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We study some lattice paths related to the concept of generating trees. When the matrix associated to this kind of
trees is a Riordan array D � �

d
�
t ��� h � t ��� , we are able to find the generating function for the total area below these

paths expressed in terms of the functions d
�
t � and h

�
t ���
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1 Introduction
In this paper we consider a model of random walks previously studied in [BM02]: each walk starts (at
time 0) from a point p0 of � and at time n, one makes a jump xn � � ; the new position is given by the
recurrence pn 	 pn 
 1 � xn where, when pn 
 1 	 k, the xn’s are constrained to belong to a fixed set Pk (that
is, the possible jumps depend on the position of the walk). We call paths on � the walks under this model.

In combinatorics, it is classical to represent a particular walk as a path in a two dimensional lattice,
thus the drawing corresponds to the walk (of length n) linking the points ��
 0 � p0 � ��
 1 � p1 � ����������
 n � pn ��� . It
is also convenient to represent all the walks of length � n as a tree of height n, where the root (at level 0
by convention) is labeled with the starting point of the walks and where the label of each node at level n
encodes a possible position of the walk. Figure 1 illustrates the generating tree representing the walks on �
with jumps P 	���� 1 ��� 1 � starting in 0 (and up to length n 	 4). The branches 
 0 � 1 � 0 � 1 � 0 � , 
 0 � 1 � 0 � 1 � 2 � ,
 0 � 1 � 2 � 1 � 0 � , 
 0 � 1 � 2 � 1 � 2 � , 
 0 � 1 � 2 � 3 � 2 � 
 0 � 1 � 2 � 3 � 4 � correspond to the well-known Dyck paths of length
4, and are drawn in Figure 2.

This kind of trees are known in the literature as generating trees and in the last years have been widely
studied. They have been used for the first time, without any specific name, in [CGHK78] and successively
this concept can be found in [Wes95, Wes96]. Generating trees are a device to represent the development
of many classes of combinatorial objects which can then be enumerated by counting the different labels
in the various levels of the tree (see, e.g., [BBMD � 02, BLPP99]).

These walks on � are homogeneous in time, since the set of jumps when one is at altitude k is indepen-
dent from the time. When the positions pn’s are constrained to be nonnegative, we talk about paths on �
(this corresponds to deal with generating trees with positive labels).

When the sets Pk’s are equal to a fixed set P , the corresponding walks have been deeply studied both
in combinatorics and in probability theory (see, e.g., [BF02] and the included references); in particular,
these walks can be generated by context-free grammars (see, e,g, [MRSV99] ).
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Fig. 1: The generating tree of the walk on � with jumps P ����� 1 ��� 1 � starting in 0 (and up to length n � 4). Each
branch corresponds to a path.
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Fig. 2: Dyck paths of length 4 and their area.

When the sets Pk’s are unbounded, walks are not homogeneous in space, since the set of available jumps
depends on the position, and it is not possible to generate them by context-free grammars. However, if
the sets Pk’s have a “combinatorial” shape, it is reasonable to hope that the generating function associated
to the corresponding walk would have some nice properties. In [BM02], several classes of such walks are
presented and the nature of the generating function counting the number of walks of length n going from
0 to k (or, equivalently, the number of nodes with label k at level n in the tree) is studied.

In this paper, we examine the walks on � related to the concept of proper Riordan arrays and study, in
particular, the area below these paths and the x-axis.

The concept of Riordan arrays provides a remarkable characterization of many lower triangular arrays
that arise in combinatorics. The theory has been introduced in [SGWW91] and then examined closely
from a theoretical and practical viewpoint in [Spr94, MRSV97]. Recently, in [MV00], the connection
between proper Riordan arrays and generating trees has been investigated and the resulting trees are called
proper generating trees; this relation allows to combine the counting capabilities of both approaches and
can be exported in the context of lattice paths.

The area below paths is a combinatorial problem which has some important connections with permu-
tations and the internal path length in various types of trees and has been studied in several contexts (see,
e.g., [BK01, DF93, GJ83, Knu73, MSV96, Sul98, Sul00]).

As it will be shown in Section 2, the total area below all paths on � of length n is related to the
total internal path length, weighted with the values of the labels in the nodes and up to level n, of the
corresponding generating tree. The internal path length of proper generating trees has been studied in
[Mer02]; here, we present similar results in the context of lattice paths thus finding an explicit generating
function for the total area below all the paths under the present model and, in particular, for those with an
infinite set of jumps. The involved generating functions are expressed in terms of the functions 
 d 
 t � � h 
 t ���
defining the associated proper Riordan array (see Theorem 4).
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2 Background
In this section we summarize some results on generating trees and Riordan arrays which will be useful in
the next sections. The complete theory of Riordan arrays, the proofs of their properties and the relation
with generating trees can be found in [MRSV97, MV00].

2.1 Generating trees

A generating tree is a rooted labeled tree with the property that if v1 and v2 are any two nodes with the
same label then, for each label l, v1 and v2 have exactly the same number of children with label l. In order
to specify a generating tree we have to specify a label for the root and a set of rules explaining how to
derive from the label of a parent the labels of all of its children. For example, Figure 1 illustrates the upper
part of the generating tree which corresponds to the following specification:

�
root : 
 0 �
rule : 
 k ��� 
 k � 1 � 
 k � 1 � (1)

We can associate a matrix to any generating tree: a matrix associated to a generating tree (AGT matrix,
for short) is an infinite matrix � dn � k � n � k ��� where dn � k is the number of nodes at level n with label k � c � c
being the label of the root.

For example, for rule (1) we have the following AGT matrix:

n � k 0 1 2 3 4
0 1
1 0 1
2 1 0 1
3 0 2 0 1
4 2 0 3 0 1

In our model of random walks, assuming c 	 0 (this choice will be explained later), the quantity dn � k in
the AGT matrix represents the number of paths of length n � starting at the origin and ending at altitude k �

Many AGT matrices can be studied from a Riordan array point of view.

2.2 Riordan arrays

A Riordan array is an infinite lower triangular array � dn � k � n � k ��� � defined by a pair of formal power series
D 	 
 d 
 t � � h 
 t ��� � such that the generic element dn � k is the n-th coefficient in the series d 
 t � 
 th 
 t ��� k � i.e.:

dn � k 		� tn 
 d 
 t � 
 th 
 t ��� k � n � k � 0 � (2)

From this definition we have dn � k 	 0 for k � n � The bivariate generating function of a Riordan array is
given by:

d 
 t � w � 	 ∑
n � k 
 0

dn � ktnwk 	 d 
 t �
1 � wth 
 t � � (3)

In the sequel we always assume that d 
 0 ���	 0; if we also have h 
 0 ���	 0 then the Riordan array is said to
be proper; in the proper-case the diagonal elements dn � n are different from zero for all n � � � The most
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simple example is the Pascal triangle for which we have�
n
k � 	 � tn 
 1

1 � t

�
t

1 � t � k

�
where we recognize the proper Riordan array d 
 t � 	 h 
 t � 	 1 � 
 1 � t � or d 
 t � w � 	 1 � 
 1 � t 
 1 � w ��� � as can
be easily proved from (2) and (3).

Proper Riordan arrays can also be defined in terms of two sequences A 	 � ai � i ��� with a0 �	 0 and
Z 	 � z0 � z1 � z2 ������� � (see, [Rog78, Spr94, MRSV97]) such that every element dn � 1 � k � 1 can be expressed
as a linear combination, with coefficients in A, of the elements in the preceding row, starting from the
preceding column:

dn � 1 � k � 1 	 a0dn � k � a1dn � k � 1 � a2dn � k � 2 �������
and such that every element in column 0 can be expressed as a linear combination, with coefficients in Z,
of all the elements of the preceding row:

dn � 1 � 0 	 z0dn � 0 � z1dn � 1 � z2dn � 2 ������� �
The generating functions A 
 t � and Z 
 t � of these sequences are related to the pair 
 d 
 t � � h 
 t ��� by the fol-
lowing formulas:

h 
 t � 	 A 
 th 
 t ��� (4)

d 
 t � 	 d0

1 � tZ 
 th 
 t ��� (5)

For example, for the Pascal triangle we have: A 
 t � 	 1 � t and Z 
 t � 	 1 �
Another interesting result concerns the computation of combinatorial sums involving Riordan arrays:

Theorem 1. Let D 	 
 d 
 t � � h 
 t ��� be a Riordan array and f 
 t � the generating function for the sequence
� fk � k ��� . Then:

n

∑
k � 0

dn � k fk 	 � tn 
 d 
 t � f 
 th 
 t ��� �
In particular, when fk 	 1 we have:

n

∑
k � 0

dn � k 		� tn 
 d 
 t �
1 � th 
 t � (6)

and this formula can be used, in the present context, to compute the total number of paths of length n � In
fact, the following connection between proper Riordan array and generating trees holds:

Theorem 2. Let c � � � a j � z j � � �	� j � 0 � a0 �	 0 and k � c and let�
root : 
 c �
rule : 
 k � � 
 c � zk 
 c 
 c � 1 � ak 
 c 
 c � 2 � ak 
 c 
 1 ����� 
 k � 1 � a0

(7)

be a generating tree specification. Then, the AGT matrix associated to (7) is a proper Riordan array D
defined by the triple 
 d0 � A � Z � � such that

d0 	 1 � A 	 
 a0 � a1 � a2 ������� � � Z 	 
 z0 � z1 � z2 ������� � �
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On the contrary, if D is a proper Riordan array defined by the triple 
 d0 � A � Z � with d0 	 1 and a j � z j � � �� j � 0 � then D is the AGT matrix associated to the generating tree specification (7).

Note we only consider nonnegative labels, thus when a rule gives a negative value, we simply ignore
this label. Moreover, the powers in the rule denote repetition of the same label, so we write 
 k � r instead
of 
 k � 
 k � ����� 
 k �� ��� �

r

�
As an application of the previous theorem, let us consider the rule (1), the first few applications of

which give:

 0 � � 
 1 � � 
 1 � � 
 0 � 
 2 � � 
 2 � � 
 1 � 
 3 � � �����

We thus recognize rule (7) with A 	 
 1 � 0 � 1 � 0 � 0 ������� � and Z 	 
 0 � 1 � 0 � 0 � 0 ����� � � that is, A 
 t � 	 1 � t2 and
Z 
 t � 	 t � By applying formulas (4) and (5) we find that the pair 
 d 
 t � � h 
 t ��� defining the AGT matrix for
the rule (1) corresponds to:

d 
 t � 	 h 
 t � 	 1 � �
1 � 4t2

2t2 �
Formula (6) in this case gives the following generating function:

1 � 2t � �
1 � 4t

2t 
 2t � 1 � 	 1 � t � 2 t2 � 3 t3 � 6 t4 � 10 t5 � 20 t6 � 35 t7 � 70 t8 � O � t9 �

3 The area below proper paths on �
In this section we examine paths on � described by the rule (7) with c 	 0 � The root of a generating trees
can have any label and in fact in [Mer02] the internal path length has been studied for a generic label c in
the root. In the present context, since the label of the root represents the starting point of each path, we
can always assume c 	 0 : different values of this label correspond to translate each path, along the y-axis,
by the same quantity. From here on, we will call proper paths on � the paths described by the following
rule: �

root : 
 0 �
rule : 
 k � � 
 0 � zk 
 1 � ak 
 2 � ak 
 1 ����� 
 k � 1 � a0

(8)

where, according to Theorem 2, A 	 
 a0 � a1 � a2 ������� � and Z 	 
 z0 � z1 � z2 ������� � are the A and Z-sequences of
the associated AGT matrix.

We explicitly observe that when the generating functions A 
 t � and Z 
 t � are polynomials, that is, A and
Z have a finite number of coefficients different from zero, then the generating tree corresponding to rule
(8) defines walks on � with a finite set of jumps. More generally, (8) defines walks with an infinite set
of jumps, which depends on the position. The powers in the rule can be interpreted as colors that can be
used to distinguish various occurrences of the same jump.

Note, in particular, the jump � 1 is the only positive jump allowed and it always belongs to the set of
available jumps since, by hypothesis, a0 �	 0 �

Our interest consists in computing the total area between the paths of length n and the x-axis; this
quantity is related to the total internal path length, up to level n, in the corresponding generating tree,
weighted with the value of each node label. Referring to Figure 1, we have a total path length equal to 1
for paths up to level 1 � equal to 4 for paths up to level 2 � equal to 12 for paths up to level 3 and equal to
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34 for paths up to level 4 � In fact, we will prove that the generating function counting the total path length
for rule (1) is given by:

P 
 t � 	 1 � t � �
1 � 4 t2


 1 � 2 t � 
 1 � 4 t2 � 	 t � 4 t2 � 12 t3 � 34 t4 � 84 t5 � 212 t6 � 488 t7 � 1162 t8 � O � t9 � �
Any path of length n in a proper generating tree can be seen as a histogram of length n: in fact any label
k in the path can be associated to a column of k cells and by juxtaposing several columns in such a way
that their lowest cells are at the same level, we obtain what we call a histogram. Thus, the total internal
path length corresponds to the total area of histograms, if we compute the area as the sum of the columns
height. On the other hand, it is evident that the area of these histograms is strictly related to the area of
the regions between the paths and the x-axis, as shown for example in Figure 2 for Dyck paths of length
4 � We therefore define the area A 
 W � of a path

W 	 
�
 0 � p0 � ��
 1 � p1 � ����������
 n � pn ���
on � as the sum of the ordinates of its points:

A 
 W � 	
n

∑
i � 0

pi �
In this paper, we are interested in the generating function P 
 t � 	 ∑n 
 0 Pntn counting the total area Pn of

all the paths of length n described by rule (8). In particular, we’ll find a formula which only depends on
the functions d 
 t � and h 
 t � defining the associated proper Riordan array. More generally, one can study
the jth moment A 
 W � j � 	 ∑n

i � 0 p j
i of a path W � The method we propose in this section can be used to find

the total moments of any order j for all the paths of length n but the computations in this case become
very complicated.

In order to study the total area of proper paths on � � we consider the total internal path length of the
corresponding generating tree. The total sum of the labels in all the paths from level 0 to level n in the
generating tree can be computed, level by level, by summing the labels counted with their multiplicity; if
Pi � n is the sum of the labels at level i counted with their multiplicity we have:

Pn 	
n

∑
i � 0

Pi � n �
Figure 3 illustrates how Pi � n can be computed: if we fix level n and consider a label 
 r � at level i, 0 � i � n �
the multiplicity of this label is given by the number of nodes at level n � i in the marked sub-tree, that is, in
the generating tree having the same specification (7) but root labeled 
 r � . This quantity must be multiplied
by the number of nodes at level i having label 
 r � and obviously by the value r of the label. On the other
hand, we know that the element di � r of the associated proper Riordan array counts the number of nodes
at level i with label 
 r � � So, if we let f j 
 t � be the generating function counting the number of nodes at a
given level in the generating tree having root labeled 
 j � we have:

Pn 	
n

∑
i � 0

Pi � n 	
n

∑
i � 0

∑
r 
 0

di � rr � tn 
 i 
 fr 
 t � � (9)

The first step in the computation of the sum (9) consists in the computation of the generating function
f j 
 t � �
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Fig. 3: The computation of the area.

Theorem 3. Let f j 
 t � be the generating function counting the number of nodes at a given level in the
generating tree (8) having root labeled 
 j � � We have:

f0 
 t � 	 d 
 t �
1 � th 
 t � � fr 
 t � 	 pr 
 t � f0 
 t � � qr 
 t �

ar
0tr

where

p0 
 t � 	 1 � pr 
 t � 	
r

∑
k � 0

pr� r 
 ktk

q0 
 t � 	 0 � qr 
 t � 	
r 
 1

∑
k � 0

qr 
 1 � r 
 1 
 kt
k �

Moreover, the matrices P 	 � pr� k � r� k � � and Q 	 � qr� k � r� k � � correspond to the following proper Riordan
arrays:

P 	 
 dP 
 t � � hP 
 t ��� 	
�

1 � a0tZ 
 a0t �
A 
 a0t � � a0

A 
 a0t � � �

Q 	 
 dQ 
 t � � hQ 
 t ��� 	
�

a0


 1 � a0t � A 
 a0t � �
a0

A 
 a0t � � �
Proof. See Theorems 3.2 and 3.3 in [Mer02]

The Riordan array nature of f j 
 t � is useful to compute the bivariate generating function F 
 t � w � 	
∑r 
 0 fr 
 t � wr �

In fact, by using Theorems 1 and 3 we have:

F 
 t � w � 	 f0 
 t � ∑
r 
 0

pr 
 t �
�

w
a0t � r

� ∑
r 
 0

qr 
 t �
�

w
a0t � r

	

	 f0 
 t � P
�

w
a0

� 1
t � � w

a0t
Q

�
w
a0

� 1
t � 	 td 
 t � 
 1 � w � 
 A 
 w � � wZ 
 w ��� � twh 
 t � � w


 tA 
 w � � w � 
 1 � th 
 t ��� 
 1 � w � �
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being P 
 t � w � and Q 
 t � w � the bivariate generating functions of the Riordan arrays P and Q defined in
Theorem 3 (see formula 3). Now, if we let G 
 t � w � 	 ∑r 
 0 r fr 
 t � wr we simply have

G 
 t � w � 	 w
∂

∂w
F 
 t � w �

hence, by using Theorem 1, we obtain:

∑
r 
 0

di � rr fr 
 t � 	 ∑
r 
 0

di � r �wr 
 G 
 t � w � 	 �wi 
 d 
 w � G 
 t � wh 
 w ���

and

Pn 	
n

∑
i � 0

Pi � n 	
n

∑
i � 0
� tn 
 i 
 �wi 
 d 
 w � G 
 t � wh 
 w ��� �

The generating function P 
 t � 	 ∑n 
 0 Pntn can now be computed by putting t 	 w in d 
 w � G 
 t � wh 
 w ��� �
This last computation is made complicated by the presence of a factor 
 t � w � 2 at the denominator, but
after some computation one finally has the following:

Theorem 4. Let P 
 t � 	 ∑n 
 0 Pntn be the generating function counting the total area of the paths defined
by the specification rule (8). Then we have:

P 
 t � 	 NP 
 t �
DP 
 t �

where

NP 
 t � 	 1
2

t2d 
 t � h 
 t � d � � 
 t � 
 1 � th 
 t ��� 2 � 1
2

t3d 
 t � 2h 
 t � h � � 
 t � 
 1 � th 
 t ��� �
� t4d 
 t � 2h 
 t � h � 
 t � 2 � t2h 
 t � d � 
 t � 2 
 1 � th 
 t ��� 2 � td 
 t � 2h 
 t � 2 � 2t2d 
 t � 2h 
 t � h � 
 t � �

DP 
 t � 	 d 
 t � 
 h 
 t � � th � 
 t ��� 
 1 � th 
 t ��� 3 �

4 Some examples
In this section we take into consideration some examples of proper paths on � and find the generating
function P 
 t � 	 ∑n 
 0 Pntn for their total area. We explicitly observe that by dividing Pn by the total
number of paths of length n (see formula 6) one can obtain the average area of a path of length n (the
probabilistic model under consideration is the uniform distribution on all paths of length n). We first
examine some paths on � with a finite set of jumps and then conclude with some other examples with an
infinite set of jumps.

4.1 The finite set of jumps P � ���
1 � 0 ��� 1 � with colours

The rule under consideration in this case is (α �	 0:)

�
root : 
 0 �
rule : 
 k � � 
 k � 1 � γ 
 k � β 
 k � 1 � α (10)
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This scheme is well-known (see, e.g. [MSV94]) and by choosing α � β � γ appropriately we recognize
famous paths: for example, 
 α � β � γ � 	 
 1 � 0 � 1 � corresponds to Dyck paths and 
 α � β � γ � 	 
 1 � 1 � 1 � corre-
sponds to Motzkin paths. The Riordan array associated to this rule is defined by A 
 t � 	 α � βt � γt 2 and
Z 
 t � 	 β � γt � hence, for γ �	 0 � we have:

d 
 t � 	 1 � β t ��� 1 � 2β t � 
 β2 � 4αγ � t2

2t2αγ
� h 
 t � 	 1 � β t ��� 1 � 2β t � 
 β2 � 4αγ � t2

2t2α
�

For γ 	 0 � instead, we have:

d 
 t � 	 1
1 � βt

� h 
 t � 	 α
1 � βt

�
The generating function for the total area in terms of generic values of α � β � γ is quite complex and we
prefer to give some special cases in the following Table:


 α � β � γ � P 
 t �

 1 � 1 � 1 � 1 
 � 1 
 2t 
 3t2�

1 
 3t � 2 � t � 1 � 	 t � 7 t2 � 34 t3 � 144 t4 � 563 t5 � O � t6 �

 1 � 2 � 1 � 1 
 t 
�� 1 
 4t�

1 
 4t � 2 	 t � 10 t2 � 68 t3 � 394 t4 � 2092 t5 � O � t6 �

 1 � β � 1 � 1 
 � β 
 1 � t 
 � 1 
 2βt � � β2 
 4 � t2���

2 � β � t 
 1 � 2 � 1 
 � β 
 2 � t � 	 t � 
 4 � 3β � t2 � � 12 � 16β � 6β2 � t3 � O � t4 �

 2 � 2 � 1 �

�
1 
 4t � 
 16t2 
 13t � 2 � 
 
 74t2 
 25t � 2 � � 1 
 4t 
 4t2

4 
 1 
 4t 
 4t2 � � 1 
 5t � 3 	 2 t � 26 t2 � 232 t3 � 1768 t4 � O � t5 �

 α � β � 0 � tα�

1 
 � α � β � t � 3 	 α t � 3α 
 α � β � t2 � 6α 
 α � β � 2 t3 � 10α 
 α � β � 3 t4 � O � t5 �

Tab. 1: Functions P
�
t � corresponding to different α � β � γ in rule (10).

4.2 Some infinite sets of jumps
As a first example of an infinite set of jumps we consider the rule:

�
root : 
 0 �
rule : 
 k ��� 
 0 � k 
 1 � 
 2 � ����� 
 k � 
 k � 1 � (11)

This rule corresponds to the Riordan array defined by A 
 t � 	 1 � 
 1 � t � and Z 
 t � 	 t � 
 1 � t � 2 � or, equiv-
alently by

d 
 t � 	 1 � 5 t � 
 1 � t � � 1 � 4 t
2 
 1 � 4 t � t2 � � h 
 t � 	 1 � �

1 � 4 t
2t

Theorem 4 gives the following generating function for the total area:

P
�
t � ���	� 1 � 12t � 50t2 � 86t3 � 61t4 � 14t5 
�� 1 � 4t � 1 � 14t � 72t2 � 164t3 � 163t4 � 78t5 � 4t6 
 � 1 � � 1 � 4t 


4
�
1 � 4t � � 1 � � 1 � 4t 
 3 � 1 � 5t � �

t � 1 � � 1 � 4t 
 � 1 � 4t � t2 
 2
�
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Fig. 4: The partial generating tree for the specification (11).

	 t � 6 t2 � 32 t3 � 156 t4 � 724 t5 � O � t6 �
and the first few terms of this series development can be easily checked with Figure 4. Another example
is given by the following quite general rule

�
root : 
 0 �
rule : 
 k ��� 
 0 � zk 
 k � 1 � (12)

which corresponds to A 
 t � 	 1 and to a generic Z 
 t � 	 ∑k 
 0 zktk � The generating function P 
 t � can be
found as a function of Z 
 t � ; in fact, in this case, formulas (4) and (5) give h 
 t � 	 1 and d 
 t � 	 1 � 
 1 � tZ 
 t ��� �
and we find:

P 
 t � 	 t3 
 1 � t � 2 Z � � 
 t � � 2 t2 
 1 � t � 2 Z � 
 t � � 2 t2Z 
 t � � 2 t

2 
 1 � t � 3 
 1 � tZ 
 t ��� 2 �
Table 2 give some values of P 
 t � for different zk �

zk Z 
 t � P 
 t �
pk pt�

1 
 t � 2

 t2 p � pt � 1 
 2t � t2 � t

 1 
 2t � t2 
 t2 p � 2 �

1 
 t � 	 t � 
 3 � p � t2 � 
 8 p � 6 � t3 � � 30 p � 2 p2 � 10 � t4 � O � t5 �
1
k � 2k

k � 1 
 � 1 
 4t
2t

t � � 1 
 4t � 3 � 2 � 1 
 6t � 12t2 � 2t3 �
2
�
1 
 4t � 3 � 2 
 1 � � 1 
 4t � 2 �

1 
 t � 3 	 t � 5 t2 � 20 t3 � 83 t4 � 366 t5 � O � t6 �
Fk

t
1 
 t 
 t2


 2t � 3t2 
 11t3 � 6t4 � 3t6 
 1 � t�
1 
 t � 3 � t � 1 � 2 � 2t 
 1 � 2 
 
 1 � t � t2 � 	 t � 4 t2 � 11 t3 � 32 t4 � 83 t5 � O � t6 �

Tab. 2: Functions P
�
t � corresponding to different zk in rule (12); Fk denotes the k-th Fibonacci number.

Other examples concerning paths with an infinite set of jumps can be found in [Mer02].
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