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Let G be a graph on vertices,Vv»,...,vn. The b-chromatic number @ is defined as the maximum numbeof

colors that can be used to color the vertice&p$uch that we obtain a proper coloring and each doleith 1 <i <Kk,

has at least one representanadjacent to a vertex of every colpr1 < j #i < k. In this paper, we give the exact

value for the b-chromatic number of power graphs of a path and we determine bounds for the b-chromatic number of
power graphs of a cycle.
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1 Introduction

We consider graphs without loops or multiple edges. Gdte a graph with a vertex setand an edge

setE. We denote byd(x) the degree of the vertexin G, and bydists(X,y) the distance between two
verticesx andy in G. The p-th power graph @ is a graph obtained fror® by adding an edge between
every pair of vertices at distangeor less, withp > 1. It is easy to see th&@' = G. In the literature,

power graphs of several classes have been investigated(]2, 3, 8]. In this note we study a vertex coloring
of power graphs. The power graph of a path and the power graph of a cycle can be also considered as
respectively subclasses ditance graphsndcirculant graphs Thedistance graph @) with distance

setD = {dj,dy,...} has the se¥ of integers as vertex set, with two vertice§ € Z adjacent if and

only if |i — j| € D. Thecirculant graphcan be defined as follows. Letbe a natural number and let

S= {Kki,ko,....k} with ky < kz < ... <k <n/2. Then the vertex set of the circulant graptn,S) is
{0,1,...,n—1} and the set of neighbors of the veries {(i £k;)mod ij=1,2...,r}.

The study of distance graphs was initiated by Eggleton andlal. [4]. Recently, the problem of coloring
of this class of graphs has attracted considerable attention, see¢.g.1[12, 13]. Circulant graphs have been
extensively studied and have a vast number of applications to multicomputer networks and distributed
computation (se€[1,110]). The special cases we consider are the distanc&gegphith finite distance
setD ={1,2,..., p} which is isomorphic to th@-th power graph of a path and the circulant gr&g(m, S)
with S={1,2,..., p} which is isomorphic to the-th power graph of a cycle.
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A k-coloring of G is defined as a functioe on V(G) = {vi,Vz,...,Vs} into a set of colorC =
{1,2,...,k} such that for each vertex, with 1 <i < n, we havec,, € C. A proper k-coloringis ak-
coloring satisfying the conditiony # ¢, for each pair of adjacent verticesy € V(G). A dominating
proper k-coloringis a propetk-coloring satisfying the following propertly: for eachi, 1 <i <k, there
exists a vertex; of colori such that, for eacly, with 1 < j #i <k, there exists a vertey; of color j
adjacent tog. A set of vertices satisfying the propeyis called adominating systemEach vertex of a
dominating system is calleddominating vertexTheb-chromatic numbed(G) of a graphG is defined
as the maximunk such thatG admits a dominating propércoloring.

The b-chromatic number was introducedIin [7]. The motivation, similarly as for the previously studied
achromatic numbefcf. e.g. [5,[6]), comes from algorithmic graph theory. The achromatic nuthg@y
of a graphG is the largest number of colors which can be assigned to the verticB8ssath that the
coloring is proper and every pair of distinct colors appears on an edge. A proper coloring of asgraph
usingk > X(G) colors could be improved if the vertices of two color classes could be recolored by a single
color so as to obtain a proper coloring. The largest number of colors for which such a recoloring strategy
is not possible is given by the achromatic number. A more versatile form of recoloring strategy would be
to allow the vertices of a single color class to be redistributed among the colors of the remaining classes,
S0 as to obtain a proper coloring. The largest number of colors for which such a recoloring strategy is not
possible is given by (G) (these recolorings are discussedin [7] and [11]). T¢SE) < Y(G) (also given
in [[]). From this point of view, both complexity results and tight bounds for the b-chromatic number are
interesting. The following bounds of b-chromatic number are already presented in [7].

Proposition 1 Assume that the verticeg,xy, ..., X, of G are ordered such that(g;) > d(xz) > ... >
d(xn). Thend(G) < m(G) < A(G) +1, where fG) = max1<i<n:d(x)>i—1} andA(G) is the
maximum degree of G.

R. W. Irving and D. F. Manlovel[7] proved that finding the b-chromatic number of any graph is a
NP-hard problem, and they gave a polynomial-time algorithm for finding the b-chromatic number of
trees. Kouider and Mdo [9] gave some lower and upper bounds for the b-chromatic number of the
cartesian product of two graphs. They gave, in particular, a lower bound for the b-chromatic number of
the cartesian product of two graphs where each one has a stable dominating system. More recently in
[1], the authors characterized bipartite graphs for which the lower bound on the b-chromatic number is
attained and proved the NP-completeness of the problem to decide whether there is a dominating proper
k-coloring even for connected bipartite graphs &nd A(G) +1. They also determine the asymptotic
behavior for the b-chromatic number of random graphs.

In this paper, we present several exact values and determine bounds for the b-chromatic number of
power graphs of paths and cycles.

Let Diam(G) be the diameter of a grap®, defined as the maximum distance between any pair of
vertices ofG. Let us begin with the following observation.
Fact 2 For any graph G of order n, if DiarfG) < p, then$(GP) = n, with p> 2.
Proof. If Diam(G) < p, it is trivial to see thaGP is a complete graph. Si(GP) = n. O

Let G be a path or a cycle on verticas, xo, ..., X,. We fix an orientation of5 (left to right if G is a
path and clockwise i6 is a cycle). For each £ i < n, we denote by (resp.x) the successor (resp.
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predecessor) of; in G (if any). For 1< i # j < n, we definex;, Xjlc, [Xi,Xj)c and(x;,X;j)c as the set of
consecutive vertices da from respectively; to X;, X to X;’ andxi+ tox;, following the fixed orientation
of G. If there is no ambiguity, we denop®, xj]c, [Xi,Xj)c and(x,Xj)c by respectivelyx;, xj], [xi,x;j) and
(Xi’xj)'

In all figures, the grapl@ is represented with solid edges. Edges added jntla power graphGP
are represented with dashed edges. In some figures, vertices are surrounded and represent a dominating
system of the coloring. In any coloring of a graBhwe will say that a vertex of G is adjacentto a color
i if there exists a neighbor ofwhich is colored by.

2 Power Graph of a Path

In this section, we determine the b-chromatic number pfth power graph of a path, with > 1. First
we give a lemma used in the proof of Theorgm 4. Then the b-chromatic numbextbfgower graph of
a path is computed.

Lemma3 For any p> 1, and for any n> p+ 1, let R, be the path on vertices %<, ...,X,. For each
integer k, with p+-1 < k < min(2p+ 1,n), there exists a proper k-coloring o PMoreover each vertex
X, such that > {Xc_p,X—p+1,---,¥n—k+p+1}, IS adjacent to each color j, with < j # ¢ < k.

Proof. Ask > p+1, it is easy to see that if we put the set of colfts2, ... k} cyclically onV (R,), then
two adjacent vertices will not have the same color. The coloring is thus a pkaymoring.

Let S= {Xk_p,Xk—p+1,---» Xn—k+p+1}- First we show that each vertex 8fs adjacent to at lea&t— 1 ver-
tices. Observe that the vertgx_, is adjacent t¢gk — p— 1) + p=k— 1 vertices. And the vertex, ¢ p;1

is adjacent tgp+n— (n—k+ p+1) = k— 1 vertices. Since each vertgxwithk— p+1<i<n—k+p,
has a degred(x;) > d(x«_p), then each vertex dis adjacent to at leakt— 1 other vertices.

Next, we can see by the construction that all the co{dr2, ... ,k}\{cx } appear between the first and
the last neighbor of;. Therefore each vertex of Sis adjacent to each colgr with 1 < j # ¢, <k and
k—p<i<n—k+p+1 O

The b-chromatic number of gth power graph of a path is given by:

Theorem 4 Let R, be a path on vertices;x%, ..., X,. The b-chromatic number offPwith p> 1, is given
by:

nifn< p+1, (1)
o(PP) = p+1+[”fo’*1J if pr2<n<4p+1, (2)
2p+1ifn>4p+2 (3

Proof.
1. If n< p+1, thenDiam(P,) < p. So, by Facf]2¢(PY) = n.

2. We prove first thab(P}) > p+ 1+ V“T’HJ for p+2<n<4p+1. Letk=p+1+ {”‘T‘HJ

By Lemma[B, we give a propércoloring of PY. For example, FigurE 1 shows a dominating proper
5-coloring ofPS.
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Fig. 1: Coloring of P§

Let S be the set of vertice$xc_p,X—pt1,.-.,Xk—p-1}. Since X—p—1<n—k+p+1, then
S C {X—psXk—p+1,---» Xn—k+p+1}- By Lemma[B,S is a dominating system. As the coloring is
proper and has a dominating system, we obtain a dominating pkegeloring. So,¢(P}) >

p+1+ [”*gflj.

Next we prove thad (PP) < p+1+ {”’THJ for p+2 < n<4p+1. The proof is by contradiction.
Suppose that there exists a dominating prdpeoloring such that

K>pils {”‘T‘HJ )

LetW = {wy, Wy, ..., Wy} be a dominating system of the coloring Bl (following the orientation
of P,, we meetwy,wo, ..., Wy). The verticesv; andwy are adjacent to, at mogp,different colors
in [wy,w]. Asw (respectivelywy) is a dominating vertex, it must be adjacent to at léast1
different colors. Then, there are at le&st- p— 1 vertices on[xg,w;) (respectively(wy, Xn]).
Thereforen—k' > n—[[wy, w]| > 2(K' — p—1).

On the other hand by hypotheis> p+ 2+ V“THJ ,sothan—K <n—p—2— {”‘T‘HJ .
These two results give the following inequality,

2(K—p-1)<n-kK<n-p-2- {niglJ

Kg%(ner— r_p_lJ) 2

n—p-1
—p—4> R R—
n—p 4_3{ 3 J,

which is a contradiction. Hence such a coloring does not exist. TherefoRE) < p+ 1+

=]

We deduce from these two parts tiggP}) = p+1+ [“*g’*lJ .
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3. A(PY) = 2p, so by Propositio] 1¢(P}) < 2p+ 1. Lemma[B gives a propd@p + 1)-coloring
and shows that each vertexof the set{Xp;1,Xp;2,...,X3p+1} is adjacent to each colgr with
1< j # ¢y < k. So this set is a dominating system aj(@?) > 2p+ 1. Thereforeh(PY) = 2p+1.
For example, Figurf 2 gives a dominating proper 7-co|0rin@139f

T e O T e e O O e S

LT TN TS TN TN TN TS TN T TN T N S
’ ’ NN NN N s N s NN N N N N
1/ 2+ 371 4\ 5\/ 6\/ 7\ 1\ 2V 3V 4 5 6 7 1

N N/ NSNS NSNS NSNS NSNS NS NN, s

Fig. 2: Coloring of P,

3 Power Graph of a Cycle

In this section, we study the b-chromatic number gf-to power graph of a cycle, witp > 1. First we
give two lemmas used in the proof of Theorgm 7. Then we bound the b-chromatic numlgetlopewer
graph of a cycle.

Lemma5 Let G} be a p-th power graph of a cyclesCwith p> 2. For any2p+3 < n < 4p, let k>
min(n—p—1,p+1+ {”’T'HJ ). Then n< 2k.

Proof. The proof is by contradiction. Suppose> 2k+ 1. We consider two cases. Firstiy> n— p—1.

So,
n>2k+1>2(n—p—-1)+1,

n<2p+1,
which is a contradiction. Secondly> p+1+ [“——g—lj So,

n>2k+1>2(p+1+ {”‘Tp_lJ)H,

n2p322{TJ7

which is a contradiction too. O

Lemma6 For any p> 2, and for any2p+3 < n < 4p, let G, be the cycle on verticeg Xo, ..., X,. Let
k=min(n—p—-1p+1+ {”‘T‘HJ ). So there exists a proper k-coloring of Mloreover each vertex x,
such that X {X_p, Xk—p+1,-- -, Xk—p—1}, IS adjacent to each color j, with < j # ¢ < k.

Proof. We put the set of color§l,2, ...k} cyclically onV (C,). Ask < p+1+ V“T’HJ andn < 4p,
thenk < 2p+ 1. Moreover, by Lemm§ 5 we deduce th&t2 n> 2p+3 > k+ 2. So, the full set of
colors{1,2, ... k} appears consecutively at least once, and at most twice, in the cyclic color@y of
As 2k > n>2p+ 3, we havek > p+ 1. Furthermore, by definition dfwe haven—k > p+ 1. Thus, as
k> p+1andn—k> p+1, the coloring is proper.
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Let P, be the subpath dZ, induced byxy, X2, ..., X. Let S= {Xk_p, Xk—p+1, - - ,xk+(k,p,1)}. Asp+1<
k<2p+1land X—p—1<n-—k+p+1,then by Lemm@ 3 each vertgxf S withk— p<i <2k—p-1,
is adjacent to each cole with 1 < g # ¢, < k, onPY. Therefore each vertex of Sis adjacent to each
colorg, with 1 < g # ¢, <k, onCF. O

Theorem 7 Let G, be a cycle on verticeg 3y, . .., X,. The b-chromatic number offCwith p>1,is

nif n<2p+1, (1)
p+1lifn=2p+2, 2)
o(CE) = (Z)minn—p-1p+1+|"52t)if2p+3<n<3p (3)
p+1+|™F2| if3p+1<n<4p (4)
2p+1ifn>4p+1 (5)

Pr oof.
1. If n< 2p+ 1, thenDiam(C,) < p. So, by Facf]2(CR) =n.

2. To color the graph, we put the set of colds 2,..., p+ 1} cyclically twice. One can easily see
that this coloring is a propgip+ 1)-coloring. LetSbe the set of verticefxy,xa,...,Xp41}. Each
vertexx, with 1 <i < p+ 1, is adjacent to — 2 vertices. Sincen—2 > p+ 1, then each vertex
X (1 <i< p+1)of Sis adjacent to all colors other thay. So the seSis a dominating system.
We now show that, in any dominating proper coloring, verti¢esndx;p;1 must have the same
color. For the subgraph induced by verticgsxy, ..., Xp+1, we have a clique and we can assume
without loss of generality that these vertices are colored 1.1, p+ 1 respectively. If there
exists a dominating vertex of colgr for somej > p+ 1, then this vertex ip 14 for somei
(1<i< p+1). Vertexxpi14i is not adjacent teg, but every other vertex is adjacent®o so that
Xp+1+i cannot be a dominating vertex, a contradiction. There({xéfaﬁ’) =p+1lforn=2p+2.

3. Letk=min(n—p—1,p+1+ {WTHJ ).
By Lemma[b there exists a dominating progegoloring for 20+ 3 < n < 3p. Thereforep(CF) >
min(n—p—1,p+1+ {"‘—g‘lJ ). For example, in FigurH 3, we give a dominating proper 6-coloring
of C},.

4. Letk=p+1+ | 5.
For 3p+1 < n < 4p, Lemma[p gives a dominating propleccoloring. This proves thap(C}) >
min(n—p—1,p+1+ {”*gflJ ). For example, FigurH 4 shows a dominating proper 6-coloring of
c3.
Next, we prove thad (CR) < k. Suppose there exists a dominating prdgeroloring forCl, with
K>p+2+ {”’TFHJ for the sake of contradiction. L&Y = {wy,W,,..., W} be a set of domi-

nating vertices o, (following the orientation o€,,, we meetv,w», ..., wy). We distinguish two
cases.
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Fig. 3: Coloring ofC{; (n—p—-1=6, p+1+ {”_g_lJ =7 and$(C},) > 6)

Fig. 4: Coloring ofC3;

Case 1: for each with 1 <i <K/, |(wj,wi11)] < p—1.

Ask > p+2+ {”’T'HJ by a straightforward modification of the proof of Lemrﬂa 5, we have
n< 2k. So, there exists at least one cotonot repeated irC} (i.e. there are not two distinct
vertices with the same cola@). Without loss of generality, suppose tltadippears on the vertex

with x € V(Cp). Thereforex is a dominating vertex and each other dominating vertex is adjacent to
X. Then,|[wy,X)| < pand|[x,w )| < p. As for each, with 1 <i <K/, we have (wj,wi 1) < p—1

and since on the cycle the next dominating vertex figgis w1, then

|(We,w1)[ < p—1,

where
| (Wi, Wa )| = n— [[wy, X)| — [[X, W )| — 1.
Therefore, we have
n— [[wy,X)[ —[[X,wW )| =1 < p—1,
n-— 2p -1 < p— la
n < 3p,

which is a contradiction.

Case 2: There exists with 1 <r <k’ andr is taken moduld’, such that(w;,w;11)| > p.

Let X be the set of vertices dfv,1,w;] (see Figurd]5). LeXc be the set of colors appearing in
X. LetT'x(x) be the set of neighbors af in X andl'§;(x;) the set of colors appearing Ifx (x;),
with 1 <i <n. LetA=Xc\(Fg (W) U{cy, }). LetB=Xc\ (M (Wr+1) U{Cw,,}). We discuss two
subcases.
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Fig. 5: A dominating system o@} and the set X

Subcase 1iX| < 2p+ 2. Since all dominating vertices belong X9 we have|X| > k'. Then,
|(Wr,Wri1)] < n—KkK and|X;| = kK. As the vertices of x(w;) form a clique, thenl'§ (w;)| =
ITx(wy)| = p. So we havgA| = [Xc| — |l (W )| —1=K — p—1. In the same way, we deduce
that|B| =K — p—1. As|X| < 2p+2, we haveX C (Fx (W) Ul x (Wr+1) U{Wr,Wr11}) (See Figure
B.a). SOAC (T'{(Wey1) U{Cw,,,}) andB C (Mg (W) U{cw, }). Letge {1,2,...,K'}. If g A(resp.

q € B) thenq ¢ (I (W) U{Gw, }) (resp. q ¢ (F(Wr1) U {Cu,,,})) and soq & B (resp. q ¢ A).
Therefore ANB = 0. Asw; (resp.w;1) is a dominating vertex andw;,w;1)| > p, the colors of
A (resp.B) must be repeated ifw;,w,11). Therefore,

/Al +[Bf < [(Wr, Wr1)],

3K <n+2p+2,
3 {“Tle <n-p-a
which is a contradiction.

Subcase 2]X| > 2p+ 3. As in Subcase 1, we hay8| =k —p—1 and|B| =K — p—1. Let
X=X\ (Fx (W) UTx(Wrp1) U {wr,Wrt1}) (See Figurg]6.b). SOX/| > |ANBJ|. Sincew; (resp.
W41) is a dominating vertex andw;,wy11)| > p, the colors ofA (resp. B) must be repeated in
(Wr,Wr+1). Then,

Al + Bl = [ANB| < |(Wr,Wry1)] < n—2p—2— X,

2(K —p—1)—|ANB|<n—-2p—2—|ANB|,

3

which is a contradiction. Therefore there does not exist a dominating pkbpetoring, with
K>p+2+ {"‘T‘HJ
This completes the proof @f(C}) = p+ 1+ [“*g’*lJ :

2(p+2+ {Lp_lJ) <n,
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L (w,)

a) b)

Fig. 6: Neighborhoods ofv; andw; 1 onX when a)|X| < 2p+2 and b)|X| > 2p+3

5. AsA = 2p, by Propositioff]1$(C) < 2p+1.

We then give a propef2p+ 1)-coloring. It is constructed in two steps. First, we f@p+ 1)
different colors on thg2p+ 1) first vertices ¢ =i for 1 <i < 2p+1). In the second step,
we have two cases. = 4p+1, we color the remaining vertices as follows; = Cxi_2p 1 for
2p+2<i<n. If n>4p+ 2, then the remaining vertices are colored as follosys:= Cx 2p 1 for
2p+2<i<4p+2, andey = Cxi p1 for 4p+ 3 <i < n. Then the distance between two vertices
colored by the same colaris at leastp+ 1. So the coloring is proper. By an analogue proof of
Lemma[B, one can prove that each vestgxvith p+1 <i < 3p+1, is a dominating vertex. So this
coloring is a dominating propé@p+ 1)-coloring. This construction shows thdi(C,‘?) >2p+1.
Therefore we have proved théfCy) = 2p+ 1. For example, Figurg 7 gives a dominating proper
7-coloringC3;. m

4 Open Problem

In section[B, we have obtained the exact valueg @), except in case 2+ 3 < n < 3p where we
give a lower bound. We believe that nfim—p—1,p+ 1+ {”’T’HJ) is the exact value of(CF) for
2p+3<n<3p.

Fig. 7: Coloring ofC3
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