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Statistical properties of Markov dynamical
sources: applications to information theory
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In (V1), the author studies statistical properties of words generated by dynamical sources. This is done using gener-
alized Ruelle operators. The aim of this article is to generalize the notion of sources for which the results hold. First,
we avoid the use of Grothendieck theory and Fredholm determinants, this allows dynamical sources that cannot be
extended to a complex disk or that are not analytic. Second, we consider Markov sources: the language generated by
the source over an alphabetM is not necessarilyM ∗.
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1 Introduction
Statistical properties of words describe the asymptotic behavior (or laws) of parameters such as “most
probable prefixes,” “coincidence probability” etc. These analyses have many applications in analysis of
algorithms, pattern matching, study of tries, optimization of algorithms... Of course, statistical properties
of words heavily depend on the way the words are produced.
In information theory contexts, a source is a mechanism which emits symbols from an alphabetM (finite
or infinite countable) to produce (infinite) words. The two “classical” simpler models are memoryless
sources where each symbol is emitted independently of the previous ones and Markov chains where the
probability for a symbol to be emitted depends on a bounded part of the past. Sources encountered in
practical situations are usually complex mechanisms, and one needs general models to study the statis-
tical properties of emitted words (e.g. the distribution of the prefixes of the same fixed length) and the
parameters of the sources (e.g. entropy). In (V1), B. Vallée introduces a model ofprobabilistic dynamical
sourcewhich is based upon dynamical systems theory. It covers classical sources models (that is mem-
oryless, some Markov chains) and some other processes with unbounded dependency on past history. A
probabilistic dynamical source consists of two parts: a dynamical system on the unit interval[0,1] rep-
resenting the mechanism which produces words and a probability measure. More precisely, a dynamical
source is defined by:
(a) A finite or infinite countable alphabetM .
(b) A topological partition ofI := [0,1] into disjoint open intervalsIm, m∈ M , i.e. I =

S

m∈M Im.
(c) A mappingσ which is constant and equal tom on eachIm.
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(d) A mappingT whose restriction to eachIm is aC2 bijection fromIm to T(Im) = Jm.
Let f be a probability density onI . Words on the alphabetM are produced in the following way: first,
x∈ I is chosen at random with respect to the probability of densityf , second, the infinite wordM(x) =
(σ(x),σ(Tx), · · · ,σ(Tkx), · · ·) is associated tox.
The main tool in the analysis of such sources is a “generating operator,”the generalized Ruelle operator
depending on a complex parameters and acting on a suitable Banach space. To derive results about the
source, this operator must have a simple dominant eigenvalueλ(s) defined fors in a neighborhood of the
real axis. Thus some additional hypotheses on the mappingT are needed. For example, in the context
of (V1), branchesT|Im need to be real analytic with a holomorphic extension to a complex neighborhood
of [0,1], complete (i.e.T(Im) = I ) and they need to satisfy a bounded distortion property (see (C,M,V)).
Such sources produce the setM ∗ of all the words on the alphabetM . The analyticity ofT allows to use
the powerful Grothendieck theory and Fredholm theory on operators on spaces of holomorphic functions.
The aim of this work is to prove that the hypothesis of analyticity and completeness may be relaxed. We
extend the results of (V1) to a larger class ofP-Markov sources(see Definition 1). Our class contain
various classes of examples of interest such as Markov sources on a finite alphabet, Markov sources with
finitely many images or Markov sources with large images (see Section 2.1 and Figure 1).

The dominant eigenvalue functions→ λ(s) is involved in all the results of the paper. First of all,

Markov sources

General sources

General Markov sources

with finitely
many images

Markov sources with large images

on a finite alphabet
Markov sourcesComplete

sources

Fig. 1: Geometry of sources

parameters of the sourceS like entropyh(S) or coincidence probabilitycb(S) depend on this function:

h(S) = −λ′(1) and cb(S) = λ(b).

Secondly, statistical properties of word emitted by the source depend onλ(s):
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• the numberB(x) of finite words whose probability is at leastx, satisfies

B(x) ≃ 1
λ′(1)x

if the source is not conjugate to some source with affine branches.

• let ℓk(x) be the probability of words having the same prefix of lengthk asx. This random variable
follows asymptotically a log-normal law provided that the functions→ logλ(s) is not affine.

• the random variableC(x,y) which is the length of the longest common prefix of the two words
associated tox,y∈ [0,1] follow asymptotically a geometric law with ratio equal toλ(2) if the x and
y are drawn independently.

These results, proven by B. Vallée for holomorphic dynamical sources, remain valid in our setting and
are explicitly stated in the following main theorem. Before stating the main theorem, let us recall that
two dynamical systemsT, T̃ : I → I are conjugate if there exists an homeomorphismg of I such that
T̃ = g◦T ◦g−1. Roughly speaking, from a measurable dynamical point of view, ifg is piecewiseC1 the
systems are the same.

Theorem Consider a P-Markov source and f a density of probability, which is bounded, Lipschitz on
each Im with uniformly bounded Lipschitz constant. Then there exists an analytic function s→ λ(s) on a
complex neighborhood ofR (s) ≥ 1 such that:

• Either there existα > 1 and a sequence of integers(km)m∈M such that the map T is conjugated to
a piecewise affine map with slopesαkm on Im, with the conjugacy C1+Lip on each Im. In that case,
there exists A, B such that

A
x
≤ B(x) ≤ B

x
,

or

B(x) ≃ −1
λ′(1)x

.

• If λ′′(1)− λ′(1)2 6= 0 then the variablelogℓk follows asymptotically a normal law. Moreover
λ′′(1)− λ′(1)2 = 0 if and only if the map T is conjugated to a piecewise affine map with slopes
all equal, the conjugacy is C1+Lip on each Im.

• The variable C follows asymptotically a geometric law with ratio equal toλ(2) if the x and y are
drawn independently.

As an immediate corollary we can give an answer to Conjecture 2 of (V1).

Corollary Exceptional sources are those for which there existα > 1 and a sequence of integers(km)m∈M

such that the map T is conjugated to a piecewise affine map (not necessarily complete) with slopesαkm

on Im, with the conjugacy C1+Lip on each Im.

As a consequence of the proof of main theorem, we solve Conjecture 1 of (V1) (see Remark 4).
Let us quickly present the strategy underlying the proof of the previous theorem. Important objects in-
volved in the analysis of the sources arefundamental intervals: given a prefixh of lengthk∈ N, the set of
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words starting with this prefix is an interval in[0,1], the fundamental interval associated toh. Its measure
(with respect to the probability densityf ) is denoted byuh. It is not difficult to prove that all the studied
quantities can be expressed in terms of the Dirichlet series of the fundamental measures:

Λk(F ,s) = ∑
h∈Lk

us
h and Λ(F ,s) = ∑

k≥0

Λk(F ,s)

whereLk is the set of prefixes of lengthk (lemma 2.1). For P- Markov sources, these series define holo-
morphic functions of the variables which admit a meromorphic extension to a half plane. Next we prove
that these series can be expressed in terms of the generalized Ruelle operator. A careful study of spec-
tral properties of Ruelle operators is then used to describe the singularities of Dirichlet series. Finally,
parameters of the source are derived by mean of “classical” techniques: Tauberian theorem and Mellin
transforms. This last part being exactly the same as in (V1), is not done in this paper. The reader is
referred to B. Valĺee’s paper.
Let us mention that previous strategy initially developed by B. Vallée also has various important applica-
tions in the area of analysis of algorithms (especially for arithmetic algorithms), see (V2), (V3), (V4) for
example.
At last, an important application of the asymptotic behavior of the parameters of P-Markov sources is the

a b

a b a b

a

a b

w1 = aaaa. . .
w2 = aaab. . .
w3 = ab. . .
w4 = ba. . .
w5 = bb. . .

w5w4w3

w2w1

Fig. 2: An example of trie

analysis of trie (or digital tree) structure. Tries are tree data structures widely used in order to implement
a search in a dictionary. They are constructed from a finite setX = {w1, · · · ,wn} of words independently
generated by a source. The nodes of the trie are used to manage the search in the dictionary, and each leaf
contains a single word of the dictionary.
Formally, given a finite alphabetM = {a1, . . . ,ar}, the trie associated toX is defined recursively by

trie(X) = 〈trie(X \a1), . . . , trie(X \ar)〉,

whereX \ai is the subset ofX consisting of words which begin withai with their first symbolai removed.
The recursion is halted as soon asX contains less than 2 elements (see figure 2). We are concerned with
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the standard parameters of trees: for example, size, path length, height.
The structure of tries have been intensively studied in the setting of independent sources (see (Sz) for
example). The analysis of trie structures has been done recently in the setting of complete holomorphic
sources by J. Clément, P. Flajolet and B. Vallée (C,F,V), (C) : roughly speaking, the expected values of
size, path-length and height of tries can be expressed in terms of fundamental measures of the source
and of Dirichlet series of fundamental measures. Thus the asymptotic behavior of these parameters is
deduced from the spectral properties of some generalized Ruelle operators related to the source: some of
these operators are defined over Banach spaces of functions of 4 variables. The definitions and spectral
properties of these operators immediately extend to our setting.

Theorem LetS be a P-Markov source. Denote by S[n],P[n],H [n] the size, the path-length and the height of
a trie constructed over n independently drawn words ofS . The asymptotic expected value (when n→ ∞)
of these parameters is given by

E[S[n]] ≃ n
h(S)

E[P[n]] ≃ nlogn
h(S)

E[H [n]] ≃ logn
2| logc(S)|

where h(S) is the entropy of the source and c(S) is the coincidence probability ofS .

The paper is organized as follows. In section 2, we give precise definitions and statement of results.
In section 3, we analyze the parameters of the source assuming some spectral properties of generalized
Ruelle operators associated to our sources. In section 2.1 we consider some general classes of systems
that satisfy our hypothesis and give some specific examples (in particular we exhibit a source that satisfy
our hypothesis but that does not admit a complex extension). Finally, section 4 contains the proof of the
spectral properties.
Acknowledgments:We are grateful to B. Vallée, P. Flajolet and J. Clément for interesting us in the theory
of dynamical sources and for fruitful discussions. Many of these discussions were made possible thanks
to a partial financial support of ALEA project.

2 Dynamical sources, intrinsic parameters and transfer operators
The following definition of dynamical sources extend B. Vallée’s one. We try to give the minimal con-
ditions ensuring that the generalized Ruelle operator associated to such a source is quasi compact on a
“natural” Banach space. We call these sourcesP-Markov dynamical sources(for positive Markov dynam-
ical sources).

Definition 1 A dynamical P-Markov source is defined by the four following elements :

(a) An alphabetM , finite or infinite countable.

(b) A topological partition of I:= [0,1] with disjoint open intervals Im, m∈ M , i.e. I =
S

m∈M Im,
Im =]am,bm[.

(c) A mappingσ which is constant and equal to m on each Im.

(d) A mapping T whose restriction to eachIm is a C2 bijection fromIm to T(Im) = Jm. Let hm : Jm → Im
be the local inverse of T restricted toIm. The mappings hm satisfy the following conditions:

(d1) Contracting. There exist0 < ηm ≤ δm < 1 for whichηm ≤ |h′m(x)| ≤ δm for x∈ Jm.
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(d2) There existsγ< 1 such that forR (s) > γ, the series∑
m∈M

1Jm(x)δs
m converge uniformly for x∈ I

and ∑
m∈M

|Im|s converges.

(d3) Bounded distortion. There exists a constant A< +∞ such that for all m∈ M and all x,y∈ Jm,
|h′′

m(x)/h
′
m(y)| < A.

(d4) Markov property. Each interval Jm is union of some of the Ik’s.

(d5) Positivity. See Condition 1 below.

Remark 1 (see the definition of operators Gs in section 2.2) The first part of condition (d2) is sufficient
to have that the sum defining Gs Id converges uniformly. Because the source is not necessarily complete,
it does not imply the second part of condition (d2).
Condition (d5) is a bit stronger than (d2), it implies that for all m∈ M , there exists N∈ N such that:

inf
x∈I

GN
s [1Im](x) > 0.

Remark 2 If the alphabetM is infinite then Condition (d2) is equivalent to:

lim
|Q |→∞ Q ⊂M

Q f inite

sup
x∈I

∑
m∈M
m6∈Q

δs
m1Jm(x) = 0. (2.1)

If the alphabet is finite then Condition (d2) is always satisfied.

A Markov source A non Markov source

IcIbIa

Jb

Ja = Jc

Fig. 3: Markov and non Markov sources

Such a source produces words on the alphabetM , to eachx∈ I we associate the infinite word

M(x) = (σ(x),σ(Tx), · · · ,σ(Tkx), · · ·).

Fork∈ N, thekth prefix ofM(x) is

Pk(x) = (σ(x),σ(Tx), · · · ,σ(Tk−1x)).
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We denote byLk the subset ofM k of prefixes of lengthk that may be produced by the dynamical source.
Remark that in our setting,Lk may be a strict subset ofM k. For example in Figure 3, the wordbc does
not belong toL2. In the following, each element ofLk will be identified with an inverse branch ofTk of
the formh = hm1 ◦ · · · ◦hmk, mi ∈ M . Let Jh be the definition interval ofh∈ Lk andIh = h(Jh) = [ah,bh]
the fundamental interval of h. If h = hik ◦ · · · ◦hi1 ∈ Lk then because of the Markov property,Jh = Ji1.
Define alsoηh = infx∈Jh |h′(x)|, andδh = supx∈Jh

|h′(x)|.
Remark that P- Markov sources are a generalization of memoryless and classical Markov sources. Indeed,
if the inverse brancheshm are affine (or equivalently ifh′m is constant) and complete (i.e.Jm = I ) then the
symbols emittedσ(x), σ(Tx) ... are independent (i.e. the source is memoryless). If the inverse branches
are affine but not complete then the symbols emittedσ(x), σ(Tx) ... form a Markov chain (see Figure 4).

a b cx

A general Markov source

x leads to the word
bcabcabca....

b ca

A complete analytic source

b ca x

A memoryless source

x leads to the word
acbab......

a b c

A classical Markov source

The wordac..... is not
allowed

Fig. 4: Memoryless and classical Markov sources

We are now in position to express the positivity condition (d5).

Condition 1 For all m∈ M , for all s> γ, there exists N∈ N such that

inf
x∈I

∑
h∈LN

ηs
h 1Im(h(x))1Jh(x) > 0. (2.2)

This condition is related to the aperiodicity condition of classical Markov chains. Indeed in the context
of Markov (infinite) chains on an alphabetM , let P be the (infinite) transition matrix. Then fors= 1,
Condition (2.2) is equivalent to the following:
For all m∈ M , there existsN ∈ N such that the infimum of the coefficients of themth column of the
matrixPN is strictly positive. If the alphabetM is finite this is equivalent to: there existsN ∈ N such that
all the coefficients of the matrixPN are strictly positive (i.e. the Markov chain is aperiodic). This point of
view is developed in section 2.1.1 below.
Let us give some examples of sources satisfying our hypothesis.

2.1 Examples of P-Markov sources.

It is straightforward that complete holomorphic sources with bounded distortion ((V1), (C,M,V)) are P-
Markov dynamical sources.
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2.1.1 Some examples.
Let us give some large classes of sources satisfying our hypothesis. The simplest class is given by finite
aperiodic Markov maps. Let us recall that a Markov map (i.e. a dynamical system satisfying (d4) is
strongly aperiodic if there existsM ∈ N such that for anyi, j ∈ M , for anyn≥ M,

T−nI j ∩ Ii 6= /0.

The strong aperiodicity condition is natural in the context of Markov maps (in some sense it means that
the systems is not decomposable). It may be rewritten in terms of inverse branches as: there existsM ∈ N

such that forn≥ M, for any i, j ∈ M , there existsh∈ Ln with Ii ⊂ Jh andh(Jh) ⊂ I j . Let us show that it
suffices to ensure (d5) if the alphabet is finite, if the number of images is finite or if the system has large
branches.

Example 1 If M is finite and the system is strongly aperiodic then it defines a P-Markov.
Indeed, the only point to verify is (d5). The aperiodicity condition implies that for all n≥ M, all x∈ I and
m∈ M , there exists h∈ Ln with x∈ Jh and Ih ⊂ Im. Thus we have: for m∈ M , x∈ I, n≥ M,

∑
h∈Ln
x∈Jh

ηs
h1Im(hx) ≥ inf

h∈Ln
ηs

h.

Remark that Markov chains on a finite alphabet may always be obtained from an affine dynamical source.
Thus, aperiodic Markov chains are P-Markov sources.

Example 2 If the set{Jm / m∈ M } is finite and the system is strongly aperiodic then it defines a P-
Markov source provided (d2) and (d3) are satisfied.
Indeed, let Ji1, . . ., Jik be the images of the system. The strong aperiodicity condition implies that for all
n≥ M, all m∈ M and all j = 1, . . . ,k, there exits hi j ∈ Ln such that hi j (Ji j ) ⊂ Im. Now,

∑
h∈Ln
x∈Jh

ηs
h1Im(hx) ≥ inf

j=1,...,k
ηs

hi j
.

We would say that a source has large images if

inf
m∈M

{|Jm|} > 0.

Example 3 If the source has large images and is strongly aperiodic then it defines a P-Markov source
provided (d2) and (d3) are satisfied.
It suffices to remark that if the source has large branches and is strongly aperiodic then there exists finitely
many Jm whose union is I. Then the same argument has above shows that (d5) is satisfied.

2.1.2 A P-Markov source with small branches.
For 0< θ < 1, letC = 1

1−θ . Consider a partition ofI into intervalsIm with |Im| = Cθm, m≥ 0. Consider
the piecewise affine mapT such thatT(I2m) = Im, m≥ 1, andT(I2m+1) = I , m≥ 0. We have for allm,
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ηm = δm andδ2m = θm, δ2m+1 = θ2m+1. Condition (d2) is satisfied. Let us show that (d5) is also satisfied.
If m= 2k(2p+1), k≥ 0 then for allx∈ I ,

∑
h∈Lk+1

x∈Jh

ηs
h1Im(h(x)) ≥ θ2p+1θ2(2p+1) · · ·θ2k(2p+1).

This source is represented in Figure 5.

I1I2I3I4I5· · ·

Fig. 5: A source with small branches

From now on, we have emphasized that our hypothesis allow various geometric behavior of the branches,
let us now give an example showing that relaxing the holomorphic extension hypothesis of (V1) is a
substantial gain.

2.1.3 A P-Markov source with no extension on a complex neighborhood.
Consider the source whose alphabet isN

∗ and inverse branches are given by

hn(x) =
1

n+1
+Cn( fn(x)− fn(0))

where fn : [0,1] → R is defined by

fn(x) = x− 1
x
√

n+1
− 1√

n(x
√

n+1)
−2

log(x
√

n+1)√
n

andCn is a constant defined by

Cn = (
1
n
− 1

n+1
)

1
fn(1)− fn(0)

=
1

2(n+1)
√

n(
√

n− log(
√

n+1))
.
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For alln∈ N, the branchhn mapsI = [0,1] onto interval[ 1
n+1, 1

n]. The derivative ofhn is

h′n(x) = Cn f ′n(x) = Cn

x2 + 1√
n

(x+ 1√
n)2

andh′n(x) = 0 if and only ifx = i/ 4
√

n or x = −i/ 4
√

n. Hence this source does not satisfy condition (d2) in
(V1): there is no complex neighborhood of[0,1] on which all theh′n extend to a non vanishing function.
Note that for anyn,

Cn

4n
< h′n(x) < δn for all x∈ [0,1]

with δn = Cn
√

n and forn sufficiently large,

δn <
1

4n
√

n
for all x∈ [0,1].

It follows that there existsγ< 1 such that the series∑n∈N∗ δs
n converges onR (s) > γ.

Now for anyy∈ [0,1],

|h′′n(y)| =
Cn√

n
2|y−1|

(y+ 1√
n)3

≤ 2Cn√
n

1
√

n3

2Cn

n2 .

From previous inequalities, it results that for anyx,y∈ [0,1],

|h′′n(y)|
|h′n(x)|

≤ 8
n2
√

n
≤ 8

so that the source is a P-Markov dynamical source.

2.2 Intrinsic parameters and transfer operators.
Recall that a functionf on a metric spaceX is Lipschitzif there existsL ≥ 0 such that for allx,y∈ X,

| f (x)− f (y)| ≤ Ld(x,y).

The smallest constantL satisfying this property is calledthe Lipschitz constant of f.
The following definition introduces the notion of fundamental measures and the main parameters of the
source ((V1)).

Definition 2 Fundamental measures and parameters of the source
Let f > 0 be a bounded, Lipschitz on each Im with bounded Lipschitz constants, probability density on I
and F its associated distribution function. The fundamental measures are:

uh = |F(ah)−F(bh)|, h∈
[

k∈N∗
Lk.

For b > γ, denote by cb(F) the b-coincidence probability:

cb(F) = lim
k→∞

(

∑
h∈Lk

ub
h

) 1
k

.
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Let B(x) be the number of fundamental intervals whose measure is at least equal to x.
For k∈ N

∗, ℓk is the random variable defined byℓk(x) = uh if x ∈ Ih, h∈ Lk.
Finally, C is the random variable on I× I, defined by

C(x,y) = max{k∈ N / Pk(x) = Pk(y)}.

The Dirichlet series of fundamental measures are:

Λk(F ,s) = ∑
h∈Lk

us
h and Λ(F ,s) = ∑

k≥0

Λk(F ,s).

Lemma 2.1 (V1) The parameters of the source may be expressed in terms of Dirichlet series of funda-
mental measures:

cb(F) = lim
k→∞

(Λk(F ,b))
1
k .

Λ(F ,s) = s

∞
Z

0

B(x)xs−1dx.

E(ℓs
k) = Λk(F ,s+1).

P(C≥ k) = Λk(F ,2) and E(C) = Λ(F ,2).

In (V1), the asymptotic behavior of Dirichlet series is obtained from spectral properties of generalized
Ruelle operators associated to some analytic sources satisfyingLk = M k for all k. In this paper, we
prove that generalized Ruelle operators associated to P-Markov sources have the same dominant spectral
properties. We relate Dirichlet series to these operators in our setting. So the analysis on the parameters
of the source remain valid.
Generalized Ruelle operatorsGs involve secants of inverse branches

Hm(u,v) :=

∣∣∣∣
hm(u)−hm(v)

u−v

∣∣∣∣

and are defined by
Gs[Φ](u,v) := ∑

m∈M

Hs
m(u,v)Φ(hm(u),hm(v))1Jm×Jm(u,v).

We are going to prove that these operators are quasi compact with unique and simple dominant eigenvalue
λ(s) that coincide with the dominant eigenvalue of the “classical” Ruelle operator:

Gsφ(u) := Gs[Φ](u,u) with Φ(u,v) = φ(u).

Recall that the spectrumSp(P) of a linear operatorP acting on a Banach spaceB is the set of complex
numbersλ such thatId − λP in not invertible. Such a spectral valueλ may be either an eigenvalue
(i.e. Id −λP is not injective) orId −λP is not surjective.The spectral radiusR(P) is the largest modulus
of an element ofSp(P). An operatorP is compact if the elements ofSp(P) \ {0} are eigenvalues of
finite multiplicity. An operatorP is quasi-compact if there exists 0< ε < R(P) such that the elements of
Sp(P)\B(0,ε) are eigenvalues of finite multiplicity. The smallest suchε is called essential spectral radius
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λ(s)

of finite multiplicityEssential spectrum

Fig. 6: Spectrum of a quasi compact operator

andSp(P)∩B(0,ε) is called essential spectrum.

Remark that condition (d2) ensures that the operatorGs is well defined forR (s) > γon bounded functions.
Condition (d2) together with Taylor formula ensure that operatorsGs are well defined forR (s) > γ on
bounded functions.
Also, it is easy to see that:

Gk
sΦ(x,x′) = ∑

h∈Lk

Hs
h(x,x

′)Φ(h(x),h(x′))1Jh×Jh(x,x
′),

whereHh is the secant function associated toh. In our setting, the relation between Dirichlet series and
Ruelle operators is given by the following proposition.

Proposition 2.2 For all R (s) > γ, k≥ 0,

Λk+1(F ,s) = ∑
m∈M

|am−bm|sGk
sL

s(am,bm),

with L(x,x′) =
|F(x)−F(x′)|

|x−x′| .
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Proof.− For anym∈ M , we have:

Gk
sL

s(am,bm) = ∑
h∈Lk

(am,bm)∈Jh×Jh

Hs
h(am,bm)Ls(h(am),h(bm))

= ∑
h∈Lk

am∈Jh

|F(h(am))−F(h(bm))|s
|am−bm|s

= ∑
h∈Lk

am∈Jh

us
h◦hm

|am−bm|s

(remark that{h(am),h(bm)} = {ah◦hm,bh◦hm}). Now, anyh̃∈ Lk+1 may be uniquely written as̃h = h◦hm

for someh∈ Lk andm∈ M . �

Our main theorem extends B. Vallée results to P-Markov dynamical sources.

Theorem 2.3 Consider a dynamical P-Markov source. There existλ(s) > 0, Φ(s) > 0 and0≤ ρ(s) < 1
three analytic functions on a complex neighborhood of the half line{s∈ R / s > γ} such that for any
k≥ 1,

Λk(F ,s) = λk(s)
(

Φ(s)+O(ρk(s))
)

. (2.3)

λ(s) is the dominant eigenvalue of Gs on a suitable functional space.
Λ(F ,s) is analytic onR (s) > 1 and has a simple pole at s= 1.
The variable C follows asymptotically a geometric law.
If λ′′(1)− λ′(1)2 6= 0 then the variablelogℓk follows asymptotically a normal law. Moreover,λ′′(1)−
λ′(1)2 = 0 if and only if the map T is conjugated to a piecewise affine map with equal slopes, the conjugacy
is C1+Lip on each Im.
Either1 is the only pole ofΛ(F ,s) on R (s) = 1, in that case

B(x) ≃ −1
λ′(1)x

,

or the map T is conjugated to a piecewise affine map with slopes of the formαk, α > 1, k ∈ Z, with
conjugacy C1+Lip on each Im. In that case, there exist A, B,

A
x
≤ B(x) ≤ B

x
.

Theorem 2.3 is derived from dominant spectral properties of generalized real Ruelle operators. We will
prove that these operators admit a unique maximal eigenvalue. To this aim, we use Birkhoff cones and
projective metrics ((Bi1), (Bi2)). These techniques have been introduced in dynamical systems by P.
Ferrero and B. Schmitt ((F,S)) and have been widely used by dynamicians to study Ruelle operators in
many different situations. Here, we will use these techniques to prove that both operatorsGs andGs are
quasi-compact and have a unique and simple dominant eigenvalue, for reals> γ. We will give the proofs
for Gs, the proofs forGs may be obtained in the same way. Even for the operatorsGs, our setting is not
covered by previous works (see for example (Bre), (M), (Sa)).
Of course the spectral properties of the operatorsGs and Gs depend on the space on which they act.
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Because the system is not assumed to be complete (i.e. we do not assumeJm = I for all m∈ M ), the
operatorsGs andGs do not act on continuous functions.
A function f is Lipschitz continuous onIm if there exists a constantKm > 0 such that for allx,y∈ Im,

| f (x)− f (y)| ≤ Km|x−y|.

The smallest numberKm such that the above is satisfied is called theLipchitz constantof f on Im. Let
Lpw(I) be the space of functions that are bounded and Lipschitz continuous on eachIm, with the supremum
of the Lipschitz constants on theIm’s finite. Denote byJ ⊂ I × I the union of all setsIm× Im and letLpw(J )
the space of functions onJ , that are bounded and Lipschitz continuous on eachIm× Im, with bounded
Lipschitz constant. In both cases, Lip( f ) will denote the sup of the Lipschitz constants on theIm’s or on
theIm× Im’s. These spaces are endowed with the norm:

‖ f‖ = ‖ f‖∞ + Lip( f ).

It is easy to see (and will in fact follow from Lemma 3.2) thatGs (resp.Gs) acts onLpw(I) (resp.Lpw(J )).

Theorem 2.4 For real s> γ, the operatorsGs (resp. Gs) act on Lpw(J ) (resp. Lpw(I)), they are quasi
compact and have a simple dominant eigenvalue. This dominant eigenvalueλ(s) is the same forGs and
Gs. The corresponding eigenvectors are strictly positive and belong to Lpw(J ) (resp. Lpw(I)).

Remark 3 If the source were complete (i.e. Jm = I for all m) and the density function f is C1 on I, then
we could work with spaces of C1 functions. In that case,Gs acts on the space C1(I × I) of functions that
are C1 on I× I and Gs acts on the space C1(I) of functions that are C1 on I, they are quasi compact
and have a simple dominant eigenvalue. This dominant eigenvalueλ(s) is the same forGs and Gs. The
corresponding eigenvectors are strictly positive and belong to C1(I × I) (resp. C1(I)). The only change in
our proof would be in the definition of the cone in section 2.4 (see Remark 8).

We postpone the proof of Theorem 2.4 to the end of the paper (see section 4). Let us show how to use it
to get Theorem 2.3.

3 Analysis of the parameters of the source
3.1 Preliminary results
The following lemma is an easy application of the derivation chain rule, (d3) and the fact that allhm,
m∈ M areδ contractions withδ = supm∈M δm < 1.

Lemma 3.1 For all k ∈ N
∗, for all h∈ Lk, x,y∈ Jh,

h′′(x)
h′(y)

≤ A(1+A)

1−δ
:= B.

Applying the integral Taylor formula at order 1 toh, the Taylor formula at order 1 toh′ and Lemma 3.1
gives: for allk∈ N

∗, for all h∈ Lk, X = (x,x′), Y = (y,y′) ∈ Jh×Jh,

Hh(X)

Hh(Y)
≤ 1+d(X,Y)B, (3.1)
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where d(X,Y) = |x−y|+ |x′−y′|. (3.2)

The following lemma proves that the operatorsGs, R (s) > γ satisfy a “Doblin-Fortet” or “Lasota-Yorke”
inequality. We are going to use a result by H. Hénnion ((H)) to conclude that they are quasi-compact for
some complexs, R (s) > γ. We could also use it to conclude thatGs are quasi-compact for reals> γ then
it would remain to prove that the dominant eigenvalue is unique and simple. This can be done “by hand”
but we have preferred to give a self contained argument proving in the same time the quasi compactness
and the dominant spectral property (see section 4).

Lemma 3.2 For all s, R (s) = σ > γ, there exists K> 0 such that for all f∈ Lpw(J ), for all n∈ N,

Lip(Gn
s f ) ≤ δn‖Gn

σ1‖∞ Lip( f )+K‖Gn
σ| f |‖∞ (3.3)

≤ δn‖Gn
σ1‖∞ Lip( f )+K‖Gn

σ1‖∞ ‖ f‖∞.

Proof.− Let X = (x,x′), Y = (y,y′) belong to the sameIm× Im. In that case, the sets{h / |h| = n andX ∈
Jh×Jh} and{h / |h| = n andY ∈ Jh×Jh} are the same. We compute:

|Gn
s f (X)−Gn

s f (Y)| ≤ ∑
h∈Ln

X∈Jh×Jh

|Hh(X)|σ| f (h(x),h(x′))− f (h(y),h(y′))|

+ ∑
h∈Ln

X∈Jh×Jh

| f (h(Y))|Hh(Y)σ
∣∣∣∣
(

Hh(X)

Hh(Y)

)s

−1

∣∣∣∣

≤ δnLip( f )d(X,Y)Gn
σ(1)(X)

+σBd(X,Y)(1+Beσ)Gn
σ(| f |)(Y),

(we have used (3.1)).
This gives the result withK = σB(1+Beσ). �

Let us state H́ennion’s theorem and show that we can apply it.

Theorem 3.3 ((H)) Let (B,‖ · ‖) be a Banach space, let| · | be another norm on B and Q be an operator
on (B,‖ · ‖), with spectral radius R(Q). If Q satisfies:

1. Q is compact from(B,‖ · ‖) into (B, | · |),

2. for all n∈ N, there exist positive numbers Rn and rn such that r= liminf(rn)
1
n < R(Q) and for all

f ∈ B,
‖Qn f‖ ≤ Rn| f |+ rn‖ f‖

then Q is quasi-compact and the essential spectral radius is less than r.

We will use this theorem withB= Lpw(J ) and| · | the sup norm. According to Lemma 3.2, in order to apply
Theorem 3.3, we have to prove that the operatorsGs are compact from(Lpw(J ),‖·‖) into (Lpw(J ),‖·‖∞).
In other words, consider a sequence( fn)n∈N, fn ∈ Lpw(J ) with ‖ fn‖≤ 1, we have to prove that there exists
a subsequencenk such that the sequence(Gs fnk) converges for the sup norm‖ ·‖∞. This will follow from
remark 2.
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Lemma 3.4 For all s such thatR (s) > γ, Gs is compact from(Lpw(J ),‖ · ‖) into (Lpw(J ),‖ · ‖∞).

Proof.− Let ( fn)n∈N, fn ∈ Lpw(J ) with ‖ fn‖ ≤ 1, restricted to eachIm× Im the functionsfn are uniformly
equicontinuous. We may apply Ascoli’s theorem on eachIm× Im and use a diagonal principle to find
a subsequencenk such that the sequencefnk converges to some functionf . Let us prove thatGs fnk

converges uniformly toGs f . Denotes= σ+ it , let X = (x,x′) ∈ J andQ a finite subset ofM ,

|Gs fnk(X)−Gs f (X)|

=

∣∣∣∣∣∣∣
∑

m∈M
X∈Jm×Jm

Hs
m(X)( fnk(hm(x),hm(x′))− f (hm(x),hm(x′))

∣∣∣∣∣∣∣

≤ ∑
m∈Q
x∈Jm

Hσ
m(X)

∣∣ fnk(hm(x),hm(x′))− f (hm(x),hm(x′))
∣∣

+ ∑
m6∈Q
x∈Jm

Hσ
m(X)

∣∣ fnk(hm(x),hm(x′))− f (hm(x),hm(x′))
∣∣

≤ ‖Gσ1‖∞ sup
m∈Q

X∈Im×Im

| fnk(X)− f (X)|+2 ∑
m∈M , x∈Jm

m6∈Q

δσ
m

(we have used that‖ fn‖∞ ≤ 1 and Taylor equality). Fixε > 0, chooseQ ⊂ M , Q finite, such that

∑
m6∈Q
x∈Jm

δσ
m < ε, now choosek0 such that fork > k0,

sup
m∈Q

X∈Im×Im

| fnk(X)− f (X)| < ε

(this can be done because the convergence is uniform on eachIm× Im andQ is finite). We have:

|Gs fnk(X)−Gs f (X)| ≤ ε(‖Gσ1‖∞ +2).

In other words,Gs fnk goes toGs f uniformly. �

Now the following result is a simple consequence of Theorem 3.3. For anys, R(s) denotes the spectral
radius ofGs.

Proposition 3.5 Let R (s) = σ > γ, either R(s) ≤ δR(σ) or Gs is quasi-compact. In particular, forσ > γ,
Gσ is quasi-compact.

Proof.− We have thatR(σ) = lim
n→∞

‖Gn
σ1‖

1
n∞. Thus

liminf (δn‖Gn
σ1‖∞)

1
n = δR(σ).

The result follows. �

To conclude the proof of Theorem 2.4, it remains to prove that for reals> γ, Gs admits a unique simple
dominant eigenvalue. We postpone this proof to section 4. Let us use Theorem 2.4 and Proposition 3.5 to
obtain spectral properties ofGs for complex parameterss.
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3.2 Spectral properties for complex parameters s and properties of Dirichlet
series

For reals> γ, by Theorem 2.4, we have that for anyk∈ N, f ∈ Lpw(J ),

Gk
s f = λk(s)Πs( f )+Sk

s f ,

whereΠs is the spectral projection on the maximal eigenvalue andSs is an operator onLpw(J ) whose
spectral radius strictly less thanλ(s) and such thatSs◦Πs = Πs◦Ss = 0. Now Proposition 2.2 gives:

Λk+1(F ,s) = ∑
m∈M

|am−bm|sGk
sL

s(am,bm)

= ∑
m∈M

|am−bm|s
(

λk(s)Πs(L
s)(am,bm)+Sk

sLs(am,bm)
)

= λk+1(s)

(
Φ(s)
λ(s)

+O(ρk(s))

)
,

with Φ(s) = ∑m∈M |am−bm|sΠs(Ls)(am,bm) andρ(s) the spectral radius ofSs overλ(s). Remark that we
have used that

∑
m∈M

|am−bm|s

converges which follows from (d2). Thus we have proved (2.3) of Theorem 2.3 for reals. The fact that it
holds on a complex neighborhood ofs> γ follows from perturbation theory (see for example Kato (K)).
We now prove Proposition 8, Proposition 9 and Proposition 10 of (V1) in our context. Remark that her
proofs are based upon Fredholm determinant theory thus we have to use others arguments. Also, some
changes are due to the fact that we work with functionsf that are continuous on eachIm but not onI . In
particular, in general there does not existx∈ I such thatf (x) = supI f .

Proposition 3.6

1. The function s→ λ(s) is strictly decreasing along the real axis s> γ.

2. On each vertical lineR (s) = σ, we have R(s) ≤ λ(σ).

3. If R(s) = λ(σ) for s = σ + it then Gs has an eigenvalueλ = eiaλ(σ), a∈ R that belongs to the
spectrum of Gs.

Proof.− From (2.3), we deduce that:

λ(s) = lim
k→∞

Λk(1,s)
1
k .

Since for allm∈ M , hm is aδ-contraction, we deduce:

Λk(1,s+u) = ∑
h∈Lk

|Ih|s+u

≤ ∑
h∈Lk

δu
h|Ih|s ≤ δku ∑

h∈Lk

|Ih|s.



300 F. Chazal and V. Maume-Deschamps

Thus,λ(s+u) ≤ δuλ(s) and we have proved item 1.
To prove item 2, it suffices to remark that forf ∈ Lpw(J ), ‖Gk

s f‖∞ ≤ ‖Gk
σ f‖∞. This together with Lemma

3.2 givesR(s) ≤ R(σ) = λ(σ).
Finally, if R(s) = λ(σ) then by Proposition 3.5, the operatorGs is quasi compact and thus admits a
eigenvalueλ = eiaλ(σ) of modulusλ(σ). Let Ψs be such thatGsΨs = λΨs andψs(x) = Ψs(x,x). Then
Gsψs = λψs. �

Let us study the spectral properties ofGs for R (s) = 1. Let us remark that for any distributionF , we have
(see also Proposition 5 in (V1)),

Λk(F ,1) = 1.

Thusλ(1) = 1. For further use, let us denoteϕ1 ∈ Lpw(I) the eigenfunction ofG1 corresponding to the
maximal eigenvalueλ(1) = 1 and satisfyingm(φ1) = 1. Then the measureν = φ1m is T invariant.

Proposition 3.7 Let R (s) = 1, the operator may behave in two different ways.

1. Either for all s6= 1, R (s) = 1, R(s) < 1 (the aperiodic case),

2. or the set of t∈ R such that1 belongs to the spectrum ofG1+it is of the form t0Z for some t0 (the
periodic case). In that case, the map T is conjugated to a piecewise affine map with slopes of the
form αk, α > 1, the conjugacy is C1+Lip on each Im. Moreover, there existsσ0 < 1 such that on the
strip {σ0 < R (s) < 1} the operator(I −Gs)

−1 has no pole.

Proof. − Let s= 1+ it and assume that 1 belongs to the spectrum ofG1+it . Then using Proposition 3.6
we have that there existsf ∈ Lpw(I) such thatGs f = f . Let us prove that| f | is an eigenfunction forG1

with eigenvalue 1. We have
| f | = |Gs f | ≤ G1| f |. (3.4)

Recall that the Lebesgue measure is invariant byG1 so that
Z

I

G1| f |(x)dx=
Z

I

| f |dx.

As a consequence, inequality (3.4) must be an equality. Now, because of Theorem 2.4, 1 is simple as an
eigenvalue ofG1. Thus, let f1 > 0 be a dominant eigenfunction ofG1. Let µ(x) = f (x)

f1(x) , multiplying if

necessaryf1 by some constant, we may assume that|µ| ≡ 1. Following B. Valĺee’s proof of Proposition
9, we obtain that for allm∈ M , x∈ Jm,

h′m(x)it µ◦hm(x) = µ(x). (3.5)

Reciprocally, lett be such that there exists a functionµ satisfying (3.5) for allm∈ M then f = µ · f1
satisfiesG1+it f = f .
In other words, we have proved that 1 belongs to the spectrum ofG1+it if and only if there exists a function
µ satisfying (3.5) for allm∈ M . This implies that the set of realt such that 1 belongs to the spectrum of
G1+it is a subgroup ofR: if

h′m(x)it µt ◦hm(x) = µt(x) and h′m(x)it ′µt ′ ◦hm(x) = µt ′(x)
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then

h′m(x)i(t−t ′)
(

µt

µt ′

)
◦hm(x) =

(
µt

µt ′

)
(x).

It cannot accumulate 0 because of the analyticity ofs→ λ(s) nears= 1. Thus it is of the formt0Z.
There exists a real functionθ ∈ Lpw(I) such thatµ = eiθ (recall thatµ = f

f1
∈ Lpw(I)), takeφ= exp(θ

t )

andα = exp(2π
t ). Equation (3.5) becomes:

log|T ′(x)| = θ(x)
t

− θ(Tx)
t

+
2k(x)π

t

wherek(x) ∈ Z and is constant on eachIm, and finally, equation (3.5) may be rewritten as:

|T ′(x)| = φ(x)
φ◦T(x)

αk(x),

Now, we may find constantscm anddm, m∈ M such that the function

g(x) = cm

Z x

am

φ(t)dt+dm x∈ Im

is continuous, mapsI into I , is invertible, is derivable on eachIm with Lipschitz derivative on eachIm.
DerivatingT̃ = g◦T ◦g−1 we obtain that̃T is piecewise affine with slopesαk.
Let us prove the existence of a strip free of poles. There existsγ< σ1 < 1 such that for anyσ∈]σ1,1[, the
operatorGσ has no eigenvalue of modulus 1. Letσ1 < σ0 < 1 being such thatδλ(σ) < 1 for all σ > σ0.
Let σ ∈]σ0,1[ ands= σ+ iτ. Proposition 3.5 implies that eitherGs is quasi-compact orR(s) < 1 (in this
last case 1 does not belong to the spectrum ofGs). So assume thatGs is quasi-compact. If 1 is in the
spectrum ofGs, then it is an eigenvalue ofGs (Theorem 3.3) and ofGs. There existsf ∈ Lpw(I) such that
Gs( f ) = f . Using thatα ikt0 = 1 for any integerk, one deduces that 1 is an eigenvalue of the operators
Gσ+i(τ+kt0)for anyk ∈ Z. It follows that if there is no strip free of poles, then some of the points of the
line R (s) = 1 are accumulated by a sequence of poles ofΛ(F,s). This is a contradiction sinceΛ(F,s) is a
meromorphic function in a neighborhood ofR (s) = 1. �

We now prove the log-convexity ofs→ λ(s). Such a property is necessary to study the random variable
logℓk.

Proposition 3.8 The function s→ logλ(s) is convex. Either it is strictly convex or it is affine. In this last
case, the map T is conjugated to a piecewise affine map with slopes all equal. The conjugacy is C1+Lip on
each Im.

Proof.− We have to prove that fort ∈ [0,1] ands> γ, s′ > γ,

λ(ts+(1− t)s′) ≤ λ(s)t ·λ(s′)1−t . (3.6)

Consider the function

ψ = fts+(1−t)s′( fs)
−t( fs′)

−(1−t)
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where fσ denote a dominant eigenfunction ofGσ. We may normalizeψ to have supI ψ = 1. Consider a
sequencexn ∈ I such thatψ(xn) → 1.

λ(ts+(1− t)s′) fts+(1−t)s′(xn) = ∑
h∈M

|h′|(xn)
ts+(1−t)s′ fts+(1−t)s′(h(xn)) (3.7)

≤ ∑
h∈M

|h′|(xn)
ts fs(hxn)

t · |h′|(xn)
(1−t)s′ fs′(hxn)

1−t

≤
(

∑
h∈M

|h′|(xn)
s fs(hxn)

)t

·
(

∑
h∈M

|h′|(xn)
s′ fs′(hxn)

)1−t

(3.8)

= λ(s)t fs(xn)
t ·λ(s′)1−t fs′(xn)

1−t .

(3.8) follows from Ḧolder inequality. Taking the limit whenn → ∞ gives (3.6). λ being analytic, if
equality holds in (3.6) for somes, s′, t then logλ is affine. In this last case, it remains to prove that the
mapT is conjugated to a piecewise affine map with slopes all equal.
Assume that logλ is affine then there existsa< 1 such thatλ(s) = as−1. Chooses, s′, t such thatts+(1−
t)s′ = 1, let us show thatf t

s · f 1−t
s′ is a dominant eigenfunction ofG1. Hölder inequality implies that

G1( f t
s · f 1−t

s′ ) ≤ f t
s · f 1−t

s′ .

As in the proof of Proposition 3.7, we use thatG1 leaves Lebesgue measure invariant to conclude that
G1( f t

s · f 1−t
s′ ) = f t

s · f 1−t
s′ . As a consequence,ψ ≡ 1 and equality holds in (3.7) for allx∈ I . This implies

that there exists a functionk : I → R
+ such that for allh∈ M ,

|h′(x)|s fs(hx) = k(x)|h′(x)|s′ fs′(hx).

Summing overh∈ M and notingφ(x) =
fs(x)
fs′(x)

we get that

φ(x) = k(x)
λ(s)
λ(s′)

and thenT satisfy a cocycle relation:

|h′(x)|s−s′φ◦h(x) =
λ(s)
λ(s′)

φ(x) for all h∈ M . (3.9)

Following the end of the proof of Proposition 3.7, we conclude thatT is conjugated to a piecewise affine
map with slopes all equal to1a. �

Remark 4 By the way, the cocycle argument used in the proofs of Proposition 3.7 and 3.8 resolve Con-
jecture 1 of B. Valĺee:
A source is similar to a source with affine branches if and only if it is conjugated to a source with affine
branches. The conjugacy is C1+Lip on each Im.
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Sources similar to a source with affine branches

Periodic sources Log-affine sources

Fig. 7: Exceptional sources

Figure 7 shows relations between sources conjugated to piecewise affine sources.
Let U(s) = logλ(s). With propositions 3.6, 3.7, 3.8 the analysis of parameters of the source done in
sections 7, 8, 9 of (V1) apply to our setting without any change. To conclude the proof Theorem 2.3, it
remains to verify that if the source is not log-affine thenU ′′(1) 6= 0. This is necessary to apply Hwang’s
quasi powers theorem and obtain the central limit theorem.

Proposition 3.9 Let U(s) = logλ(s). The following assertions are equivalent :

1. U′′(1) = 0,

2. there exist a C1 functionφwhose derivative belongs to the space Lpw(I) such that for all s> γ, for
all h ∈ M , |h′(x)|sφ◦h(x) = λ(s)φ(x).

Proof.− We apply Proposition 6.10 and Theorem 6.8 of (Bro) with the function

f = − log|T ′|+
Z

I

log|T ′|dν

whereν is the probability measure which isT-invariant and absolutely continuous with respect tom. It is
classical that

Z

I

log|T ′|dν = −λ′(1).

Clearly, f ∈ Lpw(I), alsoLpw(I) is dense inL1(ν). With A. Broise’s notations (the operatorsΦ f (θ) are
defined in (Bro), pp 37), we have:

Gs(g) = e−(s−1)λ′(1)Φ f (s−1)(g).

So that ifλ̃(s−1) is the dominant eigenvalue ofΦ f (s−1) thenλ̃(s−1) = e(s−1)λ′(1)λ(s). Since

U ′′(1) =
λ′′(1)−λ′(1)2

λ(1)2 ,
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we deduce thatU ′′(1) = 0 if and only if λ̃′′(0) = 0 which is equivalent to item 1. by Proposition 6.10 and
Theorem 6.8 of (Bro). �

4 Spectral properties of real generalized Ruelle operators
The aim of this section is to prove Theorem 2.4. Let us recall definitions and properties of cones and
projective metrics (see (L) or (L,S,V) for a complete presentation).

4.1 Cones and projective metrics
The theory of cones and projective metrics of G. Birkhoff (Bi1) is a powerful tool to study linear operators.
P. Ferrero and B. Schmitt (F,S) applied it to estimate the correlation decay for random compositions of
dynamical systems.

Definition 3 Let V be a vector space. A subsetC ⊂ V which enjoys the following four properties

(i) C ∩−C = /0

(ii) ∀λ > 0 λC = C

(iii) C is a convex set

(iv) ∀ f ,g∈ C ,∀αn ∈ R , (αn → α, g−αn f ∈ C ) ⇒ (g−α f ∈ C ∪{0}).
is called aconvex cone.

We now define the Hilbert metric onC :

Definition 4 The distance dC ( f ,g) between two points f,g in C is given by

dC ( f ,g) = log
β( f ,g)

α( f ,g)
whereα andβ are defined as

α( f ,g) = sup{λ > 0|g−λ f ∈ C}
β( f ,g) = inf{µ> 0|µ f −g∈ C}

where we takeα = 0 or β = ∞ when the corresponding sets are empty.

Remark 5 In the sequel we will use thatβ( f ,g) = α(g, f ).

The distancedC is a pseudo-metric, because two elements can be at an infinite distance from each other,
and it is a projective metric because any two proportional elements have a null distance.
Given two elements linearly independentf andg∈ C , consider the intersection ofC with the two dimen-
sional vector space spanned byf andg. Its boundary is the union of two half linesℓ1, ℓ2. The distance
dC ( f ,g) is the log of the cross-ratio of the four half linesℓ1, ℓ2, f , g (see figure 8).

Remark 6 For example, ifV is a space formed with real valued functions andC + the cone of positive
functions then an easy computation gives:

dC+( f ,g) =
supf
inf f

supg
inf g

.
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ℓ2

C

g

f

ℓ1

Fig. 8: Projective metric

Definition 5 Let V be a vector space,C ⊂ V a convex cone, a linear operator L: V → V is called a
positive operatorif LC ⊂ C .

The next theorem, due to G. Birkhoff (Bi2), shows that every positive linear operator is a contraction,
provided that the diameter of the image is finite.

Theorem 4.1 Let V be a vector space,C ⊂ V a convex cone (see definition above) and L: V → V a
positive linear operator. Let dC be the Hilbert metric associated to the coneC . If we denote

∆ = sup
f ,g∈L(C )

dC ( f ,g) ,

then

dC (L f ,Lg) ≤ tanh

(
∆
4

)
dC ( f ,g) ∀ f ,g∈ C

(tanh(∞) = 1).

Remark 7 Theorem 4.1 implies that ifC1 and C2 are two convex cones such that C1 ⊂ C2 then for any
f ,g∈ C1,

dC2( f ,g) ≤ dC1( f ,g).

(apply Theorem 4.1 with L= Id). In particular, if C ⊂ C + then for f,g∈ C ,

dC ( f ,g) ≥ supf
inf f

supg
inf g

.

Theorem 4.1 alone is not completely satisfactory: given a coneC and its metricdC , we need to relate the
distancedC with a suitable norm onV . The following lemma provides such a relation.

Lemma 4.2 (L,S,V) Let‖ · ‖ be a norm onV such that

∀ f ,g∈ V f −g, f +g∈ C ⇒‖g‖ ≤ ‖ f‖
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and letℓ : C → R
+ be a homogeneous and order preserving function, i.e.

∀ f ∈ C ,∀λ ∈ R
+ ℓ(λ f ) = λℓ( f )

∀ f ,g∈ C g− f ∈ C ⇒ ℓ( f ) ≤ ℓ(g) ,

then

∀ f ,g∈ C ℓ( f ) = ℓ(g) > 0⇒‖ f −g‖ ≤ (edC ( f ,g) −1)min(‖ f‖,‖g‖)

4.2 Proof of Theorem 2.4

We are now going to use Theorem 4.1 and Lemma 4.2 to prove Theorem 2.4. Recall that we already know
from Section 3 that the operatorsGs are quasi-compact for reals> γ. It remains to prove that they have a
unique dominant eigenvalue ; we prove it forGs and leave to the reader the proof forGs.
Let us sketch how to use cones to obtain the dominant spectral properties. To obtain a unique dominant
eigenvalue, it is sufficient to find a coneC and an integerk such thatGk

s mapsC into itself and the diameter
∆ of Gk

sC into C is finite. Indeed, the idea is that iff ∈ C then Theorem 4.1 appliedn−1 times gives
(κ = tanh∆

4 < 1):

dC (Gk+n
s f ,Gn

s f ) ≤
(

tanh
∆
4

)n−1

∆ = κn−1∆. (4.1)

We deduce (using Lemma 4.2 with‖ ‖∞ as homogenous form) that the sequence of lines generated by
(Gn

s f )n∈N
is a Cauchy sequence and converges to a line generated by an eigenvectorΨs. This eigenvector

corresponds to an eigenvalueλ(s). On another hand, we construct an eigenvectorνs for the dual operator.
Then Lemma 4.2 (applied withνs as homogenous form) and equation (4.1) give that

∥∥∥∥
Gn

s f
λ(s)n − Ψsνs( f )

∥∥∥∥
∞

(4.2)

goes to zero exponentially fast for anyf ∈ C . Then we have to extend this result from the cone to the
Banach space of piecewise Lipschitz functions (this is done using Lemma 4.9 below). The fact that (4.2)
goes to zero exponentially fast implies thatλ(s) is the unique dominant eigenvalue ofGs.

The following lemma proves the existence of a real positive eigenvalue for the dual operator ofGs.
The corresponding eigenvector is indeed a measure. Recall that isV is a topological Banach space, it
topological dualV ′ is endowed with the weak topology that is: a sequence(νn)n∈N of elements ofV ′

converges toν ∈ V ′ if and only if for any f ∈ V , the sequence(νn( f ))n∈N converges toν( f ). Also, if L
is a continuous linear operator onV then it defines a continuous linear operatorL′ on V ′ by: for ν ∈ V ′,
for any f ∈ V ,

L′(ν)( f ) = ν(L( f )).

Lemma 4.3 There exists a measureνs on J and a positive numberλ(s) such that for f∈ Lpw(J ),

νs(Gs f ) = λ(s) ·νs( f ).
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Proof.− Let Lpw(J )∗ be the topological dual ofLpw(J ) (i.e. Lpw(J )∗ is the set of continuous linear forms
onLpw(J )). Recall that the weak topology onLpw(J )∗ is defined by:Γn weakly converges toΓ ∈ Lpw(J )∗

if and only if for all f ∈ Lpw(J ), Γn( f ) converges toΓ( f ).
Let K ⊂ Lpw(J )∗ be the positive formsΓ of Lpw(J )∗ such thatΓ(1) = 1. DefinePs which mapsK into
itself by:

PsΓ( f ) =
Γ(Gs f )
Γ(Gs1)

,

(remark that the positivity condition (d5) implies that inf(Gs1) > 0). K is non empty, convex and weakly
compact (see (Sc) TheoremXIX.7.7), Ps is continuous on it for the weak topology. Then the Schauder-
Tychonoff theorem ((D,S)) implies that it admits a fixed pointνs. We know thatνs is additive, to prove
that it is a measure, we need to prove that it isσ-additive.
Restricted to eachIm× Im, νs may be identified to a measure (by Riesz representation theorem on compact
spaces), in particular, we may computeνs(1Im×Im). To conclude that it is a measure on the unionJ of the
Im× Im, it suffices to prove that:

νs( ∑
m∈M

1Im×Im) = ∑
m∈M

νs(1Im×Im).

This will follow from:
lim

|Q |→∞ Q ⊂M
Q f inite

νs( ∑
m6∈Q

1Im×Im) = 0.

We have:

νs( ∑
m6∈Q

1Im×Im) =
νs
(
Gs(∑m6∈Q 1Im×Im)

)

λ(s)

andνs
(
Gs(∑m6∈Q 1Im×Im)

)
≤ supGs(∑m6∈Q 1Im×Im) (becauseνs ∈ K is a positive form). Now, for allX =

(x,x′) ∈ J ,

Gs( ∑
m6∈Q

1Im×Im)(X) = ∑
n∈M

X∈Jn×Jn

Hs
n(X) ∑

m6∈Q

1Im×Im(hn(x),hn(x
′))

= ∑
m6∈Q

X∈Jm×Jm

Hs
m(X)

≤ ∑
m6∈Q
x∈Jm

δs
m.

The result follows from (2.1) which is equivalent to Condition (d2) (see Remark 2). �

The starting point of the construction of cones is usually a Lasota-Yorke inequality. Looking at Lemma
3.2, on sees that the operatorsGs improve the Lipschitz constant of piecewise Lipschitz functions, this
explains condition 3 in the definition of the cone below. If the alphabetM was finite, we could manage
with this condition and the positivity condition 2 below. The idea is that condition 3 provides a good
control of the functions on eachIm× Im and if the alphabet is finite, we may obtain a uniform control on
the union of theIm× Im, iterating byGk

s if necessary. Since we want to deal with infinite alphabet, we add
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condition 4 below which controls the functions on the complementary of a well chosen finite partQ of
M .
Let Q be a finite subset ofM such that:

sup
x∈I

∑
m6∈Q
x∈Jm

δs
m < λ(s)δ.

The existence of such a subsetQ follows from (2.1).
Fora > 0, b > 0, letCa,b(s) be the set of functionsf on J such that:

1. f ∈ Lpw(J ),

2. ∀(u,v) ∈ J , f (u,v) > 0,

3. ∀m∈ M , ∀(u,u′) = U ,(v,v′) = V ∈ Im× Im, f (u,u′) ≤ ead(U ,V) · f (v,v′) (the distanced(U ,V) has
been defined in (3.1)),

4. for all m 6∈ Q , for (u,v) ∈ Im× Im, f (u,v) ≤ bνs( f ).

Remark thatCa,b(s) ⊂ Lpw(J ) is a cone.

Remark 8 As mentioned in Remark 3, if the source is complete,Gs acts on the space C1(I× I) of functions
that are C1 on I× I. To get the dominant eigenvalue result on this space, it suffices to replace item 1 in the
definition of the cone above by “ f∈C1(I × I)”.

Lemma 4.4

1. For all m∈ M , νs(Im× Im) > 0.

2. For f ∈Ca,b(s), m∈ M , X ∈ Im× Im, f (X) ≤ e2a νs( f )
νs(Im× Im)

.

Proof. − To prove Item 1, remark that (2.2) and Taylor equality imply that for allm∈ M , there exists
N ∈ N such that

inf
X∈J

GN
s 1Im×Im(X) > 0.

Now, νs(1Im×Im) = λ(s)−Nνs(GN
s 1Im×Im) > 0.

Item 2. follows from the definition of the cone (condition 3.) by integrating with respect toνs on Im× Im.
�

Lemma 4.5 For any s> γ, for anyδ < ξ < 1, there exists a0 > 0, b0 > 0 such that for all a≥ a0, b≥ b0

and for any k∈ N
∗, Gk

s maps Ca,b(s) into Cξa,ξb(s).

Proof. − Let f ∈Ca,b(s). BecauseCξa,ξb(s) ⊂Ca,b(s), it suffices to proof the lemma fork = 1. Let f ∈
Ca,b(s), for anym∈ M , X = (x,x′), Y = (y,y′) ∈ Im× Im, we have to compare:f (hm(x),hm(x′))Hs

m(x,x′)
with f (hm(y),hm(y′))Hs

m(y,y′). Becausef belongs toCa,b(s), and for eachm∈ M , hm is aδ-contraction,
we have:

f (hm(x),hm(x′)) ≤ eaδd(X,Y) f (hm(y),hm(y′)).
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(3.1) implies that:
Hs

m(x,x′) ≤ esBd(X,Y)Hs
m(y,y′).

So,Gs f (X) ≤ eξad(X,Y)Gs f (Y) provideda≥ sB
ξ−δ

.

Now, letX ∈ Im× Im with m 6∈ Q . Let c := infm∈Q νs(Im× Im), c > 0 because of Lemma 4.4 and the fact
thatQ is finite. We have:

Gs f (X) = ∑
m∈Q

X∈Jm×Jm

Hs
m(X) f (hm(x),hm(x′))

+ ∑
m6∈Q

X∈Jm×Jm

Hs
m(X) f (hm(x),hm(x′))

≤ e2a

c
νs( f )‖Gs1‖∞ +bνs( f )sup

x∈I
∑
m6∈Q
x∈Jm

δs
m.

Now, we use thatνs( f ) =
νs(Gs f )

λ(s)
and since sup

x∈I
∑
m6∈Q
x∈Jm

δs
m < λ(s)δ, we get:

Gs f (X) ≤ νs(Gs f ) (
e2a‖Gs1‖

cλ(s)
+bδ) ≤ bξνs(Gs f )

providedb≥ e2a‖Gs1‖
λ(s)c(ξ−δ)

. �

Lemma 4.6 Let a≥ a0, b≥ b0, there exists M such that for k≥ M, the projective diameter∆ of Gk
sCa,b(s)

into Ca,b(s) is finite:
∆ = sup

f ,g ∈ Ca,b(s)
dCa,b(s)(G

k
s f ,Gk

sg) < ∞.

Proof.− Let f ,g∈Cξa,ξb(s), let β > 0, we have thatβ f −g∈Ca,b(s) if and only if:

1. β >
g(x,x′)
f (x,x′)

for all (x,x′) ∈ J .

2. β >
ead(X,Y)g(y,y′)−g(x,x′)

ead(X,Y) f (y,y′)− f (x,x′)
:= u(X,Y) for all (x,x′),(y,y′) ∈ J .

3. β >
bνs(g)−g(x,x′)
bνs( f )− f (x,x′)

:= v(X) for all (x,x′) ∈ Im× Im, m 6∈ Q .

The quantityu(X,Y) may be rewritten as:

u(X,Y) =

(
g(y,y′)
f (y,y′)

)


ead(X,Y) − g(x,x′)
g(y,y′)

ead(X,Y) − f (x,x′)
f (y,y′)


 ,
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using thatf ,g∈Cξa,ξb(s), we get:

u(X,Y) ≤ g(y,y′)
f (y,y′)

ead(X,Y) −e−aξd(X,Y)

ead(X,Y) −eaξd(X,Y)

≤ g(y,y′)
f (y,y′)

ea(1+ξ) 1+ ξ
1− ξ

.

Moreover, because for allX ∈ Im× Im, m 6∈ Q , 0< f (X) ≤ bξνs( f ), we have thatv(X) ≤ νs(g)
νs( f )(1−ξ)

.
Remarking that

sup
(y,y′)∈J

g(y,y′)
f (y,y′)

ea(1+ξ) 1+ ξ
1− ξ

≥ sup
(y,y′)∈J

g(y,y′)
f (y,y′)

,

we have proven that iff ,g∈Cξa,ξb(s)

β( f ,g) ≤ max

[
sup

(y,y′)∈J

g(y,y′)
f (y,y′)

ea(1+ξ) 1+ ξ
1− ξ

,
νs(g)

νs( f )(1− ξ)

]
. (4.3)

The same computation (recall thatα( f ,g) = β(g, f )) gives:

α( f ,g) ≥ min

[
inf

(y,y′)∈J

g(y,y′)
f (y,y′)

e−a(1+ξ) 1− ξ
1+ ξ

,
νs(g)(1− ξ)

νs( f )

]
. (4.4)

One sees that we have to control the quantities supJ f , infJ f with respect toνs( f ). This cannot be done
for all functions inCξa,ξb(s) but it can be done forGk

s f for f ∈Ca,b(s) andk≥ M, M large enough. To this

aim, we need two sublemmas. The first one (Sublemma 4.7) proves there exists a finite subsetQ̃ ⊂ M
such that a function inCa,b(s) is bounded from below at least on oneIm× Im, m∈ Q̃ . Then Sublemma 4.8
proves that ifk is large enough, forf ∈Ca,b(s), Gk

s f is bounded from below on all theIm× Im.

Sublemma 4.7Let ε = 1
2e2a . Let Q̃ be a finite subset ofM which containsQ and satisfies:

∑
m6∈Q̃

νs(Im× Im) <
1
2b

.

For all f ∈Ca,b(s), there exists m∈ Q̃ such that for all X∈ Im× Im,

f (X) ≥ ενs( f ).

Proof.− If the sublemma was false then for allm∈ Q̃ , there would existXm ∈ Im× Im such thatf (Xm) <
ενs( f ). Then, we would have:

νs( f ) = ∑
m∈M

νs( f 1Im×Im)

= ∑
m∈Q̃

νs( f 1Im×Im)+ ∑
m6∈Q̃

νs( f 1Im×Im)

≤ ∑
m∈Q̃

f (Xm)e2aνs(1Im×Im)+bνs( f ) ∑
m6∈Q̃

νs(1Im×Im)

< e2aενs( f )+b
νs( f )

2b
< νs( f )
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a contradiction. �

ChooseM > 0 such that,
inf

m∈Q̃
inf
x∈I

∑
|h|=M
x∈Jh

1Im(h(x))ηs
h := D > 0 (4.5)

such aM exists because if (2.2) is satisfied form∈ Q̃ andN then (2.2) is also satisfied form andkN for
all k∈ N

∗. SinceQ̃ is finite, we may takeM a common multiple.

Sublemma 4.8Let M be given by (4.5). There exist constants K1, K2 such that for any k≥ M, for any
f ∈Ca,b(s), for all X ∈ J ,

K2νs(Gk
s f ) ≤ Gk

s f (X) ≤ K1νs(Gk
s f ).

Proof.− From Lemma 4.5, we have that iff ∈Ca,b(s) thenGp
s f ∈Ca,b(s) for all p∈ N. So, it suffices to

prove the inequality fork = M.
SinceGM

s f ∈Ca,b(s), we have for allX ∈ J :

GM
s f (X) ≤ νs(GM

s f )max[b,
e2a

c
].

Now, using Sublemma 4.7, we findm0 ∈ Q̃ such that forX ∈ Im0 × Im0, f (X) ≥ ενs( f ). Now, for all
X ∈ J ,

GM
s f (X) ≥ ενs( f )GM

s (1Im0×Im0
)(X) ≥ νs( f )εD.

So the sublemma is proved with
K1 = max[b, e2a

c ] andK2 = εD
λ(s)M . �

Let us conclude the proof of Lemma 4.6. Equations (4.3) and (4.4) together with Sublemma 4.8 gives that
for all f ,g∈Ca,b(s) andk≥ M,

dCa,b(s)(G
k
s f ,Gk

sg) ≤ log

[
supGk

s f
inf Gk

s f
· supGk

sg
inf Gk

sg
·e2(1+ξ) ·

(
1+ ξ
1− ξ

)2
]

≤ log

[(
K1

K2

)2

·e2(1+ξ) ·
(

1+ ξ
1− ξ

)2
]

.

Let K = log K1
K2

, we conclude that the projective diameter∆ of Gk
sCa,b(s) into Ca,b(s) is finite :

∆ ≤ 2K +2a(1+ ξ)+2log
1+ ξ
1− ξ

.

�

The following lemma shows that any function inLpw(J ) may be pushed into the coneCa,b(s).

Lemma 4.9 There exists K3 > 0 satisfying:
for any function f∈ Lpw(J ), there exists R( f ) > 0 such that R( f )+ f ∈Ca,b(s) and R( f ) ≤ K3 · ‖ f‖.
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Proof.− TakeR( f ) satisfying:

R( f ) ≥ sup| f |,

R( f ) ≥ Lip( f )−ainf f
a

,

R( f ) ≥ supf −binf f
b−1

. �

We are now in position to prove thatGs has a unique simple dominant eigenvalue.
Let κ = tanh∆

4 . Lemmas 4.5 and 4.6 and Theorem 4.1 give:∀n,m∈ N
∗,

dCa,b(s)(G
n+m
s 1,Gn

s1) ≤ κn−1dCa,b(s)(G
m+1
s 1,Gs1) ≤ ∆κn−1.

Now, apply Lemma 4.2 using‖ ‖∞ andνs to get:

∥∥∥∥
Gn+m

s 1
λ(s)n+m − Gn

s1
λ(s)n

∥∥∥∥
∞
≤ ∆κn−1 ·

∥∥∥∥
Gn

s1
λ(s)n

∥∥∥∥
∞

.

Now use again Lemma 4.2 to prove that

∥∥∥∥
Gn

s1
λ(s)n

∥∥∥∥
∞

is bounded:

∥∥∥∥
Gn

s1
λ(s)n − Gs1

λ(s)

∥∥∥∥
∞
≤ ∆ ·

∥∥∥∥
Gs1
λ(s)

∥∥∥∥
∞

.

So, the sequence
(

Gn
s1

λ(s)n

)
n∈N

is a Cauchy sequence (for the sup norm), thus it converges to some function

Ψs. This function satisfyGsΨs = λ(s)Ψs and for anyf ∈Ca,b(s),

∥∥∥∥
Gn

s f
λ(s)n −Ψsνs( f )

∥∥∥∥
∞
≤ ∆κn−1‖Ψs‖∞νs( f ).

Lemma 4.9 implies that for anyf ∈ Lpw(J ),

∥∥∥∥
Gn

s f
λ(s)n −Ψsνs( f )

∥∥∥∥
∞
≤ ∆κn−1‖Ψs‖∞(2K3 +1)‖ f‖. (4.6)

We already know thatGs is quasi compact (recall section 3). Now, equation (4.6) proves thatλ(s) is a
maximal eigenvalue (i.e.λ(s) = R(s) and any other eigenvalue has modulus strictly smaller thanλ(s). In
other words,λ(s) is simple and the unique eigenvalue of maximal modulus. The proof is the same forGs.
Let us denotẽλ(s) the dominant eigenvalue andψs the dominant eigenvector ofGs. We have

λ(s) = lim
n→∞

(Gn
s1(0,0))

1
n andλ̃(s) = lim

n→∞
(Gn

s1(0))
1
n

and the operatorsGs andGs coincide on the diagonal, we conclude thatλ(s) = λ̃(s). ✷
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