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We consider the model of broadcasting on a tree, with binary state space, on the infinite rooted tree
� k in which each

node has k children. The root of the tree takes a random value 0 or 1, and then each node passes a value independently
to each of its children according to a 2 � 2 transition matrix P. We say that reconstruction is possible if the values at
the dth level of the tree contain non-vanishing information about the value at the root as d � ∞. Extending a method
of Brightwell and Winkler, we obtain new conditions under which reconstruction is impossible, both in the general
case and in the special case p11 � 0. The latter case is closely related to the hard-core model from statistical physics;
a corollary of our results is that, for the hard-core model on the � k � 1 � -regular tree with activity λ � 1, the unique
simple invariant Gibbs measure is extremal in the set of Gibbs measures, for any k � 2.
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1 Introduction
1.1 Broadcasting on a tree
We consider a model of a broadcasting on the rooted tree � k, in which every node has k children.

Let P 	�
 pi j � i � j 	 0 � 1  be a 2 � 2 stochastic matrix, which we regard as a transition matrix on the set

 0 � 1  . Each node u ��� k will carry a value φ � u ����
 0 � 1  , generated as follows. The root takes value 0 with
probability π0 	 p10 � � p01 � p10 � and value 1 with probability π1 	 1 � π0. Thereafter the configuration
on � k is generated recursively; if a node has value i ��
 0 � 1  , each of its k children takes the value 0 with
probability pi0 and the value 1 with probability pi1, all choices being made independently.

We write φ 	�
 φ � u � � u ��� k  for a configuration on the whole tree, and denote by µ the probability

measure on 
 0 � 1 �� k
resulting from this broadcasting construction.

For a node u ��� k, let � k � u � be the subtree consisting of u and all its descendants. By the choice of π0,
we have a translation invariance property for µ; namely that µ � φ � u ��	 0 ��	 π0 for every u ��� k, and so for
any u, v ��� k, the configurations on � k � u � and � k � v � have the same distribution, under a natural mapping
between the subtrees � k � u � and � k � v � .

We are interested in the following question of reconstruction: for d  1, how much information about
the value at node u is given by the values of the dth generation of its descendants?

Questions of this sort arise in several contexts – for example genetics, communication theory and statis-
tical physics – and have been quite widely studied in the last few years; see Mossel [Mos03] for a survey,
and [EKPS00, BRZ95, Iof96, KMP01, Mos01, MP03, BW03, JM03] for a variety of approaches to this
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sort of model (which can of course be considerably generalised from our particular setting of a binary
state space and a regular tree).

The question above can be made precise in several (often equivalent) ways. We use the following
formulation.

Let � d � u � be the set of descendants of u at distance exactly d from u. For a set S � � k, write σ � S � for
the σ-algebra of events which depend only on the values 
 φ � u � � u � S  .

Define the random variable
A � d � u ��	 µ � φ � u � 	 0 �� σ ��� d � u � ��� �

that is, the conditional probability that the value at u is 0, given only the information from the dth genera-
tion of its descendants.

From the independence structure given by the broadcasting construction, additional knowledge of any
information from nodes beyond the dth generation does not change the conditional distribution of the
value of u; that is,

A � d � u ��	 µ � φ � u ��	 0 �� σ � ∞�
d 	 
 d

� d 	 � u ������
Of course, if d1 � d2, then

σ � ∞�
d 	�
 d1

� d 	 � u ����� σ � ∞�
d 	�
 d2

� d 	 � u ��� �
so by the backwards martingale convergence theorem (see e.g. Section 14.4 of [Wil91]), we have that
A � d � u ��� A � u � a.s. as d � ∞, where

A � u � 	 µ � φ � u � 	 0 �� T � u � � ;
here T � u � is the tail σ-algebra of descendants of u, defined by

T � u ��	
∞�

d 
 1

σ � ∞�
d 	 
 d

� d 	 � u �����
By the translation invariance property above, the random variable A � u � has the same distribution for all

u ��� k.

Definition: We say that reconstruction is impossible (for a given P and k) if the random variable A � u � is
almost surely constant, and otherwise that reconstruction is possible.

A complete answer to the question of when reconstruction is possible is currently only known for
the case where P is symmetric. Then let p00 	 p11 	 1 � ε; reconstruction is possible if and only if
k � 1 � 2ε � 2 � 1 (see for example [BRZ95, EKPS00, Iof96]).

In general, however, there are gaps between the best known necessary and sufficient conditions for
reconstruction to be possible. In this paper we give new conditions on P under which we show that
reconstruction is impossible.

In Proposition 4.1 of [MP03], Mossel and Peres show that reconstruction is impossible whenever

� p00 � p10 � 2
min 
 p00 � p10 � p01 � p11 �� 1

k
� (1)

We improve the bound to give the following condition:
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Theorem 1. Reconstruction is impossible whenever

��� p00 p11 � � p01 p10 � 2

� 1
k
� (2)

A calculation (see Section 4) shows that the LHS of (2) is always less than or equal to that of (1),
with equality in the following special cases: (i) P is symmetric; (ii) pi j 	 0 for some i � j; (iii) p00 	 p10,
p01 	 p11. Note that for symmetric P, (2) becomes the condition that k � 1 � 2ε � 2 � 1, and our proof of
Theorem 1 gives another proof that reconstruction is impossible under this condition.

We then focus on the special case where p11 	 0 (of course, the case p00 	 0 is analogous). This
case is closely related to the hard-core model from statistical physics, and has been recently studied by
Brightwell and Winkler [BW03] and Rozikov and Suhov [RS03]. Certain specific properties in this case
allow a more sophisticated argument which gives a much better condition than is obtained by putting
p11 	 0 in Theorem 1.

1.2 Hard-core model
In this section we state our result for the case p11 	 0 and explain the correspondence with the hard-core
model on a regular tree.

Following [BW03], we parametrise P by the quantity w � 0, setting

P 	
�

p00 p01

p10 p11 � 	 �
1

1 � w
w

1 � w
1 0 � � (3)

or equivalently by the quantity λ 	 w � 1 � w � k � 0, whose significance we explain later; note that the
correspondence between λ � 0 and w � 0 is one-to-one and monotonic.

Let λc 	 λc � k � be the infimum of the set of λ such that reconstruction is possible. If follows from
Proposition 12 of [Mos01] that in fact reconstruction is possible for any λ � λc (so that λc is also the
supremum of the set of λ such that reconstruction is impossible).

Brightwell and Winkler [BW03] show that, as k � ∞,

1 � o � 1 �
lnk � λc � k � � � lnk � 2 � 1 � o � 1 ��� � (4)

We improve the lower bound to give the following:

Theorem 2. λc � k � � e � 1 for all k.

(For the equivalent threshold value wc with wc � 1 � wc � k 	 λc, one can deduce that wc � k � � � lnk �
ln lnk � � k for all k).

We will now describe the correspondence between the broadcasting model and the hard-core model,
and explain (without proofs) the significance of Theorem 2 for the hard-core model on the � k � 1 � -regular
tree. For more details on the correspondence between the two models, see also [BW03] and its references.

We denote the � k � 1 � -regular tree by ˜� k. We can still regard ˜� k as a rooted tree, in which the root node
has k � 1 children and every other node has k children. We can then carry out the broadcasting construction
on ˜� k in exactly the same way as we did on � k; now the root has k � 1 rather than k children, but the values
at these k � 1 children are chosen i.i.d. according to the value at the root and the transition matrix P just
as before. We will write µ̃ for the probability measure on 
 0 � 1  ˜� k

resulting from this construction.
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The independence structure of the random walk implies that the measure µ̃ is simple, by which we mean
that, for any u, the configurations


 φ � v � � v � C1 � u �  � ����� � 
 φ � v � � v � Ck � 1 � u � 
are mutually independent given φ � u � , where the Ci are the connected components of ˜� k � 
 u  . Although
we have defined µ̃ in an asymmetric way, it’s also the case that it is invariant, in the sense that it is
preserved by any automorphism of ˜� k. In particular, the choice of the root is not important.

To introduce the hard-core model, we first consider the case of a finite graph with node-set S (and some
neighbour relation).

We can identify a configuration φ � 
 0 � 1  S with the subset Iφ : 	 
 u � S :φ � u � 	 1  of S.
A set I � S is called an independent set if no two neighbours in the graph are both members of I.
The hard-core measure on S with activity λ � 0 is the probability measure ν on 
 0 � 1  S such that

ν � Iφ is an independent set � 	 1 �
and such that for an independent set I0, ν � Iφ 	 I0 � is proportional to λ � I0 � . Thus in fact

ν � φ 	 φ0 � 	 Z � 1
λ λ � Iφ0 � 1 � Iφ0 is an independent set � �

where we have the normalising factor

Zλ 	 ∑
φ0:Iφ0 is independent

λ � Iφ0 � �
When λ 	 1, Iφ has the uniform distribution over the set of independent subsets of S.

An equivalent characterisation is that ν is the unique probability measure such that, for any φ0 ��
 0 � 1  S

and any u � S,

ν � φ � u ��	 1 �� φ � v � 	 φ0 � v � for all v �	 u ��	 λ
1 � λ

1 � Iφ0 � 
 u  is independent � (5)

The condition (5) makes sense equally when S is infinite, except that (since conditional probabilities
are only well defined up to almost sure equality) we should now only demand the condition holds for
ν-almost all φ0. Putting S 	 ˜� k, we say that a probability measure ν satisfying (5) (for all u � ˜� k and
ν-almost all φ0) is a Gibbs measure for the hard-core model on ˜� k with activity λ.

It is quite straightforward to show that the measure µ̃ defined above by the broadcasting construction
with P as in (3) is a Gibbs measure for the hard-core model with activity λ. However, now that the state
space is infinite, it’s no longer the case that such a measure need be unique. In fact, there is a critical
point λ �c 	 λ �c � k � 	 kk � � k � 1 �	� k � 1 
 (identified by Kelly [Kel85]); for λ � λ �c, µ̃ is the only Gibbs measure,
whereas for λ � λ �c, there are others. Nevertheless, for any λ, the measure µ̃ is the only simple invariant
Gibbs measure; (this can be deduced, for example, from Theorem 4.1 of [Zac83] – see also Section 5 of
that paper for relevant discussion).

The set of Gibbs measures forms a simplex; that is, any mixture of Gibbs measures is also a Gibbs
measure, and in particular there is a set of extremal Gibbs measures such that every Gibbs measure is
expressible in a unique way as a mixture of extremal measures. For λ � λ �c, we can therefore ask whether
the measure µ̃ is extremal (equivalently, not expressible as a mixture of other Gibbs measures).
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It turns out that µ̃ is extremal at activity λ if and only if reconstruction is impossible for the correspond-
ing broadcasting model on � k with transition matrix P. (This is a consequence of the general fact that a
Gibbs measure is extremal iff it is trivial on the tail σ-algebra, and of the independence structure given by
the broadcasting constructions of µ and µ̃). Hence the reconstruction threshold λc defined after (3) is also
the extremality threshold for µ̃; Theorem 2 therefore shows that whenever λ � e � 1, the unique simple
invariant Gibbs measure µ̃ for the hard-core model with activity λ is extreme, for any k.

In particular, µ̃ is extreme in the special case λ 	 1 for any k.

1.3 Outline of proof
Our proof of Theorems 1 and 2 is in the same spirit as the proof by Brightwell and Winkler of the lower
bound in (4) for the hard-core model [BW03].

We first develop a coupling between the distributions of the random variable A � u � conditioned on two
different events, with certain additional properties beyond those used in [BW03]. We then use this cou-
pling to establish a recursion linking the distribution of A � u � to those of A � u1 � � ����� � A � uk � , where u1 � ����� � uk

are the children of u. (Of course, we already know from the translation invariance property described in
Section 1.1 that all of these distributions are the same). If the recursion relation is contractive in a suitable
sense, we obtain that A � u � must be a.s. constant.

In Section 2, we first prove a lemma on conditional probabilities in a more general setting. Specialising
to our context, we obtain the existence of a coupling of a pair of random variables A0, A1 with the following
properties:

(i) The distribution of A0 is the distribution of A � u � under µ conditioned on the event 
 φ � u � 	 0  ;
(ii) The distribution of A1 is the distribution of A � u � under µ conditioned on the event 
 φ � u � 	 1  ;

(iii) With probability 1, either A0 	 A1 or A1 � π0 � A0;

(iv) If A0 	 A1 with probability 1, then both are equal to π0 with probability 1, and so also A � u � 	 π0

a.s. under µ.

We develop the recursion relations and complete the proofs in Section 3.
The full properties of the coupling are only needed in the hard-core case, where a particular convexity

property holds for the recursion relations. The argument in the general case is not as powerful, and rather
than all of property (iii) above, we use only that A1 � A0 with probability 1. Restricting the bound in
Theorem 1 to the case p11 	 0 gives a much weaker bound than that in Theorem 2 (in fact, one obtains
only the bound λc  λ �c where λ �c is the threshold for the uniqueness of the Gibbs measure; this bound is
obvious in the context of the hard-core model since if the Gibbs measure is unique it is trivially extreme).

2 Conditioned conditional probabilities
We first consider the setting of a general probability space � Ω � F ��� � . Let B � F be an event with proba-
bility π0=1 � π1, and suppose 0 � π0 � 1. Write BC for the complement of B. Let G be a sub-σ-algebra
of F .

We consider the random variable � � B ��G � (which is the G-measurable random variable, unique up to
almost sure equality, such that for all D � G

� � D � B � 	
�

D
� � B ��G � � ω � d � � ω � � (6)
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See for example Chapter 9 of [Wil91] for background on conditional probabilities).

Lemma 3. Suppose 0 � p0 � p1 � 1, and that D � G with

� � B ��G � � ω � ��� p0 � p1 � for all ω � D � (7)

Then
π1

π0

p0

1 � p0
� � D ��BC � � � � D �� B � � π1

π0

p1

1 � p1
� � D ��BC � �

Proof. From (6) and (7) we have

p0 � � D � � � � D � B � � p1 � � D �

and

� 1 � p1 � � � D � � � � D � BC � � � 1 � p0 � � � D � �
Combining these we get

p0

1 � p0
� � D � BC � � � � D � B � � p1

1 � p1
� � D � BC � �

Since � � D �� B ��	 � � D � B � � π0 and � � D ��BC � 	 � � D � BC � � π1, the result follows.

In particular, if J is a subset of the interval � 0 � π0 � then we can set D 	�
 ω : � � B ��G � � w � � J  to obtain

�
�
� � B ��G � � J �� B � � �

�
� � B ��G � � J ��BC � �

while if J � � π � 1 � then the inequality is reversed. In each case equality holds only if both sides are 0.
Hence:

Corollary 4. There exists a coupling of two random variables Y0 and Y1, such that Y0 has the distribution
of � � B ��G � conditioned on B occurring, such that Y1 has the distribution of � � B ��G � conditioned on B not
occurring, and such that:

(i) whenever Y0 � π0, then Y1 	 Y0, and

(ii) whenever Y1 � π0, then Y1 	 Y0.

Therefore either Y0 	 Y1 or Y1 � π0 � Y0.
Also the distributions of Y0 and Y1 are identical iff Y0 	 Y1 	 π0 with probability 1, or equivalently iff

� � B ��G � 	 π0 with probability 1.

Applying this result with B 	�
 φ � u � 	 0  , with G 	 T � u � , with � 	 µ and so with A � u ��	 � � B ��G � , we
obtain the coupling of A0 � A1 with the properties claimed in Section 1.3.
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3 Recurrences for likelihood ratios
Let u ��� k and let y be a configuration on the set � d � u � (the descendants of u at distance exactly d).

For S � � k, write φ � S for the configuration φ restricted to S.
Define the “likelihood functions”

q � 0 
 � d � y ��	 µ � φ ���
d � u 
 	 y �� φ � u ��	 0 �

q � 1 
 � d � y ��	 µ � φ ���
d � u 
 	 y �� φ � u ��	 1 � �

For i 	 0 � 1, the function q � i 
 � d � y � gives the probability of observing the configuration y on the set of
descendants of u at distance d, given that the value at u itself is i. (Note that because of the translation
invariance property noted in Section 1.1, the choice of u is not important).

Define also the “likelihood ratio” function

q � d � y ��	 q � 0 
 � d � y �
q � 1 
 � d � y � �

Let d  2 and let the children of u be u1 � ����� � uk. A configuration y on � d � u � corresponds to a set of
configurations y1 � ����� � yk on � d � 1 � u1 � � ����� � � d � 1 � uk � . We then have

q � 0 
 � d � y � 	
k

∏
j 
 1

�
p00q � 0 
 � d � 1 � y j � � p01q � 1 
 � d � 1 � y j ���

q � 1 
 � d � y � 	
k

∏
j 
 1

�
p10q � 0 
 � d � 1 � y j � � p11q � 1 
 � d � 1 � y j � �

and so

q � d � y ��	
k

∏
j 
 1

�
p00q � 0 
 � d � 1 � y j � � p01q � 1 
 � d � 1 � y j �
p10q � 0 
 � d � 1 � y j � � p11q � 0 
 � d � 1 � y j �	�

	
�

p00

p10 � k k

∏
j 
 1 
 1 � c0 � c1

q � d � 1 � y j � � c1 � � (8)

where we define
c0 	 p01

p00
� c1 	 p11

p10
�

Define also a � d � y � 	 µ � φ � u � 	 0 �� φ ���
d � u 
 	 y � . The function a gives the conditional probability that

the value at the node u is 0, given a configuration on the set of descendants of u at distance d. We have

a � d � y ��	 π0q � 0 
 � d � y �
π0q � 0 
 � d � y � � π1q � 1 
 � d � y �

	 1
1 � π1

π0q � d � y 
 � (9)
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Returning to the random variable A � d � u ��	 µ � φ � u ��	 0 �� σ � � d � u � ��� defined in Section 1, we have

A � d � u ��	 a � d � φ ���
d � u 
 � �

that is, the function a � d � � � applied to the actually observed values of the configuration φ on � d � u � .
Similarly define

Q � d � u ��	 q � d � φ ���
d � u 
 ���

From (9), we have

A � d � u ��	 1
1 � π1

π0Q � d � u 
 � Q � d � u ��	 π1

π0

�
1

1 � A � d � u � � 1 � �
Recalling A � d � u ��� A � u � a.s., we have Q � d � u � � Q � u � a.s., where

Q � u � 	 π1

π0

�
1

1 � A � u � � 1 � �
From (8) we get

Q � d � u ��	
�

p00

p10 � k k

∏
j 
 1

�
1 � c0 � c1

Q � d � 1 � u j � � c1 � �
and, taking d � ∞,

Q � u � 	
�

p00

p10 � k k

∏
j 
 1

�
1 � c0 � c1

Q � u j � � c1 � �
Now put

L � u � d � 	 lnQ � u � d �

and

L � u ��	 lnQ � u �
	 ln � π1

π0

�
1

1 � A � u � � 1 ��� �
We have L � u � d � � L � u � a.s. as d � ∞, and

L � u � 	 k ln

�
p00

p10 � � k

∑
j 
 1

ln � 1 � c0 � c1

exp � L � u j ��� � c1 � � (10)

Since L � u � can be written as a strictly increasing function of A � u � , with A � u � 	 π0 corresponding to
L � u � 	 0, we can translate the coupling of A0 � A1 described in Section 1.3 and proved in Section 2 into a
coupling of two random variables L0 � L1 with the following properties:
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(i) The distribution of L0 is the distribution of L � u � conditioned on the event 
 φ � u � 	 0  ;
(ii) The distribution of L1 is the distribution of L � u � conditioned on the event 
 φ � u � 	 1  ;

(iii) With probability 1, either L0 	 L1 or L1 � 0 � L0;

(iv) If L0 	 L1 with probability 1, then both are equal to 0 with probability 1, and then also A � u � 	 π0

with probability 1.

So to conclude that A � u � is a.s. constant, it’s enough to show that � � L0 � L1 � 	 0.
Returning to (10), note that exp � L � u j � �  0, and so the quantity inside the second logarithm is always

at least min � c0 � c1 � 1 � � 0. Thus the distribution of L � u � has compact support; hence the same is true for
L0 and L1, and certainly ��� L0 � � ∞, ��� L1 � � ∞.

Again let u1 � ����� � uk be the children of a node u. From the broadcasting construction we get the following
information.
Conditional on φ � u ��	 0:

the φ � u j � � j 	 1 � ����� � k are i.i.d. taking value 0 w.p. p00 and value 1 w.p. p01. Then the L � u j � are
i.i.d., and the distribution of each is a mixture of the distribution of L0 (with weight p00) and the
distribution of L1 (with weight p01).

Conditional on φ � u ��	 1:

the φ � u j � � j 	 1 � ����� � k are i.i.d. taking value 0 w.p. p10 and value 1 w.p. p11. Then the L � u j � are
i.i.d., and the distribution of each is a mixture of the distribution of L0 (with weight p10) and the
distribution of L1 (with weight p11).

Hence from (10),

� L0 	 � k ln

�
p00

p10 � � k � p00 � ln

�
1 � c0 � c1

exp � L0 � � c1 � � p01 � ln

�
1 � c0 � c1

exp � L1 � � c1 � � �
and

� L1 	 � k ln

�
p00

p10 � � k � p10 � ln

�
1 � c0 � c1

exp � L0 � � c1 � � p11 � ln

�
1 � c0 � c1

exp � L1 � � c1 � � �
Subtracting and using the fact that p00 � p10 	 p11 � p01, we obtain

��� L0 � L1 � 	 k � � f � L0 � � f � L1 � ��� (11)

where

f � x � 	 � p11 � p01 � ln
�

1 � c0 � c1

ex � c1 �
	 c1 � c0

� 1 � c0 � � 1 � c1 � ln

�
1 � c0 � c1

ex � c1 � � (12)
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3.1 General case
If c0 	 c1, then the function f defined at (12) is constant. In that case, (11) shows that � � L0 	 L1 � 	 0,
and reconstruction is impossible.

So assume that c0 �	 c1. Then f is strictly increasing, and one obtains that

f � � x ��	 � c1 � c0 � 2
� 1 � c0 � � 1 � c1 �

ex

� ex � c0 � � ex � c1 � � (13)

Putting y 	 ex and taking the reciprocal, one can find the value of x maximising (13) by finding the
value of y  0 minimising � y � c0 � � y � c1 � y � 1. One obtains y 	 ex 	 � c0c1 � 1 � 2, and so

sup
x

f � � x � 	 � c1 � c0 � 2
� 1 � c0 � � 1 � c1 �

� c0c1 � 1 � 2

� � c0c1 � 1 � 2 � c0 � � � c0c1 � 1 � 2 � c1 �
	 � c1 � c0 � 2
� 1 � c0 � � 1 � c1 �

1

� � c1 � � c0 � 2

	 � � c1 � � c0 � 2

� 1 � c0 � � 1 � c1 �

	 � �
1

1 � c0

c1

1 � c1
�

�
c0

1 � c0

1
1 � c1 � 2

	 � � p00 p11 � � p01 p10 � 2 � (14)

Since we know that L1 � L0 with probability 1, we then have that

0 � f � L0 � � f � L1 � � sup
x

f � � x � � L0 � L1 �

with equality on the RHS iff L0 	 L1, with probability 1. Hence, from (11),

� � L0 � L1 � � k sup
x

f � � x � ��� L0 � L1 � �

with equality iff both sides are 0. So to show that � � L0 � L1 � 	 0, and therefore that reconstruction
is impossible, it’s enough to show that k sup f � � x � � 1 � Using (14), we see that (2) indeed implies that
reconstruction is impossible, and the proof of Theorem 1 is done.

3.2 Hard-core case
Recall that �

p00 p01

p10 p11 � 	 �
1

1 � w
w

1 � w
1 0 � ;

we have also that π0 	 � 1 � w � � � 1 � 2w � , π1 	 w � � 1 � 2w � , and c0 	 w, c1 	 0. We have also defined
λ 	 w � 1 � w � k. Equation (12) now becomes

f � x � 	�� w
1 � w

ln � 1 � we � x � �
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and now the function f is concave as well as strictly increasing. Hence in particular, if x0 � x1 and y0 � y1

with x0 � y0 and x1 � y1, then

0 � f � y1 � � f � y0 �
y1 � y0 � f � x1 � � f � x0 �

x1 � x0
� (15)

Recurrence (10) now becomes

L � u � 	�� k ln � 1 � w � �
k

∑
j 
 1

ln � 1 � we � L � u j � � �
and so in particular L � u � is always greater than or equal to � k ln � 1 � w � ; the same is therefore true of
L0 and L1 also. Combining this with property (iii) of the coupling described after (10), we have that,
with probability 1, either L0 	 L1 or � k ln � 1 � w � � L1 � 0 � L0. Thus, using (15), we obtain that with
probability 1

0 � f � L0 � � f � L1 � � � L0 � L1 � f � 0 � � f � � k ln � 1 � w � �
0 � � � k ln � 1 � w � �

	 � L0 � L1 � w
1 � w

� ln � 1 � w � � ln � 1 � λ �
k ln � 1 � w � �

	 � L0 � L1 � w
k � 1 � w �

�
ln � 1 � λ �
ln � 1 � w � � 1 � � (16)

where we have used

f � 0 � 	 � w ln � 1 � w � � � 1 � w �
and

f � � k ln � 1 � w � ��	�� w
1 � w

ln � 1 � wek ln � 1 � w 
 �
	 � w

1 � w
ln � 1 � w � 1 � w � k �

	 � w
1 � w

ln � 1 � λ � �
Combining (11) and (16), we get 0 � � � L0 � L1 � � ρ

� � � L0 � L1 � � , where

ρ 	 w
1 � w

�
ln � 1 � λ �
ln � 1 � w � � 1 � �

To obtain that ��� L0 � L1 � 	 0, and hence that reconstruction is impossible, it’s enough that ρ � 1. But

ρ � w
1 � w

ln � 1 � λ �
ln � 1 � w �

� ln � 1 � λ � sup
w � 0

w
� 1 � w � ln � 1 � w �

	 ln � 1 � λ � �
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(since the quantity within the sup is decreasing in w and tends to 1 as w
�

0). So certainly if λ � e � 1,
then ρ � 1 as desired. Also ρ is continuous as a function of λ (or w), so the threshold value λ2 � k � is in
fact strictly greater than e � 1, and the proof of Theorem 2 is done.

4 A calculation
For completeness, we here include details to show that the LHS of (2) is always less than or equal to that
of (1). Define b0 	 min � p00 � p11 � � max � p00 � p11 � 	 b1. We obtain

min 
 p00 � p10 � p01 � p11  	 min 
 b0 � 1 � b1 � b1 � 1 � b0 
	 b0 � 1 � b1

	 � 1 � b0 � � 1 � b1 � � b0b1 � 2b0 � 1 � b1 �

� � 1 � b0 � � 1 � b1 � � b0b1 � 2 � b0b1 � � 1 � b1 � � 1 � b0 � (17)

	�� � b0b1 � � � 1 � b1 � � 1 � b0 ��� 2 � (18)

(The inequality in (17) follows since b0 � b1 and 1 � b1 � 1 � b0; equality holds if b0 	 b1 or if one of b0

and b1 is 0 or 1).
Then, starting from the LHS of (2) and using (18),

� � p00 p11 � � p01 p10 � 2 	 ��� b0b1 � � � 1 � b1 � � 1 � b0 � � 2

� ��� b0b1 � � � 1 � b1 � � 1 � b0 � � 2 � � b0b1 � � � 1 � b1 � � 1 � b0 � � 2

min 
 p00 � p10 � p01 � p11 
	 � b0b1 � � 1 � b1 � � 1 � b0 � � 2

min 
 p00 � p10 � p01 � p11 
	 � b0 � � 1 � b1 � � 2

min 
 p00 � p10 � p01 � p11 
	 ����� p00 � p10 � � 2

min 
 p00 � p10 � p01 � p11  �

which gives the LHS of (1) as required.
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