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Individuals at the origin in the critical catalytic
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A continuous time branching random walk on the lattice
�

is considered in which individuals may produce children
at the origin only. Assuming that the underlying random walk is symmetric and the offspring reproduction law is
critical we prove a conditional limit theorem for the number of individuals at the origin.
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1 Statement of problem and main results
We consider the following modification of a standard branching random walk on � . Consider a population
of individuals evolving as follows. The population is initiated at time t � 0 by a single particle. Being
outside the origin the particle performs a continuous time random walk on � with infinitesimal transition
matrix

A ��� a � x � y ��� x 	 y 
�� � a � 0 � 0 ��
 0 �
until the moment when it hits the origin. At the origin it spends an exponentially distributed time with
parameter 1 and then either jumps to a point y �� 0 with probability ��� 1 � α � a � 0 � y � a � 1 � 0 � 0 � or dies with
probability α producing just before the death a random number of children ξ in accordance with offspring
generating function

f � s � de f��� sξ �
∞

∑
k � 0

fksk �

At the birth moment the newborn particles are located at the origin but after this moment behave inde-
pendently and stochastically the same as the parent individual.

The model we consider here is a particular case of the so-called branching random walk in catalytic
medium. The longtime behavior of branching random walks in catalytic media of various types were
investigated by a number of authors (see cf. (GKW99) and (W91) and the relevant references therein).
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Initially such models where investigated under the assumption that the initial population is infinite and
generated by a stochastic field in � d and the catalytic field may be random and infinite. Another situa-
tion was considered in (AB00), (ABY98), (BY98m) and (BY98d) where the authors studied some basic
properties of a branching random walk in which the initial population was finite as well as the number of
catalytic points.

Here we continue to investigate the last model and restrict ourselves by considering only one catalytic
points. This model admits the following interpretation in terms of a queueing system with random number
of working channels. The individuals in the population are identified with channels. The distant of a
particle from the origin is considered as the queue length to the respective channel. The number of
individuals outside the origin is the number of busy channels while the number of free channels. A
channel having no customers after exponential time either becomes busy or produces a random number
of new channels or becomes broken forever. The reader can find a more detailed description of this
interpretation in (TVY03).

We impose the following restrictions on the characteristics of the process:
Hypothesis (I): The underlying random walk on � is symmetric, irreducible and homogeneous (a � x � y � �

a � 0 � y � x � de f� a � y � x � ) with a � x ��� 0 as x �� 0, a � 0 ��
 0,

∑
x 
�� a � x � � 0 and b2 de f� ∑

x 
 � x2a � x � 
 ∞ �

Hypothesis (II): The offspring process is critical � f � � 1 � � 1 � and σ2 de f� f � � � 1 ��� � 0 � ∞ � .
Let ζ � t � denote the number of particles in the process at time t at the origin, µ � t � denote the number

of particles in the process at time t outside the origin, and let η � t � � ζ � t ��� µ � t � be the total number of
individuals at the process at time t.

In (AB00), (ABY98), (BY98m), (BY98d) the long-time behavior of the expectations of η � t � � ζ � t � and
µ � t � was investigated. More delicate properties of the processes were studied in (TVY03). In particular,
the following theorems were established in the mentioned paper.

Denote

K
de f� 23 � 4

σπ1 � 4
�

b � 1 � α �
α

�
Theorem 1 (TVY03) Let hypotheses (I) and (II) be valid. Then	 � µ � t ��
 0 �
� Kt � 1 � 4 � t � ∞ �
and for any s ��� 0 � 1 �

lim
t � ∞

��� sµ � t � � η � t ��
 0 � � 1 ��� 1 � s �

Theorem 2 (TVY03) Under the conditions of Theorem 1, one has
	 � η � t ��
 0 �
� Kt � 1 � 4 (t � ∞);

and for any s ��� 0 � 1 � , one has lim
t � ∞

� � sη � t � � η � t ��
 0 � � 1 ��� 1 � s �
It follows from Theorems 1 and 2 that given � η � t ��
 0 � the probability is negligible that there are

individuals at the origin. However, the changes in the size of the population may occur only when a
particle hits the origin! For this reason to get a deeper insight into the evolution of η � t � it is natural to
pose the question on the properties of ζ � t � . A particular answer to this question was obtained in (TVY03).
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Theorem 3 (TVY03) Under the conditions of Theorem 1

q � t � de f� 	 � ζ � t ��
 0 �
� cq� t ln t
� t � ∞ � where cq

de f� πK2 � 2 � 2πb � 1 � α �
σ2α

�

In the present paper we continue to investigate properties of ζ � t � and prove the following conditional
limit theorem.

Theorem 4 Let hypotheses (I) and (II) be valid. Then for any λ ��� 0 � ∞ �
lim
t � ∞

��� exp � � λζ � t �
� � ζ � t � � ζ � t � 
 0 ���������

ζ � t � 
 0 � � 1
λ � 1

�

Theorem 4 is in the spirit of the standard conditional limit theorems for various types of the critical
branching processes (Galton–Watson, age-dependent or general) (see, for instance (AN72)). However,
our theorem has quite different nature. Indeed, the process at the origin may be viewed as a process with
”reemigration” since any particle which left the origin returns to this point with probability 1. Later on
we give another interpretation of this process.

Before passing to the proof of Theorem 4 we say a few words about the asymptotic behavior of the
scaling function � � ζ � t � � ζ � t � 
 0 � . To this aim we temporarily forget that our random walk has a point of
catalyst and consider an ordinary random walk on � satisfying Hypothesis (I). Assume that the random
walk starts at the origin at time t � 0 and let τ1 be the time spent by the walking particle at the origin until
it leaves the origin and let τ2 be the time spent by this particle outside the origin until the first return to the
origin.

Set G1 � t � de f� 	 � τ1 � t � � 1 � e � t � G2 � t � de f� 	 � τ2 � t � and

G3 � t � de f� αG1 � t � � � 1 � α � G1 	 G2 � t � � (1)

It is shown in (TVY03) that the function P � t � de f��� ζ � t � has the representation

P � t � � � 1 � G1 ��
 � � 	 U � t � (2)

where

U � t � de f�
∞

∑
k � 0

G � k3 � t � � (3)

Moreover, the following statement is valid:

Lemma 5 (TVY03) P � t � is a monotone decreasing function and

P � t �
� 1

b � 2π � 1 � α � t �
1 � 2 de f� cpt � 1 � 2 � t � ∞ � (4)

In addition, there exists a constant C 
 0 such that for all t � 0: ���
P 
 � t � ��� �

C � t � 1 � � 3 � 2 �



328 Valentin Topchii and Vladimir Vatutin

Combining this result and Theorem 3 gives

� � ζ � t � � ζ � t ��
 0 � � � ζ � t �	 � ζ � t ��
 0 � � P � t �
q � t � � c � ln t � t � ∞ � (5)

where c � de f� ασ2 � 4π � � 1b � 2 � 1 � α � � 2. Hence, recalling Theorem 4 we get the following conclusion.

Corollary 6 Under the conditions of Theorem 4 given � ζ � t � 
 0 � the sequence ζ � t ��� � c � ln t � converges
weakly to an exponentially distributed random variable with mean 1.

2 Branching random walk and Bellman-Harris processes
In this section we prove Theorem 4 by introducing an auxiliary Bellman-Harris branching process with
two types of particles � Z1 � t � � Z2 � t � � (see (H63; S74; V86p)) where by Zi � t � , i � 1 � 2 we denote the number
of individuals of type i in this process at time t. The method of reduction the study of the longtime
behavior of various characteristics of a branching random walk in catalytic medium to the investigation of
asymptotic behavior of the corresponding characteristics of a two-type Bellman-Harris branching process
was first suggested in (TVY03). It occurs to be fruitful in the present context to establish Theorem 4. Let

Fi � t;s1 � s2 � � ��� sZ1 � t �
1 sZ2 � t �

2 � Zi � 0 � � 1 � � i � 1 � 2
be the probability generating functions of the number of individuals of both types given that the process
is initiated at time zero by a single individual of type i.

We would like to study the following critical Bellman-Harris process with two types of individuals. A
particle of the first type has life length distribution G1 � t � � 	 � τ1 � t � � 1 � e � t , t � 0 � Dying it produces
offspring of two types in accordance with probability generating function f1 � s1 � s2 � � α f � s1 � � � 1 � α � s2,
that is it produces with probability α fk exactly k particles of the first type and with probability 1 � α
exactly one particle of the second type (recall the definition of f � s � in (1)). The life length distribution
of a particle of the second type is G2 � t � � 	 � τ2 � t � (that is coincides in distribution with the time spend
outside the origin by the parent individual of the catalytic branching random walk under investigation
until the first return to the origin provided that the initial individual is located at point 0 at time t � 0 and it
does not produce children during its first stay at 0). Dying a particle of the second type produces offspring
in accordance with probability generating function f2 � s1 � s2 � � s1, that is, it produces exactly one particle
of the first type and nothing else.

This Bellman-Harris process is critical and indecomposable since the maximal in absolute value eigen-
value (the Perron root) of the mean matrix

M
de f������

∂ fi

∂s j
� 1 � 1 ������ i 	 j � 1 	 2 �	� α 1 � α

1 0 

of the process equals 1 and all the elements of M2 are positive.

It is not difficult to understand that for the process constructed in such a way

� Z1 � t � � Z2 � t � � distr� � ζ � t � � µ � t � � �
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The main object of this section is to investigate the asymptotic behavior of the distribution of Z1 � t �
normalized by ln t and given � Z1 � t � 
 0 � as t � ∞.

To this aim recall that under our assumption about the form of fi � s1 � s2 � , i � 1 � 2 � we have (see (S74),
Chapter VIII, � 1, or (H63))

F1 � t;s1 � s2 � � s1 � 1 � G1 � t � � � � t

0
� α f � F1 � t � u;s1 � s2 � � � � 1 � α � F2 � t � u;s1 � s2 � � dG1 � u �

and

F2 � t;s1 � s2 � � s2 � 1 � G2 � t � � � � t

0
F1 � t � u;s1 � s2 � dG2 � u � �

Using the second of these equalities in the first one we get

F1 � t;s1 � s2 � � s1 � 1 � G1 � t � � � s2 � 1 � α � � 1 � G2 � 
 � � 	 G1 � t �
� � t

0
α f � F1 � t � u;s1 � s2 � � dG1 � u � � � t

0
� 1 � α � F1 � t � u;s1 � s2 � d � G1 	 G2 � u � � �

Setting s1 � s, s2 � 1 and
1 � F1 � t;s � 1 � � q � t � s � �

gives

q � t � s � � � 1 � s � � 1 � G1 � t � � � � t

0
q � t � u � s � dG3 � u � � α

� t

0
h � q � t � u � s � � dG1 � u � (6)

where h � x � � f � 1 � x � � � 1 � x � and G3 � t � is defined in (1). Solving the renewal equation (6) with respect
to q � t � s � and taking (2) and (3) into account we obtain

q � t � s � � � 1 � s � P � t � � α
� t

0
h � q � t � u � s � � d � G1 	 U � u � � � (7)

Since G1 � t � � 1 � e � t, it follows that � G1 	 U � t � � � � � 1 � G1 � 
 � � 	 U � t � � P � t � � and (7) reduces to

q � t � s � � � 1 � s � P � t � � α
� t

0
h � q � t � u � s � � P � u � du � (8)

Clearly, q � t � 0 � � 	 � ζ � t ��
 0 � � q � t � . Let s � t � � s � t � λ � de f� exp � � λ
max � 1 � ln t � � �

Since the integral in (8) is positive and 1 � e � x � x for x � 0 we have for t � e

q � u � s � t � � � � � 1 � exp � � λζ � u �
ln t

� � � P � u � λ
lnt

� cpu � 1 � 2 λ
ln t
� u � ∞ � (9)

In view of Hypothesis (II) and the Taylor formula h � x �
� σ2

2
x2 as x � 0 �

The last along with (9) and (4) allows us to get the following estimates for

I � t � de f�
� t

0
h � q � t � u � s � t � � � P � u � du � s � s � t � λ � �
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that are uniform in λ from any bounded interval 0 � λ � Λ 
 ∞:

I � t � �
� t

t � 2 h � q � t � u � s � � P � u � du � λ2

ln2 t
O � P � t � � � P � t �

� t � 2
0

h � q � u � s � � du

� � t � 2
0

h � q � u � s � � � P � t � u � � P � t � � du � λ2

ln2 t
O � P � t � � �

Applying now the intermediate value theorem in the form P � t � u � � P � t � � P � � θ � t � u � � u, t � u �
θ � t � u � � t, and recalling Lemma 5 we have for t � e:

I � t � � P � t �
� t � 2

0
h � q � u � s � � du � � t � 2

0
h � q � u � s � � P � � θ � t � u � � udu � λ2

ln2 t
O � P � t � �

� P � t �
� t � 2

0
h � q � u � s � � du � λ2

ln2 t
O � P � t � � � P � t � σ

2

2

� t

lnt
q2 � u � s � du � λ2

lnt
o � P � t � � � (10)

By Theorem 3 if x ln t � ∞ then

tx ln2 t � 1
x2 tx ln2 tx � c2

q

x2q2 � tx � or ln t � c2
q

txx2q2 � tx � ln t
�

Using the substitution u � tx and setting ψ � t � � ln lnt � ln t we get as t � ∞
� t

lnt
q2 � u � s � du � lnt

� 1

ψ � t � txq2 � tx � exp � � λx
ln tx � 
 dx

� � 1 � o � 1 � � c2
q

lnt

� 1

ψ � t �
q2 � tx � exp � � λx

ln tx ���
x2q2 � tx � dx � (11)

Relations (10), (11) and (4) allow us to write

� αI � t � � λ2o � q � t � � � αP � t � σ
2c2

q

2lnt

� 1

ψ � t �
q2 � tx � exp � � λx

lntx ���
x2q2 � tx � dx � (12)

The multiplier of the integral in (12) equals

αP � t � σ
2c2

q

2ln t
� αcp

σ2c2
q

2 � t lnt
� cq� t ln t

ασ2K2π
b � 2π � 1 � α � 2 � q � t � �

Using this relation and introducing the notation

g � t � λ � de f� q � t � s � t � �
q � t � λ �

we rewrite (8) as follows

g � t � λ � � c ��� 1 � o � 1 � � �
� λ

λψ � t � g2 � tu � λ � u � du � t � ∞ � 0 
 λ � Λ � (13)
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where (recall (5))

c � � cp

cq
� ασ2

4πb2 � 1 � α � 2
�

Note that c �
� P � t �
q � t � lnt

� t � ∞ � and that 0 
 sup
t � 0 	 0 � λ

g � t � λ � de f� c1 � 1 
 ∞ (14)

in view of positivity of q � t � s � t � � and estimates (5) and (9). Consider the integral equation

g � λ � � c � � � λ

0
g2 � u � du � λ � 0 � (15)

It is not difficult to check that

g � λ � � c �
1 � c � λ

is a unique solution of (15). Using this fact and (13) we see that for any ε 
 0 there exists t0 such that for
all t � t0 and 0 
 λ � Λ

� g � t � λ � � g � λ � � � ε � � λ

λψ � t � ���
g2 � ty � λ � y � � g2 � y � ���

dy � ε � c1

� λ

λψ � t � ���
g � ty � λ � y � � g � y � ���

dy �

Select now Λ 
 0 such that c1Λ 
 1 and set

∆ � t � � sup
0 � u � Λ

� g � t � u � � g � u ��� �

Clearly, for 0 � λ � Λ

� g � t � λ � � g � λ ��� � ε � c1λ sup
λψ � t ��� y � λ ���

g � ty � λ � y � � g � y � ���� ε � c1λ sup
v � lnt

sup
0 � y � λ

� g � v � y � � g � y ���
� ε � c1Λ sup

v � lnt
∆ � v �

and, therefore, ∆ � t � � ε � c1Λ sup
v � lnt

∆ � v � � Hence, putting ∆T � sup
t � T

∆ � t � and ∆ � lim
T � ∞

∆T � we see that

∆T � ε � c1Λsup
t � T

sup
v � lnt

∆ � v � � ε � c1Λ sup
v � lnT

∆ � v � � ε � c1Λ∆lnT and ∆ � ε � c1Λ∆ � Whence ∆ � 0 in view

of c1Λ 
 1 and arbitrariness of ε 
 0. Thus, we have proved that

lim
t � ∞

g � t � λ � � g � λ � � c �
1 � λc � � 0 
 λ � Λ �

or, recalling the definition of g � t � λ �

lim
t � ∞

� � exp � � λζ � t �
ln t � �����

ζ � t ��
 0 � � 1 � λ lim
t � ∞

g � t � λ � � 1
1 � λc � (16)
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for 0 � λ � Λ.
Since the Laplace transform of a nonnegative random variable is an analytic and bounded function in

the domain ℜλ 
 0 and the same is true for the function 1 � � 1 � λc � � � it follows from the uniqueness
theorem for analytic functions that (16) is valid for all λ with ℜλ 
 0.

Now (16) and (14) show that

lim
t � ∞

� � exp � � λζ � t � q � t �
P � t � � �����

ζ � t ��
 0 � � 1
1 � λ

� λ � 0 �

The last and (5) complete the proof of Theorem 4.
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