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Statistical properties of Markov dynamical
sources: applications to information theory
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In (V1), the author studies statistical properties of words generated by dynamical sources. This is done using gener-
alized Ruelle operators. The aim of this article is to generalize the notion of sources for which the results hold. First,
we avoid the use of Grothendieck theory and Fredholm determinants, this allows dynamical sources that cannot be
extended to a complex disk or that are not analytic. Second, we consider Markov sources: the language generated by
the source over an alphab#f is not necessarilyy/*.

Keywords: dynamical sources, information theory, transfer operator, markov sources

1 Introduction

Statistical properties of words describe the asymptotic behavior (or laws) of parameters such as “most
probable prefixes,” “coincidence probability” etc. These analyses have many applications in analysis of
algorithms, pattern matching, study of tries, optimization of algorithms... Of course, statistical properties
of words heavily depend on the way the words are produced.

In information theory contexts, a source is a mechanism which emits symbols from an alphéfieite

or infinite countable) to produce (infinite) words. The two “classical” simpler models are memoryless
sources where each symbol is emitted independently of the previous ones and Markov chains where the
probability for a symbol to be emitted depends on a bounded part of the past. Sources encountered in
practical situations are usually complex mechanisms, and one needs general models to study the statis-
tical properties of emitted words (e.g. the distribution of the prefixes of the same fixed length) and the
parameters of the sources (e.g. entropy)._In (V1), B.8dihtroduces a model pfobabilistic dynamical
sourcewhich is based upon dynamical systems theory. It covers classical sources models (that is mem-
oryless, some Markov chains) and some other processes with unbounded dependency on past history. A
probabilistic dynamical source consists of two parts: a dynamical system on the unit inGetyakp-
resenting the mechanism which produces words and a probability measure. More precisely, a dynamical
source is defined by:

(a) A finite or infinite countable alphabgt.

(b) A topological partition of := [0, 1] into disjoint open intervaly, me M, i.e.l = UmearIm-

(c) A mappingo which is constant and equal toon eachp,.
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(d) A mappingT whose restriction to ead, is aC? bijection fromiy, to T (Im) = Jn.
Let f be a probability density oh Words on the alphabe¥ are produced in the following way: first,
x € | is chosen at random with respect to the probability of deniityecond, the infinite wortl(x) =
(0(x),0(Tx),---,0(T*x),---) is associated t.
The main tool in the analysis of such sources is a “generating operttergjeneralized Ruelle operator
depending on a complex paramesaand acting on a suitable Banach space. To derive results about the
source, this operator must have a simple dominant eigen¥@i)ielefined forsin a neighborhood of the
real axis. Thus some additional hypotheses on the mappiage needed. For example, in the context
of (V1), branched,, need to be real analytic with a holomorphic extension to a complex neighborhood
of [0,1], complete (i.eT () = 1) and they need to satisfy a bounded distortion property [see (C,M,V)).
Such sources produce the get* of all the words on the alphab&t. The analyticity ofT allows to use
the powerful Grothendieck theory and Fredholm theory on operators on spaces of holomorphic functions.
The aim of this work is to prove that the hypothesis of analyticity and completeness may be relaxed. We
extend the results of (V1) to a larger classRoMarkov sourcegsee Definitior] JL). Our class contain
various classes of examples of interest such as Markov sources on a finite alphabet, Markov sources with
finitely many images or Markov sources with large images (see Séctipn 2.1 and[Rigure 1).

The dominant eigenvalue functia— A(s) is involved in all the results of the paper. First of all,

Markov sources with large images

Markov sources
with finitely
many images

Complete Markov sources

sources

General Markov sources

General sources

Fig. 1: Geometry of sources
parameters of the sourcelike entropyh(.S) or coincidence probabilitg,(.S) depend on this function:
h($) = —N' (1) and cp(S) = A(b).

Secondly, statistical properties of word emitted by the source depeh(san
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e the numbeB(x) of finite words whose probability is at leastsatisfies

1

BO) =~ S0

if the source is not conjugate to some source with affine branches.

e let 4 (x) be the probability of words having the same prefix of lerigtsx. This random variable
follows asymptotically a log-normal law provided that the functsor logA(s) is not affine.

e the random variabl€(x,y) which is the length of the longest common prefix of the two words
associated ta&,y € [0, 1] follow asymptotically a geometric law with ratio equalx(?) if the x and
y are drawn independently.

These results, proven by B. Va# for holomorphic dynamical sources, remain valid in our setting and
are explicitly stated in the following main theorem. Before stating the main theorem, let us recall that
two dynamical systems, T :1 — | are conjugate if there exists an homeomorphisif | such that

T =goTog . Roughly speaking, from a measurable dynamical point of viegjsfpiecewiseC! the
systems are the same.

Theorem Consider a P-Markov source and f a density of probability, which is bounded, Lipschitz on
each h, with uniformly bounded Lipschitz constant. Then there exists an analytic functioh(s) on a
complex neighborhood & (s) > 1 such that:

e Either there existt > 1 and a sequence of intege(lem) me9, Such that the map T is conjugated to
a piecewise affine map with slope$" on I, with the conjugacy &P on each k. In that case,

there exists A, B such that A

X < B(X) <

x| m

)

or
-1

B(x) ~ N

x

—~

e If A”(1) — N(1)? # 0 then the variabldog/ follows asymptotically a normal law. Moreover
N(1) = N(1)2 = 0if and only if the map T is conjugated to a piecewise affine map with slopes
all equal, the conjugacy is€ 1P on each },.

e The variable C follows asymptotically a geometric law with ratio equal @) if the x and y are
drawn independently.

As an immediate corollary we can give an answer to Conjecture[2 of (V1).

Corollary Exceptional sources are those for which there exist 1 and a sequence of integefién) mear
such that the map T is conjugated to a piecewise affine map (not necessarily complete) witl'stopes
on Iy, with the conjugacy €YP on each },.

As a consequence of the proof of main theorem, we solve Conjecturé 1lof (V1) (see Rémark 4).
Let us quickly present the strategy underlying the proof of the previous theorem. Important objects in-
volved in the analysis of the sources &radamental intervalsgiven a prefixh of lengthk € N, the set of
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words starting with this prefix is an interval i@, 1], the fundamental interval associatedhtdts measure
(with respect to the probability densify is denoted byuy. It is not difficult to prove that all the studied
gquantities can be expressed in terms of the Dirichlet series of the fundamental measures:

A(F.s)= % u; and A(F,s) = Z)/\k(F,s)
he £y k>

where Zy is the set of prefixes of length(lemm&2.1). For P- Markov sources, these series define holo-
morphic functions of the variabkewhich admit a meromorphic extension to a half plane. Next we prove
that these series can be expressed in terms of the generalized Ruelle operator. A careful study of spec-
tral properties of Ruelle operators is then used to describe the singularities of Dirichlet series. Finally,
parameters of the source are derived by mean of “classical” techniques: Tauberian theorem and Mellin
transforms. This last part being exactly the same a5_in (V1), is not done in this paper. The reader is
referred to B. Valkke's paper.

Let us mention that previous strategy initially developed by B.&éHlso has various important applica-
tions in the area of analysis of algorithms (especially for arithmetic algorithms), seel(V2),[(V3), (V4) for
example.

At last, an important application of the asymptotic behavior of the parameters of P-Markov sources is the

w; = aaaa...
Wo = aaab...
ws =ab...
ws = ba...
ws = bb...

Fig. 2: An example of trie

analysis of trie (or digital tree) structure. Tries are tree data structures widely used in order to implement

a search in a dictionary. They are constructed from a finitXset{wy, - - - ,wn } of words independently
generated by a source. The nodes of the trie are used to manage the search in the dictionary, and each leaf
contains a single word of the dictionary.

Formally, given a finite alphabet/ = {ay,...,a, }, the trie associated % is defined recursively by

trie(X) = (trie(X\ a1),...,trie(X\ &)),

whereX\ g is the subset oK consisting of words which begin witly with their first symbok; removed.
The recursion is halted as soonXgontains less than 2 elements (see fifre 2). We are concerned with
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the standard parameters of trees: for example, size, path length, height.

The structure of tries have been intensively studied in the setting of independent sources|(see (Sz) for
example). The analysis of trie structures has been done recently in the setting of complete holomorphic
sources by J. @ment, P. Flajolet and B. V&é (C,FV), (C) : roughly speaking, the expected values of
size, path-length and height of tries can be expressed in terms of fundamental measures of the source
and of Dirichlet series of fundamental measures. Thus the asymptotic behavior of these parameters is
deduced from the spectral properties of some generalized Ruelle operators related to the source: some of
these operators are defined over Banach spaces of functions of 4 variables. The definitions and spectral
properties of these operators immediately extend to our setting.

Theorem Let.S be a P-Markov source. Denote by ISPl HI" the size, the path-length and the height of
a trie constructed over n independently drawn words o he asymptotic expected value (whep> o)
of these parameters is given by

n [ [ﬂ]] ~ Ioi
h(s) h(S) ~ 2|logc(S)|

where H.S) is the entropy of the source and is the coincidence probability of.

nlogn

E[S"] ~ E[PI] ~

The paper is organized as follows. In sectign 2, we give precise definitions and statement of results.
In sectior] B, we analyze the parameters of the source assuming some spectral properties of generalized
Ruelle operators associated to our sources. In sectign 2.1 we consider some general classes of systems
that satisfy our hypothesis and give some specific examples (in particular we exhibit a source that satisfy
our hypothesis but that does not admit a complex extension). Finally, spttion 4 contains the proof of the
spectral properties.

Acknowledgments:We are grateful to B. Vaile, P. Flajolet and J. €nent for interesting us in the theory

of dynamical sources and for fruitful discussions. Many of these discussions were made possible thanks
to a partial financial support of ALEA project.

2 Dynamical sources, intrinsic parameters and transfer operators

The following definition of dynamical sources extend B. ¥alk one. We try to give the minimal con-

ditions ensuring that the generalized Ruelle operator associated to such a source is quasi compact on a
“natural” Banach space. We call these soueddarkov dynamical sourcd$or positive Markov dynam-

ical sources).

Definition 1 A dynamical P-Markov source is defined by the four following elements :
() An alphabetM, finite or infinite countable.

(b) A topological partition of I:= [0,1] with disjoint open intervalsyl, me M, i.e. T = Umecarlm,
|m:]am, bm[-

(c) A mappingo which is constant and equal to m on eagh |

(d) A mapping T whose restriction to ealghis a C bijection fromip, to T(Iym) = Jm. Lethy 1 dm — Im
be the local inverse of T restricted tg. The mappingshsatisfy the following conditions:

(d1) Contracting. There exisD < nNm < &y < 1 for whichny, < |W,(X)| < 8y, for X € Jn.
m
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(d2) There existg < 1 such that for® (s) > v, the series Z 15, (x)3;, converge uniformly for x |
meM
and z |Im|® converges.
meM

(d3) Bounded distortion. There exists a constantA +co such that for all me 2 and all xy € Jm,
)/ en(Y)] < A

(d4) Markov property. Each interval 4 is union of some of the’s.

(d5) Positivity. See Conditiof]1 below.

Remark 1 (see the definition of operatorss@ sectior] 2.R) The first part of condition (d2) is sufficient

to have that the sum defining;&d converges uniformly. Because the source is not necessarily complete,
it does not imply the second part of conditipn](d2).

Condition [d5) is a bit stronger thap (H2), it implies that for alleM, there exists Nt N such that:

; N
inf G [Li,,) (x) > 0.

Remark 2 If the alphabet™ is infinite then Conditior@Z) is equivalent to:

lim su 515 (X) =0. 2.1
LT R (2.1)
Qfinite mZQ

If the alphabet is finite then Condition (d2) is always satisfied.

A Markov source A non Markov source

Ja=J

N

la Ip le
Fig. 3: Markov and non Markov sources

Such a source produces words on the alphabeto eachx € | we associate the infinite word
M(x) = (6(x),0(Tx),---,0(Tkx),---).

Fork € N, thekth prefix ofM(x) is
R(X) = (0(x),0(Tx), -+, 0(T 1x)).
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We denote by’ the subset ofi¥ of prefixes of lengttk that may be produced by the dynamical source.
Remark that in our setting;x may be a strict subset @f¥. For example in FigurE] 3, the wolat does

not belong taz,. In the following, each element afi will be identified with an inverse branch @ of

the formh = hy, o---ohy, m € M. LetJ, be the definition interval dfi € £ andlp = h(Jy) = [an, by]

the fundamental interval of.hif h=hj, o---ohj, € £ then because of the Markov properdy,= Jj, .

Define alsayn = infxey, [N (X)[, anddh = sup,, [0 (x)|.

Remark that P- Markov sources are a generalization of memoryless and classical Markov sources. Indeed,
if the inverse branchdsy, are affine (or equivalently ifir, is constant) and complete (i.&, = 1) then the
symbols emitted(x), 6(Tx) ... are independent (i.e. the source is memoryless). If the inverse branches
are affine but not complete then the symbols emitted, o(Tx) ... form a Markov chain (see Figuré 4).

A memoryless source A classical Markov source A complete analytic source A general Markov source
ax b C a b C a b C a x b c
x leads to the word The wordac..... is not x leads to the word
acbab...... allowed bcabcabca....

Fig. 4: Memoryless and classical Markov sources

We are now in position to express the positivity conditjori (d5).

Condition 1 For allm e 94, for all s>y, there exists Ne N such that

iml‘ > N Lin(h(x))15,(x) > 0. (2.2)
el W&y

This condition is related to the aperiodicity condition of classical Markov chains. Indeed in the context
of Markov (infinite) chains on an alphab@f, let P be the (infinite) transition matrix. Then fer= 1,
Condition [2.2) is equivalent to the following:

For allme M, there existdN € N such that the infimum of the coefficients of thi¢h column of the
matrix PN is strictly positive. If the alphabel/ is finite this is equivalent to: there existse N such that

all the coefficients of the matriRN are strictly positive (i.e. the Markov chain is aperiodic). This point of
view is developed in sectign 2.1.1 below.

Let us give some examples of sources satisfying our hypothesis.

2.1 Examples of P-Markov sources.

It is straightforward that complete holomorphic sources with bounded distortion ((V1), (C,M,V)) are P-
Markov dynamical sources.
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2.1.1 Some examples.

Let us give some large classes of sources satisfying our hypothesis. The simplest class is given by finite
aperiodic Markov maps. Let us recall that a Markov map (i.e. a dynamical system sati§fying (d4) is
strongly aperiodic if there existd € N such that for any, j € M, for anyn > M,

Tinlj Nl #£0.

The strong aperiodicity condition is natural in the context of Markov maps (in some sense it means that
the systems is not decomposable). It may be rewritten in terms of inverse branches as: thdvkeRists

such that fom > M, for anyi, j € M, there exist$ € L, with |; C J, andh(Jp) C Ij. Let us show that it
suffices to ensuré (¢i5) if the alphabet is finite, if the number of images is finite or if the system has large
branches.

Example 1 If 9/ is finite and the system is strongly aperiodic then it defines a P-Markov.
Indeed, the only point to verify is (d5). The aperiodicity condition implies that for 21w, all x € | and
me M, there exists kE £, with x€ J, and k, C I,. Thus we have: forma M, xcl,n> M,

51, (hx) > inf ng.
hezm NALim( )_heLnﬂh
XEJh

Remark that Markov chains on a finite alphabet may always be obtained from an affine dynamical source.
Thus, aperiodic Markov chains are P-Markov sources.

Example 2 If the set{J,, / me M} is finite and the system is strongly aperiodic then it defines a P-
Markov source provided ({12) and (d3) are satisfied.

Indeed, let ], ..., J, be the images of the system. The strong aperiodicity condition implies that for all
n>M,allme M andall j=1,...,k, there exits fj € Ln such thatk](Jij) C Im. Now,

S > H S
> Nilin(hx) = -

heLn Ty
x€dy

We would say that a source has large images if

inf {|Jm|} > 0.
inf {|n]}

Example 3 If the source has large images and is strongly aperiodic then it defines a P-Markov source
provided [[d2) and (d3) are satisfied.

It suffices to remark that if the source has large branches and is strongly aperiodic then there exists finitely
many J, whose union is |. Then the same argument has above showp that (d5) is satisfied.

2.1.2 A P-Markov source with small branches.

ForO0<0B<1,letC= 1%9. Consider a partition of into intervalsl, with |I;| = C8™, m > 0. Consider
the piecewise affine map such thafl (Iom) = Im, m> 1, andT (Ime1) =1, m> 0. We have for alim,
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Nm = 8m anddm = 8™, xm,1 = 82™ 1. Condition [d2) is satisfied. Let us show tHat|(d5) is also satisfied.
If m=2%2p+1),k>0thenforallxel,

S NiLn(h(x) > 6211622041 g (i),

helyyy
X€J

This source is represented in Figfife 5.

Is 1 I3 I I
Fig. 5: A source with small branches

From now on, we have emphasized that our hypothesis allow various geometric behavior of the branches,
let us now give an example showing that relaxing the holomorphic extension hypothesis| of (V1) is a
substantial gain.

2.1.3 A P-Markov source with no extension on a complex neighborhood.

Consider the source whose alphabé¥tsand inverse branches are given by

(X) = 5 +Calfa(¥) — 1a(0))

wherefy : [0,1] — R is defined by

1 1 2Iog(x\ﬁ+ 1)
CxyN+1 nxy/n+1) NG

fa(x) =x

andGC, is a constant defined by

1 1 B 1
O = W@ 0 ~ 20+ DvA(/A—Tog(vi+ 1))
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1 1

For alln € N, the brancth, maps! = [0,1] onto interval 57, ;]

. The derivative oh, is

x4+ L
(%) = Cnfa(x) = Cr- /"
(x+ ﬁ)
andh,(x) = 0 if and only ifx=i/¥/n or x = —i//n. Hence this source does not satisfy condition (d2) in
(V1): there is no complex neighborhood [6f 1] on which all theh/, extend to a non vanishing function.
Note that for anyn,

Ch

an < hj,(x) < &, forall x € [0,1]

with &, = Cy4/n and forn sufficiently large,

1
on < anvm forall x € [0,1].
It follows that there existg < 1 such that the seri€g, - 8, converges orR (s) > .
Now for anyy € [0,1],
_ G2yl G 1 2G

Vi(y+ 2203~ vy e
From previous inequalities, it results that for agy € [0, 1],

hy) 8
< <
ool = nevn =0

so that the source is a P-Markov dynamical source.

(Y]

2.2 Intrinsic parameters and transfer operators.
Recall that a functiorf on a metric spacX is Lipschitzif there existd > 0 such that for alk,y € X,

[F(x) = f(y)| < Ld(xy).

The smallest constahtsatisfying this property is calletthe Lipschitz constant of. f
The following definition introduces the notion of fundamental measures and the main parameters of the
source ((V1)).

Definition 2 Fundamental measures and parameters of the source
Let f > 0 be a bounded, Lipschitz on eaghwith bounded Lipschitz constants, probability density on |
and F its associated distribution function. The fundamental measures are:

up = |F(an) —F(bn)|, he U Ly.

keN*

For b >y, denote by g(F) the b-coincidence probability:

cb(F>:k|iglo< 3 uﬁ>k.

he Ly
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Let B(x) be the number of fundamental intervals whose measure is at least equal to x.
For k € N*, ¢y is the random variable defined By(x) = up if X € I, h € L.
Finally, C is the random variable ons I, defined by

C(x,y) =max{k € N / R(x) = F(y)}-
The Dirichlet series of fundamental measures are:

A(F.s)= % u; and A(F,s) = Z}/\k(F,S).
he £y k>

Lemma 2.1 (V1) The parameters of the source may be expressed in terms of Dirichlet series of funda-

mental measures: L
co(F) = Jim (A(F.b))¥.

A(F,s) = s/ B(x)x® tdx
0

E(6) = A(F,s+1).
P(C > k) = Ak(F,2) and E(C) =A(F,2).

In (V1), the asymptotic behavior of Dirichlet series is obtained from spectral properties of generalized
Ruelle operators associated to some analytic sources satisfyirgM* for all k. In this paper, we

prove that generalized Ruelle operators associated to P-Markov sources have the same dominant spectral
properties. We relate Dirichlet series to these operators in our setting. So the analysis on the parameters
of the source remain valid.

Generalized Ruelle operatd®s involve secants of inverse branches

Him(U,V) 1= M

and are defined by
Gs[®](u,v) i= 3 Hy(u, V)P (hm(u), (V) Lo (U, V).
meM
We are going to prove that these operators are quasi compact with unique and simple dominant eigenvalue
A(s) that coincide with the dominant eigenvalue of the “classical” Ruelle operator:

Gs(u) := Gg[P](u, u) with P(u,v) = @(u).

Recall that the spectrupP) of a linear operatoP acting on a Banach spaékeis the set of complex
numbersA such thatld — AP in not invertible. Such a spectral valdemay be either an eigenvalue
(i.e. Id — AP is not injective) ond — AP is not surjective.The spectral radiRéP) is the largest modulus
of an element ofSpP). An operatorP is compact if the elements &p(P) \ {0} are eigenvalues of
finite multiplicity. An operatorP is quasi-compact if there exists<0¢ < R(P) such that the elements of
SHP)\ B(0,¢) are eigenvalues of finite multiplicity. The smallest sadh called essential spectral radius
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Eigenvalues
Essential spectrum of finite multiplicity

Fig. 6: Spectrum of a quasi compact operator

andSpP) N B(0,¢) is called essential spectrum.

Remark that conditior (d2) ensures that the opei@gds well defined for® (s) > yon bounded functions.
Condition [d2) together with Taylor formula ensure that opera@ysire well defined forg (s) >y on
bounded functions.

Also, it is easy to see that:

GEP(xX) = 5 HR(xX)P(h(x), h(X)) 13,3, (% X),
he £y

whereHy, is the secant function associatedhtoln our setting, the relation between Dirichlet series and
Ruelle operators is given by the following proposition.

Proposition 2.2 For all R (s) >y, k>0,

Nei1(F,9) =3 |am—bm/°GEL(am, bm),
meM

[F(x) —F(X)|

with L(x,X) = X_¥]
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Proof. — For anyme M, we have:

G5L%(@m, bm) = > Hi(@m,bm)L3(h(am), h(bm))

(am,brr]:)é%hx\]h

_ |F (h(am)) — F (h(bm))[®
heZy |am - bm‘s
ameJy

_ ufS‘Iohm
heZy |am - bm‘s
amedp

(remark that{h(am), h(bm)} = {@hoh.y, Brohy, }). Now, anyh € £, 1 may be uniquely written as= ho hy,
for someh € £ andme M. O
Our main theorem extends B. \Vlad results to P-Markov dynamical sources.

Theorem 2.3 Consider a dynamical P-Markov source. There ex{&) > 0, ®(s) >0and0 < p(s) < 1
three analytic functions on a complex neighborhood of the half{;xe R / s> y} such that for any
k>1,

A(F,8) = Ne(s) (@(s) +O(pX(9))) (2.3)

A(s) is the dominant eigenvalue o&@n a suitable functional space.

A(F,s) is analytic on® (s) > 1 and has a simple pole ats 1.

The variable C follows asymptotically a geometric law.

If A”(1) — N (1)? # 0 then the variabldog/x follows asymptotically a normal law. MoreoveY! (1) —

N (1)2=0ifand only ifthe map T is conjugated to a piecewise affine map with equal slopes, the conjugacy
is C1+HP on each f,.

Either 1 is the only pole of\(F,s) on R (s) = 1, in that case

-1

or the map T is conjugated to a piecewise affine map with slopes of theafgron > 1, k € Z, with
conjugacy G*HP on each k. In that case, there exist A, B,

BBl

X X
Theoreni 23 is derived from dominant spectral properties of generalized real Ruelle operators. We will
prove that these operators admit a unique maximal eigenvalue. To this aim, we use Birkhoff cones and
projective metrics ((Bil),[(Bi2)). These techniques have been introduced in dynamical systems by P.
Ferrero and B. Schmitt[((F,S)) and have been widely used by dynamicians to study Ruelle operators in
many different situations. Here, we will use these techniques to prove that both op&atnndGs are
guasi-compact and have a unigue and simple dominant eigenvalue, fecrgalWe will give the proofs
for Gg, the proofs forGs may be obtained in the same way. Even for the oper&grsur setting is not
covered by previous works (see for example (Bre), (M)| (Sa)).
Of course the spectral properties of the operat@ysand Gs depend on the space on which they act.
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Because the system is not assumed to be complete (i.e. we do not akseniefor all me M), the
operatorgss andGs do not act on continuous functions.
A function f is Lipschitz continuous ohy, if there exists a constai;, > 0 such that for alk,y € I,

[T(X) = f(y)] < Km|x—Y].

The smallest numbeK,, such that the above is satisfied is called Lhgchitz constanof f onl,,. Let
Lpw(l) be the space of functions that are bounded and Lipschitz continuous oh.gadth the supremum
of the Lipschitz constants on thg's finite. Denote by/ C | x | the union of all setéy, x Iy and letl pw(7)
the space of functions of, that are bounded and Lipschitz continuous on dach I, with bounded
Lipschitz constant. In both cases, L will denote the sup of the Lipschitz constants on kfye or on
thely, x Im's. These spaces are endowed with the norm:

[l = [If{leo + Lip(f).
Itis easy to see (and will in fact follow from Lemrha B.2) tiGf(resp.Gs) acts onLpw(l) (resp.Lpw(7)).

Theorem 2.4 For real s>y, the operatorsGs (resp. G) act on Lyw(7) (resp. Lyw(1)), they are quasi
compact and have a simple dominant eigenvalue. This dominant eigem\gjue the same foGs and
Gs. The corresponding eigenvectors are strictly positive and belongo7) (resp. Low(1)).

Remark 3 If the source were complete (i.en 3 | for all m) and the density function f is'®n I, then
we could work with spaces of@unctions. In that caseGs acts on the spacel@l x I) of functions that
are Ct on I x | and Gs acts on the space¢l) of functions that are £€on 1, they are quasi compact
and have a simple dominant eigenvalue. This dominant eigenkét)és the same foGs and G.. The
corresponding eigenvectors are strictly positive and belong'{o €1) (resp. G(1)). The only change in
our proof would be in the definition of the cone in secfior} 2.4 (see Rgrark 8).

We postpone the proof of Theorém[2.4 to the end of the paper (see ggction 4). Let us show how to use it
to get Theorerp 2]3.

3 Analysis of the parameters of the source

3.1 Preliminary results

The following lemma is an easy application of the derivation chain r[ilg, (d3) and the fact tina4, all
me M ared contractions withd = supy,cq, Om < 1.

Lemma 3.1 For allk € N*, forallh € £y, X,y € Jn,

h'(x)  A(l+A)
O

Applying the integral Taylor formula at order 1 kp the Taylor formula at order 1 tf and Lemml
gives: for allk € N*, forallh € 4, X = (x,X),Y = (y,Y) € I X J,

<1+4d(X,Y)B, (3.1)
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where d(X,Y) = [x—y|+ X —Y|. (3.2)

The following lemma proves that the operat@s R (s) > y satisfy a “Doblin-Fortet” or “Lasota-Yorke”
inequality. We are going to use a result by Herihion ((H)) to conclude that they are quasi-compact for
some comples, R (s) >y. We could also use it to conclude th@as are quasi-compact for real> y then

it would remain to prove that the dominant eigenvalue is unique and simple. This can be done “by hand”
but we have preferred to give a self contained argument proving in the same time the quasi compactness
and the dominant spectral property (see se¢fjon 4).

Lemma 3.2 For all s, R (s) = 0 >y, there exists K> 0 such that for all fe Lpw(7), forallne N,

Lip(Gsf) 8"|GG 1l Lip(f) +KI|Gg|f] (3.3)

<
< &Gglle Lip(f) +KI|IGg1le [ ]loo-

Proof. — LetX = (x,X), Y = (y,Y) belong to the sami, x Im. In that case, the se{$ / |h| =nandX e
Jh xJh} and{h/ |h| =nandY € J, x J,} are the same. We compute:

GST(X)=Gsf(V)l < 5 [Ha(X)[°[f(h(x),h(X)) = f(h(y),h(y))|

heLn

a|( Ha(X) si '
- 3 IHO0H) () -1
< &Lip(f)d(X,Y)GH(D)(X)
+0Bd(X,Y) (14 Be”)Gg(|f])(Y),
(we have used (31)).
This gives the result witk = oB(1+ B€°). O

Let us state nnion’s theorem and show that we can apply it.
Theorem 3.3 ((H)) Let (B, || - ||) be a Banach space, I¢t| be another norm on B and Q be an operator
on(B,]| - |), with spectral radius RQ). If Q satisfies:

1. Qis compact froniB,|| - ||) into (B, |- ),

2. for all ne N, there exist positive numbers, Bnd 1, such that r= Iiminf(rn)%
f €B,

< R(Q) and for all

IQ™ | < Ral [ +rall ]

then Q is quasi-compact and the essential spectral radius is less thanr.

We will use this theorem witB = L,,(7) and|-| the sup norm. According to Lem .2, inorder to apply
Theorenj 3.3, we have to prove that the operaBare compact froniLpw(7), || - ||) into (Lpw(J), || - [[«)-

In other words, consider a sequeriég)nen, fn € Lpw(J) with || fa|| < 1, we have to prove that there exists
a subsequenag such that the sequen¢8sfy, ) converges for the sup norfn ||». This will follow from
remark2.
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Lemma 3.4 For all s such thatg (s) > v, Gs is compact from{Lpw(7), || - ||) into (Lpw(J), || - [|e)-

Proof. — Let (fn)nen, fn € Lpw(J) with || fa|| < 1, restricted to eachy, x I the functionsf, are uniformly
equicontinuous. We may apply Ascoli's theorem on ehglx I, and use a diagonal principle to find
a subsequencey such that the sequendg, converges to some functioh Let us prove thaGsfp,
converges uniformly t&sf. Denotes= o +it, let X = (x,X) € 7 andQ a finite subset of\/,

|Gsfn (X) — GsF (X))

H3(X) (fa (Am(X), hm(X)) = f (hm(X), m(X))

meM
XeImxIm
< Y HRO [ fa (hm(X), im(X)) =  (m(X), hm(X)) |
meq,
XeIm
+ 5 HRX) [ fre(hm(X), hm(X)) = f (hm(x), hm(X)) |
mzQ
XeJm
< lGollle sup [fa(X)—f(X)[+2 5 &,
Xenmsiim memmléadm

(we have used thdtfy||« < 1 and Taylor equality). Fix > 0, chooseQ C M, Q finite, such that
; &Y, < €, now chooség such that fok > ko,
mMZQ

Xem

sup [fa (X) — F(X)| <&
meQ,

Xelmxim

(this can be done because the convergence is uniform onlgach, andQ is finite). We have:
|Gs i (X) = Gsf(X)| < €([|Golllw +2).

In other wordsGsfp, goes toGsf uniformly. O
Now the following result is a simple consequence of The 3.3. FosdRis) denotes the spectral
radius ofGes.

Proposition 3.5 Let R (s) = 0 >y, either Rs) < dR(0) or Gs is quasi-compact. In particular, for > v,
Gy is quasi-compact.

1
Proof. — We have thaR(o) = lim |Gg1]|&. Thus

Sk

liminf (3"|Gg1lw)" = OR(0).

The result follows. O

To conclude the proof of Theorgm P.4, it remains to prove that forgeay, Gs admits a unique simple
dominant eigenvalue. We postpone this proof to se¢fjon 4. Let us use Theoiem 2.4 and Prgpogition 3.5 to
obtain spectral properties &fs for complex parameters
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3.2 Spectral properties for complex parameters s and properties of Dirichlet
series

For reals >y, by Theoreni 24, we have that for akg N, f € Lpw(7),
GKf = A(9)Mg(F) + &,

wherefls is the spectral projection on the maximal eigenvalue &ni$ an operator om.py(7) whose
spectral radius strictly less tharis) and such tha®;o Mg =Mso S = 0. Now PropositioZ gives:

Neia(Fys) = z |am—bm|SG|;Ls(am, bm)
meM
= Y Jam—bul* (N(9INS(L) (am, bm) + SL(am, b))
meM
_ k1 P(s) k
— W (S +0EE) )
With @(S) = 5 e ar [am — bm[*T1s(L%) (am, bm) andp(s) the spectral radius & overA(s). Remark that we
have used that
z |am — bm®
meM
converges which follows fron (¢i2). Thus we have proVed|(2.3) of Theprem 2.3 fos.r€ae fact that it
holds on a complex neighborhood®# y follows from perturbation theory (see for example Kato (K)).
We now prove Proposition 8, Proposition 9 and Proposition 10 of (V1) in our context. Remark that her
proofs are based upon Fredholm determinant theory thus we have to use others arguments. Also, some
changes are due to the fact that we work with functibrisat are continuous on eath but not onl. In
particular, in general there does not exist | such thatf (x) = sup f.

Proposition 3.6
1. The function s> A(s) is strictly decreasing along the real axisssy.
2. On each vertical lineR (s) = o, we have Rs) < A(0).
3. If R(s) = A\(0) for s= o +it then Gs has an eigenvalud = €2\(0), a € R that belongs to the

spectrum of @

Proof. — From [2.3), we deduce that:
A(s) = im A(1,9)k.

Since for allme A, hy, is ad-contraction, we deduce:
AdLs+u) = 5 I/
he Ly

Y Sl < 8 S [l
he £y he £y

IN
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Thus,A(s+u) < &“A(s) and we have proved item 1.
To prove item 2, it suffices to remark that fore Lpw(7), |GXf || < ||GE f||. This together with Lemma
givesR(s) < R(0) = A(0).
Finally, if R(s) = A(0) then by Propositioh 3|5, the operatGk is quasi compact and thus admits a
eigenvalue\ = €2\ (o) of modulusA (o). Let Ws be such thaGsWs = AWs andis(x) = Ws(x,x). Then
Gsws = )\lIJs- O
Let us study the spectral properties®§for R (s) = 1. Let us remark that for any distributidh we have
(see also Proposition 5 in (V1)),

A(F,1) =1.

ThusA(1) = 1. For further use, let us denope € Lpw (1) the eigenfunction oG, corresponding to the
maximal eigenvalua(1) = 1 and satisfyingn(¢;) = 1. Then the measure= @:mis T invariant.

Proposition 3.7 Let R (s) = 1, the operator may behave in two different ways.
1. Either for all s# 1, R (s) = 1, R(s) < 1 (the aperiodic case),

2. or the set of £ R such thatl belongs to the spectrum & is of the form ¢Z for some § (the
periodic case). In that case, the map T is conjugated to a piecewise affine map with slopes of the
formak, a > 1, the conjugacy is € on each . Moreover, there existsy < 1 such that on the
strip {op < R (S) < 1} the operator(l — Gs) ! has no pole.

Proof. — Lets= 1+it and assume that 1 belongs to the spectru®ofi. Then using Propositidn 3.6
we have that there exisfse Ly (1) such thaiGsf = f. Let us prove thaff| is an eigenfunction foG;
with eigenvalue 1. We have

| = |Gsf| < Gafl. (3.4)

Recall that the Lebesgue measure is invarianBpo that

/Gl|f|(x)dx:/|f|dx
| |

As a consequence, inequalify (8.4) must be an equality. Now, because of THegrem 2.4, 1 is simple as an
eigenvalue ofG;. Thus, letf; > 0 be a dominant eigenfunction &. Let u(x) = % multiplying if
necessaryf; by some constant, we may assume fpat= 1. Following B. Valke’s proof of Proposition

9, we obtain that for alne M, x € Jn,,
ha(X)™ o hin(X) = p(X). (3.5)

Reciprocally, lett be such that there exists a functiprsatisfying ) for allme M thenf = - f;
satisfiesGy it f = f.

In other words, we have proved that 1 belongs to the spectr@n gf if and only if there exists a function
W satisfying ) for aline M. This implies that the set of reakuch that 1 belongs to the spectrum of
G1.it is a subgroup oR: if

M) e 0 hin(X) = e (x) and iy ()" by 0 hin(X) = i (%)
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00" (B ) oo = () 0.

It cannot accumulate O because of the analyticitg-ef A(s) nears= 1. Thus it is of the forntZ.
There exists a real functiod € Lp,(1) such thap = €° (recall thatp = fil € Lpw(l)), takep= exp(%)

anda = exp(2""). Equation|(3.) becomes:

then

log|T'(x)| = @ ~6(Tx) | 2k(x)m

wherek(x) € Z and is constant on eadh, and finally, equatior] (3|5) may be rewritten as:

(9] = 200 sa,

Now, we may find constants, anddy,, me M such that the function

X
g(x) :cm/ @t)dt+dn X € I
am

is continuous, mapkinto I, is invertible, is derivable on eadh, with Lipschitz derivative on each,.
DerivatingT = go T og ! we obtain thafl is piecewise affine with slopes.

Let us prove the existence of a strip free of poles. There exists; < 1 such that for ang €]o1, 1], the
operatorGg has no eigenvalue of modulus 1. L&t < 0p < 1 being such thabA(o) < 1 for all o > 0.
Leto €]oo, 1[ ands= o +it. Propositiorj 35 implies that eith&s is quasi-compact dR(s) < 1 (in this

last case 1 does not belong to the spectrursgf So assume thdbs is quasi-compact. If 1 is in the
spectrum ofGg, then it is an eigenvalue &g (Theore) and dBs. There exists € Lpy(l) such that
Gs(f) = f. Using thata™®o = 1 for any integekk, one deduces that 1 is an eigenvalue of the operators
Go itk for anyk € Z. It follows that if there is no strip free of poles, then some of the points of the
line R (s) = 1 are accumulated by a sequence of pole&(®f s). This is a contradiction sinc&(F,s) is a
meromorphic function in a neighborhood &f(s) = 1. O

We now prove the log-convexity af— A(s). Such a property is necessary to study the random variable
log 4.

Proposition 3.8 The function s— logA(s) is convex. Either it is strictly convex or it is affine. In this last
case, the map T is conjugated to a piecewise affine map with slopes all equal. The conjudatlpieiC
each .

Proof. — We have to prove that fdre [0,1] ands >y, S >,
A(ts+ (1—1)s) <A()'-A(S)F (3.6)

Consider the function
Y= fts+(1—t)s’(fS)_t(fs’)_(l_t)
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where f; denote a dominant eigenfunction 8. We may normalizep to have supp = 1. Consider a
sequence;, € | such thatp(x,) — 1.

Ats+ (1-1)8) fisraong(n) = 5 W] 060)' ST fig 1o (NO0)) 3.7)
he M
< SIS Ts(hxa) - 1] () 7% £ (B
hem
t 1-t
< (z h/|<xn>5fs<hxn>> -(Z |h’<xn>§fg<hxn>) 38)
he M he M

= () fs(xn) - M) g (xa)

(3.9) follows from Hdlder inequality. Taking the limit when — o gives [3.6). A being analytic, if
equality holds in) for somg <, t then log\ is affine. In this last case, it remains to prove that the
mapT is conjugated to a piecewise affine map with slopes all equal.

Assume that log is affine then there exists< 1 such thah(s) = a>*. Chooses, ¢, t such thats+ (1—

t)s = 1, let us show thaf! - fs%*t is a dominant eigenfunction @&;. Holder inequality implies that

Gy(fs- ) < fi-fi.
As in the proof of Propositiof 3,7, we use th@4 leaves Lebesgue measure invariant to conclude that
Gy(f- fs}‘t) = fi. fgl‘t. As a consequenceél = 1 and equality holds i.7) for ale |. This implies
that there exists a functidn: | — R™* such that for alh € 9/,

I (x)[*fs(hx) = k(X)W (X)|° fg (hx).

fs(x)
f¢(X)

Summing oveh € M and notingp(x) =

we get that

o) =093

and thenT satisfy a cocycle relation:

A
W (x)[5~S @o h(x) = )\((SS,))(p(x) forall he a. (3.9)
Following the end of the proof of Propositipn B.7, we conclude Thit conjugated to a piecewise affine
map with slopes all equal tg |

Remark 4 By the way, the cocycle argument used in the proofs of Propo§itipn 37 gnd 3.8 resolve Con-
jecture 1 of B. Vake:

A source is similar to a source with affine branches if and only if it is conjugated to a source with affine
branches. The conjugacy iS€P on each k.
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4 N

Periodic sources Log-affine sources

N\ J
Sources similar to a source with affine branches

- J/

Fig. 7: Exceptional sources

Figure[T shows relations between sources conjugated to piecewise affine sources.

Let U(s) = logA(s). With propositiong 3J6 3]7, 3.8 the analysis of parameters of the source done in
sections 7, 8, 9 of (V1) apply to our setting without any change. To conclude the proof THeofem 2.3, it
remains to verify that if the source is not log-affine théf(1) # 0. This is necessary to apply Hwang's
quasi powers theorem and obtain the central limit theorem.

Proposition 3.9 Let U(s) = logA(s). The following assertions are equivalent :
1. U"(1) =0,

2. there exist a Efunction@ whose derivative belongs to the spagg(l) such that for all s>y, for
allh e M, |0 (x)[5po h(x) = A(S)@(X).

Proof. — We apply Proposition 6.10 and Theorem 6.8/of (Bro) with the function

f= —Iog|T’\+/Iog\T’|dv
|

wherev is the probability measure which Tsinvariant and absolutely continuous with respeattdt is
classical that

/Iog|T/|dv — N (0.
|

Clearly, f € Lpw(l), alsoLpw(1) is dense irL1(v). With A. Broise’s notations (the operato# (6) are
defined inl(Brd), pp 37), we have:

Gs(g) = & W (s—1)(g).
So that ifA(s— 1) is the dominant eigenvalue @f; (s— 1) thenA(s— 1) = &S~ DN@)(s). Since

p A'(1) —N(1)2
S r
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we deduce thad”(1) = 0 if and only ifA” (0) = 0 which is equivalent to item 1. by Proposition 6.10 and
Theorem 6.8 ofi (Bro). O

4 Spectral properties of real generalized Ruelle operators

The aim of this section is to prove Theorém|2.4. Let us recall definitions and properties of cones and
projective metrics (se€ L) or (L,S|V) for a complete presentation).

4.1 Cones and projective metrics

The theory of cones and projective metrics of G. Birkhoff (Bi1) is a powerful tool to study linear operators.
P. Ferrero and B. Schmitt (F,S) applied it to estimate the correlation decay for random compositions of
dynamical systems.

Definition 3 Let ¥’ be a vector space. A subseic ¥ which enjoys the following four properties
(i) cn—Cc=0

(i) VA>0Ac=cC

(iif) Cis aconvex set

(iv) vf,ge C,Vo, eR, (an—a, g—anf € C)= (g—af € Cu{0}).

is called aconvex cone

We now define the Hilbert metric ofi :
Definition 4 The distance gd( f,g) between two points,§ in C is given by

de(f,g) = log 522’3 wherea andf are defined as
a(f,g) = supA>0|g—AfecC}

B(f,9)

where we taket = 0 or 3 = 0 when the corresponding sets are empty.

inf{p>Ojuf—ge C}

Remark 5 In the sequel we will use th{(f,g) = a(g, f).

The distancel is a pseudo-metric, because two elements can be at an infinite distance from each other,
and it is a projective metric because any two proportional elements have a null distance.

Given two elements linearly independenandg € C, consider the intersection ¢f with the two dimen-

sional vector space spanned byndg. Its boundary is the union of two half lin€g, ¢,. The distance
dc(f,qg) is the log of the cross-ratio of the four half linés ¢, f, g (see figur{]B).

Remark 6 For example, if/ is a space formed with real valued functions afitl the cone of positive
functions then an easy computation gives:

_supf supg
e (1.9 = 1 F Tnfg
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Fig. 8: Projective metric

Definition 5 Let ¥ be a vector space; C ¥ a convex cone, a linear operator:LY — 7/ is called a
positive operatoif LC C C.

The next theorem, due to G. Birkhoff (Bi2), shows that every positive linear operator is a contraction,
provided that the diameter of the image is finite.

Theorem 4.1 Let ¥ be a vector space; C ¥V a convex cone (see definition above) and¥. — 9 a
positive linear operator. Let dbe the Hilbert metric associated to the cofielf we denote

A= sup de(f,9) ,
f,0eL(C)

then
de(Lf,Lg) < tanh(i)dc(f,g) vf,geC

(tanh(e0) = 1).

Remark 7 Theorenj 4]1 implies that if; and ;> are two convex cones such that € C; then for any
f,ge G,
de, (f,9) <dc, (f,9).

(apply Theorerh 4|1 with & 1d). In particular, if C € C* then for f,g € C,

supf supg

de(h.9) = T g

Theorenj 4]1 alone is not completely satisfactory: given a ¢doaad its metria-, we need to relate the
distanced with a suitable norm or/. The following lemma provides such a relation.

Lemma 4.2 (L,S,V) Let| - || be a norm onl’ such that

vi,geV f—g, f+geC=|g| <|f]
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and let¢: ¢ — R' be a homogeneous and order preserving function, i.e.

vfeC,VAeRT LNT) = N(T)
vf,ge C g—feC =f) <o),

then
vi,ge ¢ ((f)=2(g) > 0= ||f —g| < (%9 — 1)min(|| f], |g]})

4.2 Proof of Theorem

We are now going to use Theor¢m]4.1 and Lerimp 4.2 to prove Théorem 2.4. Recall that we already know
from Section B that the operatdBs are quasi-compact for reab> y. It remains to prove that they have a
unique dominant eigenvalue ; we prove it f8¢ and leave to the reader the proof fay.

Let us sketch how to use cones to obtain the dominant spectral properties. To obtain a unique dominant
eigenvalue, it is sufficient to find a coeand an integek such thaGX mapsC into itself and the diameter

A of GEC into C is finite. Indeed, the idea is that ffe ¢ then Theorer 4|1 applied— 1 times gives

(k =tanh§ < 1):

AL
de (G .Gl < <tanh4) A=x"1A. 4.1)

We deduce (using Lemnja 4.2 with|| as homogenous form) that the sequence of lines generated by
(G2f),ey is @ Cauchy sequence and converges to a line generated by an eigetitedtois eigenvector
corresponds to an eigenvalhgs). On another hand, we construct an eigenveetdor the dual operator.
Then Lemm& 4]2 (applied withs as homogenous form) and equatipn|4.1) give that

G
H)‘(S)n — Wavg(f) (4.2)

0

goes to zero exponentially fast for ariyc C. Then we have to extend this result from the cone to the
Banach space of piecewise Lipschitz functions (this is done using Lémina 4.9 below). The fact that (4.2)
goes to zero exponentially fast implies th&s) is the uniqgue dominant eigenvalue®§.

The following lemma proves the existence of a real positive eigenvalue for the dual oper&3gr of
The corresponding eigenvector is indeed a measure. Recall thaissa topological Banach space, it
topological dual?” is endowed with the weak topology that is: a sequeivgg.cn Of elements ofl”
converges tw € 7 if and only if for any f € 7/, the sequencévn(f))nen converges tw(f). Also, if L

is a continuous linear operator drithen it defines a continuous linear operdtbon 4” by: forv € 1,
foranyf € 7,

Lemma 4.3 There exists a measuvg on 7 and a positive numbeX(s) such that for fe Lpw(7),

Vs(Gsf) = A(S) - vs(f).
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Proof. — LetLpw(7)* be the topological dual dfpw () (i.e. Low(J)* is the set of continuous linear forms
onLpw(7)). Recall that the weak topology anw(7)* is defined byT , weakly converges tb € Lyw(7)*

if and only if for all f € Lpw(7), Fn(f) converges td (f).

Let K C Lpw(7)* be the positive form§ of Lpy(7)* such that™ (1) = 1. DefinePs which mapsK into
itself by:

r(Gsf)

M(Gsl)’

(remark that the positivity conditi05) implies that(i®k1) > 0). K is non empty, convex and weakly
compact (see ($c¢) TheoreiX.7.7), Ps is continuous on it for the weak topology. Then the Schauder-
Tychonoff theorem [(D,S)) implies that it admits a fixed paigt We know thatvs is additive, to prove

that it is a measure, we need to prove that @-additive.

Restricted to each, x I, vs may be identified to a measure (by Riesz representation theorem on compact
spaces), in particular, we may computél, ...). To conclude that it is a measure on the unjoof the

Im X I, it suffices to prove that:

Py (f) =

VS( Z 1|m><|m): Z V5(1|m><|m)'

meM meM
This will follow from:

|Q|—e QCM

lim VS( ; 1|m><|m) =0.
Qfinite mEQ

We have: (G ( L ))
Vs (Gs(3 mgq LimxIm
S 1m>< m) —
v (m;Q ImxIm) (S

andvs (Gs(Y mzq Limxim)) < SUPGs(I mzq limxIm) (becauss € K is a positive form). Now, for alK =
(x,X) €7,

Gs(m;Qllmxlm)(x) - xg%fjnHS(X)mnglmXIm(hn(x)’h"(x/))
= > HaX)

ZQ,
S
5

IN

mzQ

XeIm

The result follows from[(Z]1) which is equivalent to Conditipn|(d2) (see Refrjark 2). O

The starting point of the construction of cones is usually a Lasota-Yorke inequality. Looking at Lemma
[3.2, on sees that the operat@s improve the Lipschitz constant of piecewise Lipschitz functions, this
explains condition 3 in the definition of the cone below. If the alphaldetvas finite, we could manage
with this condition and the positivity condition 2 below. The idea is that condition 3 provides a good
control of the functions on eadh, x I, and if the alphabet is finite, we may obtain a uniform control on
the union of thd, x I, iterating byG'g if necessary. Since we want to deal with infinite alphabet, we add
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condition 4 below which controls the functions on the complementary of a well chosen finit€ ydrt
M.
Let Q be afinite subset aM such that:

sup '} &, < A(s)d.
Xel m Q
xeIm

The existence of such a subsggfollows from (2.1).
Fora> 0,b > 0, letCyp(s) be the set of functions$ on 7 such that:

1. felpw(d),
2. Y(u,v) € 9, f(u,v) >0,

3. Vme M, V(u,u) =U,(V,V) =V € Im x I, f(u,u/) <edUV). f(v,V) (the distancel(U,V) has
been defined if (3]1)),

4. forallm¢ Q, for (u,v) € Im x I, f(u,v) <bvg(f).

Remark thaCap(S) C Lpw(7) is a cone.

Remark 8 As mentioned in Rem 3, if the source is compi@tects on the space'®l x |) of functions
that are C on | x |. To get the dominant eigenvalue result on this space, it suffices to repla@ item 1 in the
definition of the cone above by ‘¢ C1(1 x 1)”.

Lemma4.4

1. Forallme M, vg(Im X Im) > 0.

o Vs(f)
2. For f € Cap(s), me M, X € Imx Im, f(X) < € Vs(Im X Im)”

Proof. — To prove Iten] IL, remark that (3.2) and Taylor equality imply that foma#t 9/, there exists
N € N such that

e N

)I(I’;fj Gs 1|m><|m(X) > 0.

NOW, Vs(Li,x1,) = A(S) "Nvs(GN1, «1,) > 0.
Item[3. follows from the definition of the cone (conditioh 3.) by integrating with respegs ¢m I, x Im.
]

Lemma 4.5 For any s> vy, for anyd < € < 1, there exists @> 0, by > 0 such that for all & ag, b > by
and for any ke N*, GK maps G p(s) into Ceatn(S)-

Proof. — Let f € Cyp(s). Becausee,gp(S) C Cap(S), it suffices to proof the lemma fdr= 1. Letf €
Can(s), foranyme M, X = (x,X), Y = (V,Y) € Im x Im, we have to comparef.(hm(X), hm(X') ) HH (X, X)
with f(hm(y),hm(Y))Hm(Y,Y'). Because belongs taCap(s), and for eactm € M, hy, is ad-contraction,
we have:

f (hm(X), hin(X)) < €Y (hin(y), Bin(Y)).-
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) implies that:
& Ha(xX) < @B IHE(yY).

. sB
S0,Gsf (X) < 2dXY)Gsf(Y) provideda > =5
Now, letX € Im x Im with m¢ Q. Letc:= infpeq Vs(Im X Im), ¢ > 0 because of Lemnja 4.4 and the fact
thatQ is finite. We have:

Gsf(X) = 5 Hu(X)f(hm(x),hm(X))
Xedmsdm
+ Z HS(X) f (hm(x), hm(X))
70,
XedmxIm
e s
< S us(N)|Getfo + bus(f)sup ' &,
¢ xel g
XeIm
Now, we use thats(f) = s(Csf) and since supy & < A(s)d, we get:
A(s) xel AZn
xeIm
€3||Gsl
Gsf (X) < vs(Gsf) ( CQ(S; H +bd) < bEvs(Gsf)
providedb > 9(2)”651” O

Lemma 4.6 Let a> ag, b> bg, there exists M such that fork M, the projective diametek ofG§Ca7b(s)
into Cyp(s) is finite:

A= sup dcab (GXf,GKg) <
f.9 € Cap(9)

Proof. — Let f,g € Cga¢n(S), let B> 0, we have thaf —g € Cyp(s) if and only if:

g(x,x)
(

1. B>

for all (x,X) € 9.

2.[3>

X)
“g(y.y) —gxx) /
XYV (y,y') — f(x,X) = u(X,Y) forall (x,x),(y,y) € 7.

bvs(9) —9(x.X) ._ /
3. B> bvs(f) = F(xX) =v(X) forall (x,X) € InxIm,m¢& Q.
The quantityu(X,Y) may be rewritten as:

g(y.y) - 59
u(x,Y) = ( ) ( fxx) |
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using thatf, g € Cg,5p(S), we get:

gly.y) 4XY) — g0
YD S Fyy) dXy) — gaky)
< 9Y.Y) ase) 1+E

Moreover, because for all € Iy x Im, m¢ Q, 0< f(X) < b&vg(f), we have that(X) < VS(‘;SSE%E).
Remarking that

9.Y) aarg) 1+E a(yy)

sup SUP

wy)es TLY) 1-8 7 yy)es TBY)
we have proven that if,g € Cg, g1 (S)
9:Y) aase1+E  vs(9)
f gi(+d) : 4.3
10 <man| s B30T ) “
The same computation (recall thatf,g) = (g, f)) gives:
- 9Y.Y) a5y 1€ Vs(g )(1—2)}
att.g)zmin| nf e =0l O @4

One sees that we have to control the quantities $umf; f with respect tass(f). This cannot be done
for all functions inCg, g(S) but it can be done foB f for f € Cap(s) andk > M, M large enough. To this
aim, we need two sublemmas. The first one (Sublen@a 4.7) proves there exists a finite@ubﬂét

such that a function i€, p(S) is bounded from below at least on olex Im, me Q. Then Sublemm@.S
proves that ik is large enough, fof € Cqp(S), GEf is bounded from below on all thg, x Im.

Sublemma 4.7 Lete = zelza' LetQ be a finite subset a#/ which containgQ and satisfies:
z Vs(Im X Im 1
e <2
Forall f € Cap(s), there exists ne Q such that for all X& Iy x I,
f(X) > evg(f).

Proof. — If the sublemma was false then for aile Q, there would exisKn € Iy x Im such thatf (Xm) <
evs(f). Then, we would have:

vs(f) = 5 vs(flipay)

meM

= 2 Vs(f L xim) + 2 Vs(fLxim)
meQ mzQ

S z f e2 VS 1|m><|m)+bV5 ) Z VS(1|m><|m)
meqQ mzQ

< ezasvs(f)ervSZ(;) < V()
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a contradiction. O

ChooseM > 0 such that,
inf inf 1, (h(x))np:=D>0 (4.5)
mGQXGI |hi=M
Xedh
such aM exists because i@.Z) is satisfied fore Q andN then ) is also satisfied fon andkN for
all k e N*. SinceQ is finite, we may takél a common multiple.

Sublemma 4.8 Let M be given by[ (4]5). There exist constants K, such that for any k> M, for any
f € Cap(s), forall X € 9,
Kavs(GET) < G&f (X) < Kyvs(GET).

Proof. — From Lemma 4J5, we have thatfifc Cyp(s) thenGE f € Cap(s) for all p € N. So, it suffices to
prove the inequality fok = M.
SinceGM f € Cap(Ss), we have for alX € 7:

a

GMf(X) < vs(GMf)maxb, e%].

Now, using Sublemm@.?, we findy € quch that forX € Iy, X Iy, T(X) > evs(f). Now, for all
X E ]1
G F(X) > vs(f)GY (Lipy ximy ) (X) = Vs(F)eD.
So the sublemma is proved with
K1 = maxb, &) andK; = %M. O
Let us conclude the proof of Lemrpa #.6. Equati¢ns|(4.3) (4.4) together with Subfenima 4.8 gives that
for all f,g € Cap(s) andk > M,

squ‘gf.squEg_eerE)_ 1+8\?
infGKf  infGkg 1-¢

'°g[<+<2> o (1)

LetK = Iog%, we conclude that the projective diamefeof GXCq p(S) into Cqp(S) is finite :

de, (5 (G5F,GEg) < log

IN

A<2K+42a(1+4%) +2logg.

The following lemma shows that any functionlig,(J) may be pushed into the cofig(s).

Lemma 4.9 There exists K> 0 satisfying:
for any function fe Lpw(7), there exists Rf) > 0 such that Rf) + f € C4p(s) and R f) < Kz-||f].
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Proof. — TakeR(f) satisfying:
R(f) = sup|f],
R() > Lip(f)—ainf f,
a

supf — binf f
- b—1

We are now in position to prove th&s has a unigue simple dominant eigenvalue.
Letk = tanh4. Lemmag 45 anld 4.6 and Theor 4.1 give;m e N*,

de, (s (GBS, GLL) < K" Hde, (9 (G, Gsl) < AK™ L.

a,b

Now, apply Lemma 4]2 usin{ || andvs to get:

GItm B Gl no1 || Gi1
A(S)MM ()" || T A(S)" ||
Now use again Lem 2 to prove t st is bounded:
J 2toprove gl '
Gil _ Gsl < Gsl
A" Al 1A e

So, the sequen )%ln) . is a Cauchy sequence (for the sup norm), thus it converges to some function
ne

Ws. This function satisfyiGsWs = A(s)Ws and for anyf € Cyp(s),

< A" W |oovs( ).

[

n
HG‘Sf _qJSVS(f)

A(s)M

Lemmg 4.9 implies that for anf/ € Lw(7),

Gof 5
H)\(Z)n—wsvs(f) < AK"Y| W[ (2K3 + 1) T (4.6)

[ee]

We already know thaGs is quasi compact (recall sectiph 3). Now, equatfon](4.6) proves\satis a
maximal eigenvalue (i.e\(s) = R(s) and any other eigenvalue has modulus strictly smaller Mjan In
other wordsA(s) is simple and the unique eigenvalue of maximal modulus. The proof is the sa@g for

Let us denota (s) the dominant eigenvalue add the dominant eigenvector &s. We have

Sl
Sl

A(s) = lim (G!1(0,0))™ andA(s) = lim (GP1(0))

Nn—oo n—oo

and the operatorGs andGs coincide on the diagonal, we conclude thés) :X(s). O
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