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Morse code sequences are very useful to give combinatorial interpretations of various properties of Fibonacci num-
bers. In this note we study some algebraic and combinatorial aspects of Morse code sequences and obtain several
g-analogues of Fibonacci numbers and Fibonacci polynomials and their generalizations.
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1 Morse code polynomials

Morse code sequences are finite sequences of(dpend dasheé—). If a dot has length 1 and a dash
has length 2 then the number of all such sequences of total largths the Fibonacci numbét,, which
is defined as the sequence of humbers satisfying the recufgierF,_1 + F,_2 with initial conditions
Fo=0andF; = 1. If adash is assumed to have length > 1, we get a simple generalization of Fibonacci
numbers.

Let MC be the set of all Morse code sequences. We intefd@tas a monoid with respect to con-
catenation whose unit element is the empty sequentfenve write a for a dot andb for a dash thetC
consists of all words i andb. Let P be the corresponding monoid algebra o@er. e. the algebra of all

finite sums ¥ Ay with complex coefficients. The elementshWwill be called Morse code polynomials.
veMC
An important element o is the binomial

b= I Clab 11
(a+b) k; w(a,b) (1.1)

HereC/(a,b) is the sum of all words wittk dashes and —k dots. It is characterized by the boundary
valuesCy(a, b) = & andC{(a,b) = a" and each of the two recursions

Cp*i(a,b) = bCY 4 (a.b) +aCf(a,b) (1.2)

or
Cei(a,b) = Cf 1 (a,b)b+CR(a,b)a (1.3)
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Itis clear that the image @ (a,b) under the homomorphisin: P — C, defined byp(a) = ¢(b) =1,
is the binomial coefficiengy).

By considering various other homomorphisms of this algebra into other algebras we obtain generaliza-
tions andg-analogues of the binomial coefficients.

We state some simple examples:

(a) Consider the homomorphisg: P — C|[x,s defined byg(a) = X, @(b) =s, wherex ands are
commuting variables. Then we get of cougg€f(a, b)) = (i) x"ks~.

(b) LetR be the ring of linear operators on the vector space of polynorfiipdss|. We will only use
multiplication operators with

polynomials and the shift operatats=nq in R defined by
nf(xs)=f(xas

for a positive real numbaeg.
For each integej > 1 we define homomorphisngg : P — Rby

i@ =r(sn, ¢j(b)=t(sn’, (1.4)

wherer (s) andt(s) are polynomials irC[x,s]. Then

0;(CR(a,b)) = anj(sn™H -2k (1.5)
for some polynomiad, i j(S).
From (1.2) we get .
ank,j(S) =r(S)an-1k,j(as) +t(S)an-1k-1,(d's) (1.6)
and from (1.3)
ankj(s) = (@ 0 Vg)a, 1 j(s) +t(g DI Vg)a, 14 q5(9). (1.7)

For some special choices iofs) andt(s) we can obtain explicit formulas fa,  j (S).

(b1) Frequent use will be made of the homomorphigmsvith r (s) = x and arbitraryt(s). There are no
explicit formulas known in this case.

(b2) Forr(s) =xandt(s) = swe call the corresponding homomorphi&f the Carlitzhomomorphism,
because it will play a fundamental role in the study of CarlitgBibonacci polynomials. It satisfies

or in other words
Wj(a)Wj(b) = q¥j(b)W;(a).
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We need the Gaussiapbinomial coefﬂments{ ] (cf. e. g. [2], [B] or [6]). We define them by

k qn—i+1 _
m = rlqlil forn,k e N.
il 9-1

They satisfy the following recursions

R
et

Theg-binomial theorem (see e. g1 [2]] [5] dF [6]) states thatriar N

and

Nl okan—k
(A+B)”:§ HBA if AB=qBA
k
k>

Therefore we get

n i _
y(Cp(@b) = [¢] (e
The corresponding polynomials are

ankj(s) = qj(lé) [E} —kgk

(b3) If we choose(s) =x-(1+59),t(s) =sandj =2 we have

ania(®) = o] L4911 a1 (1 Tk

(1.8)

(1.9)

(1.10)

(1.11)

We prove this by induction. Far= 0 and allk it is trivially true. Suppose it holds far and allk.

By (1.6) we have to show

() {”I 1} F(1+a's)(1+d ) (1+q")

— 0950 1] (@91 a1 (1 )

+sf(2 [ }OIS) (1+dts) - (1+q"1s)
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or equivalently
n+1 n n
{ K } (1409 = (1+9)" M + {k 1] (1+qs).

Comparing coefficients this is equivalent with the recursions ofthamomial coefficients.
This homomorphism will be used in our treatment of the Al-Salam and Ismail polynomial& (cf. [1],

[ra]).

2 Abstract Fibonacci polynomials

Now we want to define abstract Fibonacci polynomials of ojderl. To this end we consider again the
algebra generated by the Morse code sequences. For eaclwiofdC we define a length(j,w) by
I(j,a) =1,1(j,b) = jandl(j,wiwz) = I(j,wq) +1(j,w2). We define these polynomiais(j,a,b) as the
sum of all monomialsv € MC of lengthl (j,w) =n—j+1.

Then it is clear that

Fn(j,a,b) =afm-1(j,a b) +bF;(j,a,b) (2.1)
and also
Fn(j,a,b) = Fn_1(j,a,b)a+F_j(j,a,b)b (2.2)
with initial values
Fo(j,a,b) =---=Fj_2(j,ab) =0, Fj_1(j,a,b) =¢. (2.3)

For j = 1 we have of coursB,(1,a,b) = (a+b)" and forj = 2 we get the abstract Fibonacci polyno-
mials introduced in7].

A word w of lengthl (j,w) = n— j 4+ 1 with k dashes consists of— (j — 1)(k+ 1) letters and all these
occur inFy(j,a,b). Therefore we have

Theorem 2.1. The abstract Fibonacci polynomials of order>j1 are given by

F(hab)= Y G U aD) (2.4)

O<ks pH
By applying the homomorphisi; we get
¢;(Fa(j.a b)) = r(9Nd; (Fn-1(j,a,0)) +t(n'd;j(Fo-j(j,ab))
or equivalently
¢;(Fa(i.a b)) = &j(Fn-1(j,a,b))r(s)n +; (Fn—j(j,a,b)t(n’.

This implies that _
¢j(Fa(i,a,0) = Fy(j,s,an™ '+, (2.5)
where the polynomialB; (j,s,q), which we callgeneral g-Fibonacci polynomiakatisfy the recurrence

Fr(j,s.9) =r(s)Fr 1(j.asa) +t(s)Fr_;(j,a's,q) (2.6)
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or equivalently
Fr(j,sa) =r(@ I9F; 1(j,5a) +t(q" 2R (j,5,0). 2.7)
The most important special case is givenryy) = x andt(s) = s. The corresponding polynomials
Fa(j,x,s,q) will be calledCarlitz-Fibonacci polynomialsf order j, because Carlitz has studied the special
casej = 2.
Theorem 2.2. The Carlitz-Fibonacci polynomials of order j satisfy the recursion

Fo(j.x,5.0) = xF1(j,x.5.0) + "2 sk, _j(j,x5,0) (2.8)
or equivalently _
Fn(jvxv S, q) = Xanl(jaX7qS5 q) —i—Sanj (jaX7qJS7 q) (29)
with initial values
Fo(j,X,S,C]) == ijz(jﬁxvaq) = O’ Fifl(LXaSyq) =1
They are given by
Fa(i,%,5,0) = @ {n_ v _lf)(kJr l)] (kD)1 (2.10)
0<kj<n—j+1

For j = 2 these polynomials have been studied’in [4] &nd [7]. The formula (2.10) follows immediately
from (2.4) and (1.9).

Some examples.

(a) Forj =1 we get by applying thg-binomial theorem
(L3)

the well-known formula
Fa(1x,5,0) = (X+9)(x+09) -+ (x+d"'s) = 5 [Q] gDk

(b) LetEn = En—1 — q"En_j with initial valuesEg = --- =Ej_1 =1 anan = Dp_1 —"Dn_j with
initial valuesD; = 1—q[i], i =0,...,j — 1, where[i] denotes|i] = ?;T’ll. It is clear thatE, =
Fntj-1(j,1, —qj7Q)-

Therefore from (2.10) we get

which has been shown in‘J11].
FurthermoreD, = Fyy2j_2(j,1,—0,q), which gives the second formula shownini[11]

Dn: I"I—(j _1)(k_1):| (71)qu+j(l§)'

o<kj&itj-1 [ k
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(c) If we sett(s) = 1 andr(g*s) = x, 1 We get thecontinuantsstudied in [9].

(d) If we choosej = 2 andr(s) = §(1+59), t(s) = —ps for some constant, & and denote the corre-
sponding homomorphismthen

11(29 =X(Fra(22D)1=Un(Es 0)

where thadJy (&, s, ) are the Al-Salam and Ismail polynomials (¢f. [1] 6r[10]), since the recurrence
and the initial values coincide.
From (2.4) we get immediately that
Ky In—K _ _
Uneop)= 5 @ | K R do) @ o
0<2k<n
which is formula (1.12) of({10].

(e) A further interesting example occurs by choosing the homomorptishP into the algebra of
operators orC[x, §| defined by

h(gx) —h(x)

P(a) =x+(q—1)sD, Y(b)=s, where Dh(x)= o x

is the operator ofj-differentiation. The corresponding Fibonacci polynom#ils,(x, s) have been
studied in [8]. They satisfy the recurrence
Fibn(x,s) = xFibn_1(x,s) + (q— 1)sDFibn_1(X, s) 4+ sFibh_2(X,s)
with initial valuesFibg(x,s) = 0, Fibi(x,s) = 1.
They are explicitly given by

Lnj k+1
Fibn(x,s) = i {”‘ t‘ 1} q(‘2)xn—1-2kg (2.11)
k=0

For the proof it suffices to compare coefficients. This leads to the identity

o5 {n; k] oS! {n— E— 1} +(q-1)q® [E_ ﬂ n—2k+1] +q(2) {n ;EI 1}

q'-1

-1

Remark.Whereas for the Carlitz—Fibonacci polynomials (2.10)enalogue of the Lucas polynomials
with a simple recurrence exists, we have in this case a prgasmlogue (cf. [8]). It satisfies the same
recurrence

which is easily verified. Herfn| denotegn| =

Luca(x,8) = (x4 (g— 1)sD)Lucy_1(x,S) + SLuG—2(x,s)
but with initial valuesLucy(x,s) = 2, Luci(x,S) = x and is given by the explicit formula

3] o
_ < [ [n=j]  ()yn-2ig
Lucs(x,s) = 2 - g\l
= [nil] |: J :|
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3 A useful matrix

Let .
. €
© (b a)‘ (3.1)
Then it is easily shown by induction that
n_ (F-1(2,ab)b  F(2,a,b)
¢ ( Fa(2,a,b)b  Fyi1(2,8,b) )" (3.2

As a special case we see that

2 b a .
C = (ab 2+b =aC+bl, (3.3)
wherel = 8 2 is the identity matrix in the ring of matrices over
If we assumé to be invertible then (3.3) can be used to show @& invertible and given by
_p-1 —1
cloplc_bla= ( bs a bo ) (3.4)

One checks then thaf(B.2) holds for ale Z. We may therefore also extefd(2,a,b) to negativen
and obtain

F.n(2,a,b) = (—1)" b IR, (2,ab b ) = (-1)" R, (2, b ta, b b2,

FromC—"C" = | andC"C~" = | we may deduce a general form of the Cassini identities
bR 1(2,b"ta, b )R, 1(2,a,b) — Fy(2,ab b )Ry (2,a,b) = (—1)"

and
Fro1(2,a,b)Fy1(2,ab L, b Hb—Fy(2,a,b)F(2,b7ta,b™t) = (—1)".

For the Fibonacci numbers we have the formfga= 5 (E) Fn—k. We now give an interesting general-
ization.

Theorem 3.1. For positive n we get the following formula

Cc = %cp(a, b)c"k. (3.5)
k=0
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Proof. This holds fom = 1. If it is already known fon the following reasoning gives the result fo#- 1:
n n
c+2 = Z)cp(a, b)C2C"* = Z)c{g(a, b)(aC+ bl)C" X
K= K=

n n
= 5 CR(abjaC™ "+ 5 CR(a,b)bC™ ¥
k=0 k=0

n

n+1
_ n n n+1-k __ n+1 n+1-k
_kzz (Cl(a,b)a+Cl 4(a,b)b)C _kzz Ccr(a,b)C .

O

This is a somewhat curious formula. It means in fact that we may confpGte bl)" by first treating
C as an indeterminate commuting with batlandb, and then writing th€'s at the rightmost place and
interpret the result as a matrix over

By multiplying both sides from the right witB™ and comparing coefficients we deduce from (3.5) that

n
F2n+m(27aﬂ b) = z Clr<](av b) Fern,k(Z, a, b) (36)
K=0
In the same way we get for the transposed matrix
A
D— (8 a) (3.7)
the formulas o ( b bF.(2a.b)
n__ anl 27aa Fn 2av
b= ( Fo2ab)  Fri(2.a, b)) (3.8)
and .
D*"= § D"*CR(a,b). (3.9)
K=o

From this we deduce as above

Fm+2n(27 a7 b) = z Fm+nfk(2a a’ b)clrg(av b) (310)

Remark. These formulas have an obvious combinatorial interpretation:

Fm+2n(2,a,b) is the sum of all words iMC of lengthm+ 2n— 1. Form > 0 each such word contains
at leastn letters from the alphabeta, b} and can therefore be split into a product= uv, whereu has
preciselyn letters. Ifu containsk dashes then it has lengtht k.

Thereforev has lengthm+n—k — 1.

On the other hand for eadh0 < k < n, eachuy with k dashes and — k dots, and each worng of length
m+ n—k— 1 the worduyvi has lengthm+ 2n— 1. Thus we have

Fm+2n(2, a, b) = Z z Uk ZVk = z C{(‘(a, b) Fm+n7k(2, a, b).
Uy Vi



Some algebraic aspects of Morse code sequences 63

Form= 0 andk = n the result is also true becaugg2,a,b) = 0. If we split the wordw in the form
w = vuwe get the second formula.

If we applyW; to (3.10) and remember (2.5) and (1.9) we get
Fm:2n(2%.8.0) = Y m 2R R0 (2,%,8.0). (3.11)

A special case of this formula has also been considered by Andrews [3].
In an analogous way we deduce from (3.6) and (1.5) the formula

Fi2n(2,%,8,0) = 3 m O Fin (2%, 5,0, (3.12)

In the same manner we get after some calculation the following doubling formula for the Al-Salam and
Ismail polynomials:

Umi2n(%2,b) = 3 Umink(x2,b)g ™D m (—b)*(1+g™"a) - (1+ g™k Tax K (3.13)

4 The general case

The generalizations for > 2 are straightforward. We have to consider now ghej-matrix

O ¢ 0 ... O
0O 0 ¢ ... O
C=1... ... ...
0O 0 O €
b 0 O a
It is easily seen that _ _
Cl=aCl"! 4l (4.1)
and that ‘ _
cn=S Ci(a, bycU-bn=k), (4.2)
For the transposed matrix = C' we obtain analogously
D/ =DI"ta+1b (4.3)
and _ .
DI" = 5 DU-PHcR(a,b). (4.4)
From these formulas we deduce
Fri(1:%50) = 3 1] /B0 00K SR (s @)

and
. n| ik _ . i
Fin(i,%,8,0) =y M A @I 1y (% 5,015 q). (4.6)
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Remark.lt is also easy to prove (4.5) by comparing coefficients of the powexs lvfis then equivalent
to theg-Vandermonde identity

pHin| _ < [N [P+ =DN| ipr(-1n-(k-i))
{ k }‘Z[i“ k-1 |9
(cf. e. g. [5)]).
If we start from the companion formula obtained by switching the factors

{ptjn} -y m {erk(J'_—ll)n} gk
we get (4.6).

Both (4.5) and (4.6) can also be verified by induction with respent to
It is instructive to verify (4.5) or (4.6) foi = 1.
L. Carlitz [4] has shown that

WFn(2x50) = 3 (-0 ] dm D (R a2 xsa @.7)

holds for allmandn. | shall give another proof of this fact and generalize it to arbitjary
Theorem 4.1. The Carlitz-Fibonacci polynomials satisfy

WFn(ioxsa) = 5 (-0F [ I 00 (i xs ) (4.8)
keZ

Proof. Let C[z,z ] be the vector space of all polynomials zrand % There we consider the linear
operatorsT, R;, e defined by

T =21 RiZ"= 2 ed =g
They satisfy theg-commutation ruldjje- T = qT - Rje because for eaahne Z we have
Rje-TZ' = Rje""! = g"12"2]

and
qT . Rj e = qn+1-|— 2n—s—l—j _ qn+1zn+2—j.

From theg-binomial theorem we get therefore

n

(T -t IsRe" = 3 (-1 [ T (et IsRe
This implies
(T - a IRz = 3 (-1 [{] T gt TsR ez

k+1

_ Z(_l)k m qk(m—j+1)—(j—1)( 5) gmn—jk
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Now consider the linear mag, defined byo(z“*j“) = f, for all n € Z, where f, = a, with an
indeterminaten if Fn(j,s,%,0) =0 andf, = Fs(j,X,s,q) else, in order to get a linearly independent set
of vectors. LeHH be the vector space generated by thesuch thatb becomes a bijection ontd. Then

o(T—qtIsRe)o = o(T —qt IsRe)Z" 1 *1 = fr 1 —sqd"2+2f,

for all n € Z. The homomorphisnfi, — F,(j, X, s,q) maps the right hand side unt8,(j, x,s,q). Therefore
the kernel contains all, with Fy(],x,s,q) = 0 and our theorem is proved.

Remark.Form= 0 we get as special case of (4.7) that
0= (-1)" m a (R a(2xsq).

Whereas fog = 1 the termg —s)*F,_2(X,s,1) + (—9)" *Fax_n(X,s,1) vanish, this is not the case for the
corresponding terms fay # 1.

5 General g-Fibonacci polynomials

Finally we want to generalize some resultsiof [7] to the gergeFabonacci polynomial&; (j,s,q), which
satisfy the recurrence

Fa(i,8,0) = r(9F;1(j,as9) +t(S)Fy;(i,q's,q)
or equivalently _ _
Fr(i,s.a) =r(@ '9FR1(j,s.q) +t@ 2Ry (j,50)
with initial conditions

FO*(j?S7q) == Fj*72(j’saq) =0, Fj*fl(j7saq) =1
Consider first the casp= 2. Let
0 1

A9=(i3) 1) e

and
Mn(S) = AG" T9)A(q"2s) -~ A(9). (5.2)

Then we get

Mic:n(S) = Mi(0"S)M(S) (5.3)

and

_ (H§)FRa(asa)  Fy(sa)

. (t(qé)Fn*(qsm FrT+1(qu>> ' &4

Taking determinants we get the Cassini identity

+1(as A)Fy1(s.9) — Fr(as Q)R (s,0) = (—1)"t(s)t(qs) (g™ 2s). (5.5)
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If we extend (5.3) to negative indices—which is uniquely possible—we get

-1
M_k(9) = (Me(a™s))
and therefore

M_n(8) = = Fra(d"s.0) —Fi(a"s.)
T da(ge) \ @ ISR (@ M s a) t(a M s)Ry (g M s q)

with dn(s) = (—1)"t(3)t(s)t(gs) - - -t(q"2s). This implies

g
. 1 FR(@ s

Fia(s,q) = (-D)" T2

t(@) - 't(m)

The Cassini identity is a special case of the Cassini-Euler identity

2-1(08 O)Fi(5,0) — B (8. 0) Ry (A8 @) = (=1)"t(s) - t(a" *9)R¢ (a"s, ). (5.6)

For the Al-Salam and Ismail polynomials this identity has been proved in Theorem 371 of [10]. Other
special cases are mentionedlin [7].

The Cassini-Euler formula is an immediate consequence of (5.3) if we write it in the form
Micin(8)Mn(8) ™ = Mk(q"s)

and compare the upper right entries of the matrices.

A combinatorial proof. There is also a more illuminating combinatorial proof of this formula, inspired
by [12]. Letm e Z andw = c;1C;---¢; @ Morse code sequence of dots and dashes of total lengith
we put this sequence upon the interab, m+1,...,m+n— 1} we say that it starts ah and ends at
m-+n— 1. We associate with this sequence a wedglt) = A(c1)---A(¢) by A(c) = x(g's) if cis a dot
at j, A(c) =t(g's) if cis a dash starting gt andA(c) = 1 if cis ending atj. It is clear that for a Morse
code sequenos starting atmwe havei (w) = nMd(w).

Now consider all ordered pairs of Morse code sequerjues whereu starts at 0 and has length
n+k—1 for somek > 1 andv starts at 1 and has length- 2. Their total weight i, , (gs q)F;, . (s,q).
If there is an,0 <i < n—2, where in one of the sequences occurs a dot, there is also a migjjpatith
this property. Then we exchange the sequences startipg,at- 1. Note that at this point in each of the
sequences we have either a dot or the initial point of a dash, so that we really can exchange the rest of the
sequences. Thus to each pairv) there is associated a pdil, V) whereu'starts at 0 and has length- 1
andv'starts at 1 and has length+ k— 2.

Itis clear that\ (u)A(v) = A(0)A(V). The total weight of all pairgQ, V) is F; (s,a)F,,_1(s 9)-

The only pairs where this bijection fails are foeven those where wthere are only dashes anduirall
places up tm— 1 are occupied by dashes. The total weight of these paifs)igqs) - - -t(q"2s) F(a"s,q).

If nis odd then this bijection fails at those paffsV) whereu'has only dashes and wall places up to
n— 1 are occupied by dashes. Thus th€assini-Euler formula is proved.
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For j > 2 we consider matrices

0 1 0 0

0 0O 1 0
Ali,s) =

0 o o -+ 1

t(3) 0 0 ... X¢

and define
Mn(j,S) = A(jvqnils)A(jaqnizs) a A(J,S)

andMg(j,s) = I, the identity matrix.
Then thei-th row, 0<i < j —1 of M(j,s) is given by

(t(é) 7 14i(09), (R 21i(6°9), - H (A PR 14 (AT, Fn+i(5)) :

where we only indicate the dependenceson
To prove this observe thaj,(k,s) := t(q“ s)F,_x_1(g“t's) satisfies the recurrence relation of the
Fibonacci polynomials with the initial conditions(k,s) = & .
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