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Constructing a sequence of random walks
strongly converging to Brownian motion

Philippe Marchal
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We give an algorithm which constructs recursively a sequence of simple random walks on
�

converging almost surely
to a Brownian motion. One obtains by the same method conditional versions of the simple random walk converging
to the excursion, the bridge, the meander or the normalized pseudobridge.
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1 Introduction
It is one of the most basic facts in probability theory that random walks, after proper rescaling, converge
to Brownian motion. However, Donsker’s classical theorem [Don51] only states a convergence in law.
Various results of almost sure convergence exist (see e.g. [KMT75, KMT76] and the references therein)
but involves rather intricate relations between the converging sequence of random walks and the limiting
Brownian motion.

The aim of this paper is to give an explicit algorithm constructing a sequence of simple random walks
on � converging to a Brownian motion. This algorithm is described in the next section and leads to the
following

Theorem 1 There exist on a common probability space a family � Sn � n � 1 � of random walks on � and a
linear Brownian motion � Bt

� 0 � t � 1 � such that:
(i) for every n, Sn has the law of a simple random walk with n steps starting at 0,
(ii) almost surely, for every t �	� 0 � 1 
 , as n � ∞,

Sn�
nt 
�
n
� Bt �

An important feature of our construction is that it can be adapted to conditional versions of the random
walk, yielding the following generalization:

Theorem 2 There exists a family � Sn � n � 1 � of random walks on � starting at 0 where for every n, Sn

respectively:
(1) has length 2n and is conditioned to return to 0 at time 2n,
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(2) has length 2n, is conditioned to return to 0 at time 2n and to stay positive from time 1 to 2n � 1,
(3) has length n and is conditioned to stay positive from time 1 to n � 1,

and such that almost surely, for every t � � 0 � 1 
 , Sn�
2nt 

� �

n (or Sn�
nt 

� �

n in the third case) converges to �Bt

where � �Bt 0 � t � 1 � is respectively:
(1) a Brownian bridge,
(2) a Brownian excursion,
(3) a Brownian meander.

A similar result holds for random walks biased by their local time at 0 and converging almost surely to
the Brownian pseudobridge.

Theorem 3 There exists a family � Sn � n � 1 � of random walks on � of length 2n with Sn
0 � Sn

2n � 0 such
that:

(a) for every path P of length 2n satisfying P0 � P2n � 0, � � Sn � P � is proportional to 1
�
L0 � P � where

L0 � P � is the number of visits of 0 of P ,
(b) almost surely, for every t � � 0 � 1 
 , Sn�

2nt 

� �

n converges to some real �Bt where ���Bt
� 0 � t � 1 � is a

normalized Brownian pseudobridge.

Our algorithms construct Sn recursively and are therefore interruptible. Notice that even if one does not
want strong convergence, the natural method to construct a discrete version of the Brownian pseudobridge
consists in running a random walk up to TN , the N-th return time to 0, for large N, and then rescaling. But
this method has the major drawback that E � TN � � ∞.

It is well-known in combinatorics that there exist natural bijections between binary trees and excursions
of the simple random walk. In this context, the construction we shall describe in case (2) of Theorem 2 is a
pathwise counterpart of the tree-generating algorithm introduced in [Rém85] and which can be described
simply as follows. Start with a tree with just a root and two children of the root. Then recursively: choose
a random edge e, split it into two edges e1 and e2 with a vertex v between e1 and e2, and add new edge e3

connected only to v, either to the right or to the left of e2. It is obvious that one generates this way random
binary trees with the uniform distribution.

Finally, let us mention that the convergence rate for our construction can be bounded by�	��
 1

0 �����
Sn�

tn 
�
n
� Bt �����

dt � � c

n1 
 4 (1)

for some constant c � 0. This indicates a slower convergence rate than the optimal one, which is
O � logn

� �
n � and is achieved in [KMT75].

The algorithms generating the converging sequences of random walks � Sn � are described in the next
section. The proofs of Theorems 1 and 2 are sketched in Section 3. Further results and the proof of
Theorem 3 are given in Section 4.

2 Construction of the random walks
2.1 Some terminology
Recall that an excursion is a part of a path between two consecutive zeros and that the meander is the part
of the path after the last zero. If the meander of a path P is positive, a point t in the meander is visible
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T+2T’TT’

Fig. 1: Lifting the Dyck path before time T

TT

Fig. 2: Inserting a hat at time T

from the right if
P � t � � min � P � n � � n � t � �

Finally, we call a positive hat a sequence of a positive step followed by a negative step. A negative hat is
defined likewise.

Let us describe a procedure to extend a path P . Suppose that P � T � � 0. Then lifting the Dyck path
before time T means the following. Let

T � � 1 � sup � n � T � P � n ��� P � T ���
Then form the new path P � by inserting a positive step at time T � and then a negative step at time T � 1.
Remark that if P � T � 1 � � P � T � � 1, then T � � T and lifting the Dyck path before time T amounts to
inserting a hat at time T .

2.2 The algorithm for Theorem 1

We shall in fact describe an algorithm generating S n : � S2n � 1. One constructs S2n by adding a last random
step to S n. First choose S 1 at random. Then to generate S n � 1 from S n:

I. Choose a random time t uniformly on � 0 � � � � 2n � 1 � .

II. If S n � t � � 0, insert a positive or negative hat at time t with respective probabilities 1/2-1/2.
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III. If t is in a positive excursion,

1. with probability 1/2 insert a positive hat at time t.

2. with probability 1/2 lift the Dyck path before time t.

IV. If t is in the meander of S n and if this meander is positive,

1. If t is invisible from the right, or if t is visible from the right and S n � t � is even, proceed as in III.

2. If t is visible from the right and S n � t � is odd,

a. with probability 1/2 insert at time t a positive hat,

b. with probability 1/2 insert at time t two positive steps.

If t is in a negative excursion or in a negative meander, the procedure is the exact analogue of III or IV.
Of course, all the choices are assumed independent.

2.3 The algorithms for Theorems 2 and 3
In case (1) of Theorem 2, begin with S0 the empty path. To obtain Sn � 1 from Sn, choose a random time t
uniformly in � 0 � � � � 2n � and apply procedure II or III.

In case (2) of Theorem 2, begin with S1 a positive hat. To obtain Sn � 1 from Sn, choose a random time t
uniformly in � 1 � � � � 2n � 1 � and apply procedure III.

In case (3) of Theorem 2 begin with S1 a positive step. Then to obtain S2n � 1 from S2n � 1, choose a
random time t uniformly in � 1 � � � � 2n � 1 � and apply procedure IV. To obtain S2n from S2n � 1, just add
a last random step. Remark that in each case, the algorithm of Theorem 2 is just the restriction of the
algorithm of Theorem 1 to the subpart of the path we are considering.

Finally for Theorem 3, begin with S1 a positive hat. To obtain Sn � 1 from Sn, choose a random time
t � � 0 � 1 � � � � 2n � with probability proportional to

� 1 if Sn � t � � 0

� 1 � 1
�
k if Sn � t � � 0, where k denotes the number of zeros of Sn. This includes the first and the last

zero, so for instance k � 2 in the beginning.

Then apply procedure II or III.

Remarks. In Case (2) of Theorem 2, it should be clear that the algorithm is just a translation of the tree-
generating algorithm described in the introduction, for a suitable choice of the bijection between Dyck
paths and binary trees. In particular, in Rémy’s algorithm, one has to choose between putting the new edge
e3 to the right or to the left of e2. In the algorithm of Theorem 2, this corresponds to choosing between
lifting a Dyck path and inserting a hat. In some cases, both choices are equivalent, as noticed in Section
2.1. This corresponds to the fact that in Rémy’s algorithm, if the edge e2 is connected to a leaf, putting e3

to the right or to the left of e2 yields the same binary tree.
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Fig. 3: The bijection between the bridge and the meander

For the other two cases of Theorem 2, recall that there is a classical bijection between the bridge and
the meander. To construct a meander of length 2n � 1 from a bridge of length 2n, replace each negative
excursion of the bridge by its symmetric positive excursion and replace the last negative step of this
symmetric positive excursion by a positive step. Finally, add a first positive step to the whole path.

Conversely, to obtain a bridge from a positive meander, remove the first step, replace every other step
“visible from the right” by a negative step, so as to obtain a new positive excursion, and replace this
positive excursion by the symmetric negative excursion (see Figure 3). It turns out that the algorithms in
cases (1) and (3) of Theorem 2 are the image of each other by the discrete bijection.

3 Proof of Theorems 1 and 2
The proof that our algorithms generate random walks with the suitable distribution is quite standard, see
[Mar03]. In the case of the excursion, since Rémy’s algorithm generates uniform, random binary trees,
and since, as noticed above, our algorithm is just an image of Rémy’s algorithm by a bijection between
Dyck paths and binary trees, our algorithm generates uniform, random excursions of the simple random
walk. For the other cases, the idea of the proof is similar.

We establish the almost sure convergence for the excursion (case (2) in Theorem 2). The proof for the
other cases is similar. The path with length 2n is denoted by S n and its normalized version by �S n: for
t �	� 0 � 1 
 , �S n

t � S n�
2nt 
�
n

where � 2nt 
 stands for the integer part of 2nt.
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3.1 Moving steps and local time
Let � S n

k
� S n

k � 1 � be a step of S n inserted at time n. We associate with this step a family s of steps with
exactly one step in each path S m, m � n. This family is defined by induction: if the step of s in S m is
� S m

km
� S m

km � 1 � then the step of s in S m � 1 is:

� � S m � 1
km
� S m � 1

km � 1 � if S m � 1 is obtained from Sm by inserting two steps on the right of km.

� � S m � 1
km � 2

� S m � 1
km � 3 � if S m � 1 is obtained from Sm by inserting two steps on the left of km.

� � S m � 1
km � 1

� S m � 1
km � 2 � if S m � 1 is obtained from Sm by inserting one step on the left of km and one step on

right of km.

We call such a family s a moving step. We shall denote xm � s � � km and ym � s � � S m
km

.
If a discrete excursion P has length 2n and k � 2n � 1, define En � k � as the set of times j � � k � 2n � 1 


such that
P � j � � min � P � i � � i � � k � j 
 �

The local time for k in S n is defined by Ln � k � � �
En � k � �

.

3.2 Martingale properties
Let s be a moving step. We shall use the abridged notation Ln � Ln � xn � s � � . Remark that if the random
time t chosen by the algorithm to construct S n � 1 from S n is in En � xn � s � � , then Ln � 1 � Ln � 1. Otherwise,
if t

�� En � xn � s � � , Ln � 1 � Ln. As a consequence, denoting

an � 1

an
� 1 � 1

2n � 1

and

Mn � s � � Ln

an

we check that � Mn � s � � is a positive martingale:� � Mn � 1 � s � �
Mn � s � �� Ln

2n � 1

�
Ln � 1
an � 1 � � 2n � 1 � Ln

2n � 1

�
Ln

an � 1 �� anMn � s �
2n � 1

�
anMn � s � � 1

an � 1 � � 2n � 1 � anMn � s �
2n � 1

�
anMn � s �

an � 1 �� anMn � s �
an � 1

�
1 � 1

2n � 1 � � Mn � s �
On the other hand, setting x �n � s � � xn � s � � 2n an using the fact that an � c

�
n, we have� � x �n � 1 � s � �

x �n � s � � Mn � s � �� �
xn

2n � 1 � �
xn � 2
2n � 2 � �

�
2n � 1 � xn

2n � 1 � �
xn

2n � 2 � � O

�
Ln

2n � 1 �
1
n �� x �n � s � � O

�
Mn � s �
n3 
 2 �
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which entails that x �n � s � converges almost surely. We also have:� � � Mn � 1 � s � � Mn � s � � 2 �
Mn � s � �

� Ln

2n � 1

�
Ln � 1
an � 1

� Ln

an � 2

� 2n � 1 � Ln

2n � 1

�
Ln

an � 1
� Ln

an � 2

� Ln

2n � 1

�
1

an � 1 � 2

�
�

Ln

an � 2 �
an

an � 1
� 1 � 2

� c1
Mn � s �
n
�

n
� c2

Mn � s � 2
n2

where c1
� c2 are universal constants which do not depend on s. Using a maximal inequality we obtain� � sup

n � N
� MN � s � � Mn � s � � 2 � � c3MN � s ��

N
(2)

where again c3 does not depend on s. Similarly,� � � x �n � 1 � s � � x �n � s � � 2 �
x �n � s � � Mn � s � �

�
�

xn

2n � 1 � �
xn � 2
2n � 2

� xn

2n � 2

�
�

2n � 1 � xn

2n � 1 � �
xn

2n � 2
� xn

2n � 2

� O

�
Ln

2n � 1 �
1
n2 �

� c4

n2

and � � sup
n � N
� x �N � s � � x �n � s � � 2 � � c5

N
(3)

3.3 Strong convergence
The key argument for the proof of strong convergence is the following: For every moving step s,�

xn � s �
2n
� S n

xn � s ��
n �

converges almost surely as n � ∞ to some point � X � s � � Y � s � � ��� 2 .
The convergence of x �n � s � � xn � s � � 2n was established in Section 3.2. In fact, xn � s � � 2 is almost a Pólya

urn, up to a small perturbation due to Ln. On the other hand, as the martingale Mn � s � converges almost
surely and as an � c

�
n, the quantity Ln

� �
n converges almost surely to some real Y � � s � . Moreover, each

time Ln increases, S n
xn � s � either increases with probability 1/2 or remains constant with probability 1/2,

independently of the past. Hence S n
xn � s � is the sum of Ln independent Bernoulli random variables and by

the law of large numbers, almost surely,
S n

xn � s ��
n
� Y � � s �

2

This way we get a discrete “skeleton” � s � � X � s � � Y � s ��� , where the union is over all moving steps. If we
denote by B the closure in � 2 of � s � � X � s � � Y � s � � , then the curves �S n converge (in some sense) to B. It
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should be clear that B is the graph of a Brownian excursion � Bt
� 0 � t � 1 � and that for every t, �S n

t � Bt .
Moreover, one can prove that supt

�
Bt � �S n

t
� � 0 almost surely. Technical details can be found in [Mar03].

Let us bound

In � ��� 
 1

0
d � � t � �S n

t � � B � dt �
where d � � � � � stands for the euclidean distance in � 2 . We have

In � n

∑
k � 1

��� 
 k 
 n� k � 1 � 
 n d � � t � �S n
t � � B � dt �

and for every 1 � k � n,
 k 
 n� k � 1 � 
 n d � � t � �S n
t � � B � dt � 
 k 
 n� k � 1 � 
 n d � � t � �S n

t � � � X � st � � Y � st � � � dt

where st is the moving step containing the step � S n
k � 1
� S n

k � in S n. As a consequence of 2 and 3 one easily
obtains ��� 
 k 
 n� k � 1 � 
 n d � � t � �S n

t � � B � dt
� �S n � � c6

n
�
�S n

k 
 n
n1 
 4

Summing over k and integrating with respect to the law of �S n,

In � c6
� �

sup
t

�S n
t

n1 
 4 � � c7

n1 
 4 (4)

since by Donsker’s theorem,
� � supt � �S n

t � 
 is bounded in n. Formula 1 follows from 4 and from the fact that
a Brownian excursion is almost surely Hölder-continuous with index 1

�
2 � ε for every ε � 0.

4 Further results
4.1 Random partitions
Recall that a partition is exchangeable if its law is invariant by permutation. The Chinese restaurant is a
model parametrized by two reals 0 � α � 1 and θ � � α, generating an exchangeable partition. Imagine a
restaurant with infinitely many tables and infinitely many customers, the first customer sitting at the first
table. The seating plan is defined by induction as follows.

Suppose that at a given moment, n customers have arrived and occupy k tables, the number of customers
at each table being n1 � � � nk respectively with n1 � � � � � nk � n. Then the � n � 1 � -th customer sits at
table number i, 1 � i � k, with probability � ni � α � � � n � θ � , and at table number k � 1 with probability
� kα � θ � � � n � θ � . See Pitman [Pitar] for a detailed account.

Associate with this process a partition of � by saying that i and j are in the same block of the partition if
and only if the i-th and j-th customers sit at the same table. Then one can check that this random partition
is exchangeable.

The set of return times to 0 of a simple random walk also generates a random partition P . Indeed,
consider a random walk of length 2n and say that two integers 1 � i � j � n are in the same block if there
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is no zero of the random walk between times 2i � 1 and 2 j � 1. Then construct the exchangeable partition
P � by choosing a random, uniform permutation σ on � 1 � 2 � � � n � and saying that i and j are in the same
block of P � if and only if σ � i � and σ � j � are in the same block of P . A link with the Chinese restaurant is
the following result [PY97]:

Theorem 4 (Pitman-Yor) (i) The exchangeable partition obtained from a simple random walk of length
2n has the same law as the exchangeable partition obtained from the first n customers of a Chinese
restaurant with parameters (1/2,0).

(ii) The exchangeable partition obtained from a simple random walk of length 2n conditioned to return
to 0 at time 2n has the same law as the exchangeable partition obtained from the first n customers of a
Chinese restaurant with parameters (1/2,1/2).

Alternatively, this theorem can be viewed as a direct corollary of Theorem 1 and Case (1) of Theorem
2. Indeed, at each iteration of the algorithm, two steps are added and either they are incorporated to
an excursion or to the meander, or these two steps form a new excursion, and the respective probabilities
correspond to those given by the Chinese restaurant. Remark that this way, we have embedded the Chinese
restaurant in our construction.

4.2 Proof of Theorem 3

Let us turn our attention to Theorem 3. First remark that by the same argument as in the previous sub-
section, one can embed the Chinese restaurant with parameters (1/2,0) in the construction given by the
algorithm of Theorem 3. We represent this restaurant by a function f : � � � , where f � n � � k means that
the n-th customer sits at the k-th table.

Moreover, recall [Pitar] that if a partition is exchangeable, each block B almost surely has an asymptotic
frequency, which is the limit of

�
B

� � 1 � 2 � � � � n � � �
n, and that the law of these asymptotic frequencies

determines the law of the exchangeable partition.
Define the uniform total order on a countable set S as a random total order � where, for each finite

subset S � of S, the restriction of � to S � is uniformly distributed on S � among all possible total orders. For
instance, the natural order on � induces a total order on the set of excursions of the random walk: if e, e �
are two excursions, say that e � e � if e occurs before e � . Then one easily checks that � is a uniform total
order, independent of f .

Using the same arguments as in the proof of (2) in Theorem 2, each excursion e of the random walk
constructed by the algorithm converges almost surely to a Brownian excursion. Hence the sequence
of random walks of Theorem 3 converges almost surely to a continuous function β with the following
properties:

� β is a concatenation of Brownian excursions,

� The family of lengths of these excursions has the same law as the family of asymptotic frequencies
of a Chinese restaurant with parameters (1/2,0).

� The order � on these excursions is a uniform total order.

It follows (see for instance [Pitar]) that β is a normalized pseudobridge.
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