/:=[ (2N —r — 2k) /r]. Thus(3) < ¢, from

whichn < (2¢)/2 + 1, and hence the assertion, follow easily. O
Theorem 4 Wi (N) < (N/r)Y24+O((N/r)¥/4).

Proof. LetN be large enough to invoke Leminja 3, andrset W (N). Then there exists a constant-residue,
well-spread sequence<Qa; < --- < an < N.

For 1<i < j <n, Lindstrom [Lin69] calledj —i theorder of the differencea; — &. He observed that
the differences of order > 0 can be arranged into sequences of the form

ad_aﬁaaﬁ_ayaay_aéw'w

wherea —B=p—-y=y—0=—--- =V. Because of ‘telescoping’, the sum of all these differences is at
mostvN (and less tharN for v > 1). Thus, form > 2, the sun® of all the positive differences of order
at mostmis less thaim(m—+ 1)N /2.

Let us calla; amean-poinif 2a; = a;j + ax for somej, k € [n]; notice that in this casa — ax = aj — &;.
Except for the valuea; — &, for mean pointsy (or a;), the differencesy —ay, for 1 </ <k <n, are
all different since(g) is well-spread. As the only candidates for mean-pointagre ., a1, we have at
mostt :=n— 2 differences occurring with higher multiplicity, and the well-spread property implies that
this multiplicity is 2. Sincda;) has constant-residue, the differences are all multiplesléil < m< nand
s:=n—(m+1)/2, then the number of positive differences of order at most mn— m(m+1)/2=ms
Therefore,

t ms_2t rms(ms+ 1)
8>S (ri4ri)+ (t+rj)=————">—rt(ms—t).
2, 2 2
For 1< m< n, it follows that
1 1
%ZS—F) _rt(ms_t) < %N7

so that
r(mg? m(m+1)

N +rmst
2 < 2 NF
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Sinces,t < n, the second term on the right side is less tham?, which by Lemmd B is at most
(2.001)2mN < 4.5mN. Thus,s? < N(1+10/m)/r, and since(1+x)¥/? < 14 x/2 for x = 10/m, we

have 12
m+1 m+1 N 5
With m:=[(N/r)¥/4], this gives the bound in the statement of the theorem. m

Remarks Our proof of Theoreri]4 adapts the main idea of Lindist{Lin69] to well-spread, constant-
residue sequences. Ruzsa [RUz93] also based his proof on the idea of studying the ‘small’ differences
aj — &, though in a “somewhat hidden” fashion (quote fram [Ruz93]). Here we compare the resulting
implicit constants.

To optimize ours, we iterate the proof once again. Instead of applying Lé:rhma 3 (to boohrom
above), we apply Theoref) 4 itself. This allows us to replace ‘10" by G((N/r)~%4)". To minimize
the right side of (the adjusted) inequalify (6), we now chawge be[v/3(N/r)%/4]. These modifications
replace the big-oh term in Theoram 4 8(N/r)¥4+0O(1). Ruzsa’s proof essentially produces the
value 4 in place of ous/3.

While we're comparing bounds, we should mention that the upper bourg&l(fdy implied by @) and
Theorenj # doesotimprove on earlier results. For example, Linéstr's bound[[Lin69] together with {2)
gives the implied constant 1 in place of oyB O

3 Edge-labellings with constant Hamilton-weight

We turn to verifying the main conjecture from [JKMWO03]. Proofs of the following basic connections are
left to the reader (or see [JKMWD3]):

W(N) > 055 (N) for everyN € rangéocp); (7)

Wep(N) > Ocp(n) +0cp(n—1) for everyn > 2. (8)
We also need a simple upper boundap(n), a theorem on the density of primes, and Singer’s theorem
on difference sets. The first of these follows immediately from our work in [JKMWO3]:
ocp(n) < 2n%(140(1)). 9)

For the second, we opt for the present state-of-the-art, due to Baker|et al. [BHPR1$: stifficiently
large, then there is a prinqgwith

X< p < x4 x40 (10)
For the third, we have

Theorem 5 ([Sin38]) If q is a prime power, then there are integerg by, ..., b € [0,g% + g] such that
the differencesib- bj, for i # |, are congruent, modulo?g+ q+ 1, to the integersl, 2,...,0°+q. In
particular, (bi)iqzo forms a Sidon sequence, hence is well-spread.

Finally, we state and prove our main graph-theoretic result:
Theorem 6 A(n) ~ 2n?; more precisely,

2n% — O(n*?) < A(n) < 2n? + O(nfY/40), (11)
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Proof. For the upper bound, consider an integgiarge enough to apply (10) with=n— 1; then we can

find a primep so that

n—1< p<n+4n?/40,

Theoren] b delivers a well-spread sequencelfy < by < --- < by < p?+ p. Now & :=2bj_y, fori =
1,2,...,n, defines a constant-parity, well-spread sequence with

8n-1+an = 2(by_2+bn_1) < 4p? +4p—6 < 4n? +- O(nY/40),

By definition, Yep(n) < an—1+ an, and since\(n) = Yep(n)/2 (see)), the upper bound 11) follows.
For the lower bound, et € N andN = acp(n). Then [J) and Theorefr] 4 imply that

e s« () o( (2)")

2n% < N+ O(N¥4).

so that

Now (9) shows that
oep(n) = N > 2n2 — O(n%?).

Thus @}) giveslep(n) > 4n? — O(n%/?), and again applyinﬂ4) yields the desired bound. O

Closing remarks

We first elaborate on the lower bound |rj (3). The idea in the proof of the upper bound in THdorem 6
can be used to show th&t(N) > (N/r)¥/? for infinitely many integersN and thatS (N) > (N/r)%2 —
(N/r)2%/80 for sufficiently largeN. Absent the modulus, these observations have been made elsewhere;
cf. [PS95]. The slight improvement here over previously published bounds—elg., in [PS95], the fraction
5/16 replaces 2180—results from our use of a more recent prime density theorem.

Baker and Harman [BH96] sketch the history of such theorems, i.e., those of the form

[x,x+x’9] contains a prime whenevgiis sufficiently large

for a specified constas; cf. (10).

An alternate approach to Theorén 6 is to reduce the problem to one considered in [GS80]. It is not
difficult to see thatpcp(n) is achieved whea; = 0, so that the constant parity is even. Th&m) can be
identified with Graham and Sloane/g(n), so that) also giveA(n) ~ 2r2.

Turning this observation around shows that ¢uj (11) imprdvies (5). This stems from the decrease in the
minimum$ since [GS80] appeared. The present vdlue 21/40 (cf. 13/23 available to Graham and
Sloane) improves not onlf(5), but also the upper bounds for the other three packing functions considered
in [GS80].
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