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Our work is motivated by Bourque and Pevzner (2002)’s simulation study of the effectiveness of the parsimony
method in studying genome rearrangement, and leads to a surprising result about the random transposition walk in
continuous time on the group of permutations on n elements starting from the identity. Let Dt be the minimum number
of transpositions needed to go back to the identity element from the location at time t. Dt undergoes a phase transition:
for 0 � c � 1, the distance Dcn � 2 � cn � 2, i.e., the distance increases linearly with time; for c � 1, Dcn � 2 � u � c � n where
u is an explicit function satisfying u � x � � x � 2. Moreover we describe the fluctuations of Dcn � 2 about its mean at each
of the three stages (subcritical, critical and supercritical). The techniques used involve viewing the cycles in the
random permutation as a coagulation-fragmentation process and relating the behavior to the Erdös–Rényi random
graph model.
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1 General motivation
The relationship between the orders of genes in two species can be described by a signed permutation. For
example the relationship between the human and mouse X chromosomes may be encoded as (see Pevzner
and Tesler (2003))

1 	 7 6 	 10 9 	 8 2 	 11 	 3 5 4

In words the two X chromosomes can be partitioned into 11 segments. The first segment of the mouse
X chromosome is the same as that of humans, the second segment of mouse is the 7th human segment
with its orientation reversed, etc. The parsimony approach to estimation of evolutionary changes of the X
chromosome between human and mouse is to ask: what is the minimum number of reversals (i.e., moves
that reverse the order of a segment and therefore change its sign) needed to transform the arrangement
above back into 1 
��
����
 11?

Hannehalli and Pevzner (1995) developed a polynomial algorithm for answering this question. The
first step in preparing to use the HP algorithm is to double the markers. When segment i is doubled we
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Fig. 1: Breakpoint graph for human-mouse X chromosome comparison

0 1 2 14 13 11 12 20 19 17 18 16 15 3 4 22 21 6 5 9 10 7 8 23

replace it by two consecutive numbers 2i 	 1 and 2i, e.g., 6 becomes 11 and 12. A reversed segment 	 i
is replaced by 2i and 2i 	 1, e.g., 	 7 is replaced by 14 and 13. The doubled markers use up the integers
1 to 22. To these we add a 0 at the front and a 23 at the end. Using commas to separate the ends of the
markers we can write the two genomes as follows:

mouse 0 
 12 
 1413 
 1112 
 2019 
 1718 
 1615 
 34 
 2221 
 65 
 910 
 78 
 23

human 0 
 12 
 34 
 56 
 78 
 910 
 1112 
 1314 
 1516 
 1718 
 1920 
 2122 
 23

The next step is to construct the breakpoint graph (see figure 1) which results when the commas are
replaced by edges that connect vertices with the corresponding numbers. In the picture we write the
vertices in their order in the mouse genome. Commas in the mouse order become thick lines (black
edges), while those in the human genome are thin lines (gray edges).

Each vertex has one black and one gray edge so its connected components are easy to find: start with
a vertex and follow the connections in either direction until you come back to where you start. In this
example there are five cycles:

0 	 1 	 0 2 	 14 	 15 	 3 	 2 4 	 22 	 23 	 8 	 9 	 5 	 4

19 	 17 	 16 	 18 	 19 13 	 11 	 10 	 7 	 6 	 21 	 20 	 12 	 13

To compute a lower bound for the distance now we take the number of commas seen when we write
out one genome. In this example that is 1 plus the number of segments (12), then we subtract the number
of connected components in the breakpoint graph. In this example that is 5, so the result is 7. This is a
lower bound on the distance since any reversal can at most reduce this quantity by 1, and it is 0 when the
two genomes are the same. We can verify that 7 is the minimum distance by constructing a sequence of
7 moves that transforms the mouse X chromosome into the human order. We leave this as an exercise for
the reader. Here are some hints: (i) To do this it suffices to at each step choose a reversal that increases the
number of cycles by 1. (ii) This never occurs if the two chosen black edges are in different cycles. (iii) If
the two black edges are in the same cycle and are � a 
 b � and � c 
 d � as we read from left to right, this will
occur unless in the cycle minus these two edges a is connected to d and b to c, in which case the number
of cycles will not change. For example in the graph above a reversal that breaks black edges 19-17 and
18-16 will increase the number of cycles but the one that breaks 2-14 and 15-3 will not.

In general the distance between genomes can be larger than the lower bound from the breakpoint graph.
There can be obstructions called hurdles that can prevent us from decreasing the distance and hurdles can
be intertwined in a fortress of hurdles that takes an extra move to break. (See Hannehalli and Pevzner
(1995).) In symbols if π is the signed permutation that represents the relative order and orientation of
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36 37 17 40 16 15 14 63 10 9
55 28 13 51 22 79 39 70 66 5
6 7 35 64 33 32 60 61 18 65

62 12 1 11 23 20 4 52 68 29
48 3 21 53 8 43 72 58 57 56
19 49 34 59 30 77 31 67 44 2
27 38 50 26 25 76 69 41 24 75
71 78 73 47 54 45 74 42 46

Tab. 1: Order of the genes in D. repleta compared to their order in D. melanogaster

segments in the two genomes
d � π ��� n

�
1 	 c � π � � h � π � � f � π �

where d � π � is the distance from the identity, n is the number of markers, c � π � is the number of components
in the breakpoint graph, h � π � is the number of hurdles, and f � π � is the indicator of the event π is a fortress
of hurdles. See Section 5.2 of Durrett (2002) or Chapter 10 of Pevzner (2000) for more details.

To motivate our main question, we will introduce a second data set. Ranz et al. (2001) located 79 genes
on chromosome 2 of D. repleta and on chromosome arm 3R of D. melanogaster. If we number the genes
according to their order in D. repleta then their order in D. melanogaster is given by table 1. This time we
do not know the orientation of the segments but that is not a serious problem. Using simulated annealing
one can easily find an assignment of signs that minimizes the distance, which in this case is 54. Given the
large number for rearrangements relative to the number of markers we should ask: when is the parsimony
estimate reliable?

Bourque and Pevzner (2002) have approached this question by taking 100 markers in order and per-
forming k randomly chosen reversals and computing ∆k, the minimum number of reversals (d � π � ) needed
to return to the identity and then plotting the average value of ∆k 	 k � 0 (the circles in fig. 2). They
concluded based on this and other simulations (see figure 2) that the parsimony distance on n markers was
a good one as long as the number of reversals performed was at most 0 � 4n. The smooth curve, which we
will describe below, gives the limiting behavior of � Dcn 	 cn ��� n (as a function of c).

For simplicity we will consider the analogous problem for random transpositions. In that case the
distance from the identity can be easily computed: it is the number of markers n minus the number of
cycles in the permutation. For an example, consider the following permutation of 14 objects written in its
cyclic decomposition:

� 174 � � 2 � � 312 � � 5139116 � � 81014 �
which indicates that 1 � 7, 7 � 4, 4 � 1, 2 � 2, 3 � 12, 12 � 3, etc. There are 5 cycles so the distance
from the identity is 9. If we perform a transposition that includes markers from two different cycles (e.g.,
7 and 9) the two cycles merge into 1, while if we pick two in the same cycle (e.g., 13 and 11) it splits into
two.

The situation is similar but slightly more complicated for reversals. There if we ignore the complexity
of hurdles, the distance is n

�
1 minus the number of components in the breakpoint graph. A reversal that

involves edges in two different components merges them into 1 but a reversal that involves two edges of
the same cycle may or may not increase the number of cycles. To have a cleaner mathematical problem,
we will consider the biologically less relevant case of random transpositions, and ask a question that in
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Fig. 2: Average values of ∆k computed by simulation (circles) and approximated by Theorem 3 (smooth line)

terms of the rate 1 continuous time random walk on the symmetric group is: how far from the identity are
we at time cn � 2?

2 The coagulation-fragmentation process and the random graph
process

Let � St 
 t
�

0 � be the continuous-time random walk on the symmetric group � n starting at the identity, in
which at times of a rate one Poisson process, we perform a transposition of two elements chosen uniformly
at random.

Definition 1. The distance to the identity Dt is the minimum number of transpositions you need to perform
on St to go back to the identity element. In particular, if Nt is the number of transpositions performed up
to time t (thus a Poisson r.v. with mean t), then Dt � Nt .

As mentioned earlier Dt is given by the obvious but crucial formula Dt � n 	�� St � where � St � is the
number of cycles in the cycle decomposition of St . The cycles evolve according to the dynamics of a
coagulation-fragmentation process. When a transposition � i 
 j � occurs, if i and j belong to two different
cycles then the cycles merge. On the contrary, if they belong to the same cycle, this cycle is split into two
cycles.

We will be working exclusively in the continuous-time setting but it will be convenient to introduce the
discrete-time analogue of � St 
 t

�
0 � , which we denote by � σk 
 k ��� � . Then � ∆k 
 k ��� � will stand for its
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distance to the identity and we have ∆k � k.
In order to avoid confusions between the cycles of the permutation and the cycles in the graph that we

define in the next paragraph, we will denote the first by σ-cycles and the second by G-cycles. From the
definition it can be seen that the ranked sizes of the σ-cycles form a (non-homogeneous) coagulation-
fragmentation process (see Pitman (2002a) and Pitman (2002b), Aldous (1997b)) in which components
of size x and y merge at rate Kn � x 
 y � � xy � n2 and components of size x split at rate Fn � x � � x � x 	 1 � � n2

and are broken at a uniformly chosen random point.

To study the evolution of the cycles in the random permutation, we construct a random (undirected)
graph process. Start with the initial graph on vertices � 1 
����
��
 n � with no edge between the vertices. When
a transposition of i and j occurs in the random walk, draw an edge between the vertices i and j. It is
elementary to see that at time t this graph is a realization of the Erdös–Rényi random graph G � n 
 p � ,
see Bollobàs (1985) or Janson et al. (2000), in which edges are independently present with probability
p � 1 	 exp ��	 t ��� n2 � � . It is also easy to see that in order for two integers to be in the same σ-cycle it is
necessary that they are in the same component of the random graph.

To get a result in the other direction, let Ft denote the event that a fragmentation occurs at time t. It is
clear that

Dt � Nt 	 2∑
s � t

1 � Fs � (1)

A fragmentation occurs in the random permutation when a transposition occurs between two integers in
the same σ-cycle, so tree components in the random graph correspond to cycles in the random walk.
Unicyclic components (with an equal number of vertices and edges) correspond to σ-cycles that have
experienced exactly one fragmentation, but we need to know the order in which the edges were added to
determine the resulting σ-cycles. For more complex components, the relationship between the random
graph and the permutation is less clear. Fortunately, these can be ignored in the subcritical and the critical
regimes.

3 Limit Theorems
We will now describe our results and sketch their proofs. A version of this article with complete proofs
will be published later.

3.1 The subcritical regime

The observations above lead easily to:

Theorem 1. Let 0 � c � 1. Then 	�
Dcn � 2 
��n � ∞
cn � 2 and the number of fragmentations

Zc : � ∑
s � 1

2 cn

1 � Fs � D	 �
n � ∞

Poisson � κ � c � � (2)

where κ � c � � � 	 log � 1 	 c � 	 c ��� 2. In fact the convergence holds for the process � Zc : 0 � c � 1 � with
the limit being a Poisson process with compensator κ � c � .
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Remark. Theorem 1 has the following analogue in discrete time : Let k ��� cn � 2 � , then

∆k 	 k
D	 �

n � ∞
Poisson � κ � c � � (3)

Thus the fluctuations are of order 1 in the subcritical discrete regime.

Sketch of the proof. The process � Zc 
 0 � c � 1 � is a càdlàg counting process. Therefore by arguments
from Jacod and Shiryaev (1987) it is enough to show that its compensator converges to a deterministic
limit being the intensity κ � c � . If fk � t � is the number of vertices that belong to components of size k
divided by n, the rate at which fragmentations occur is just ∑k fk � t � � k 	 1 � � n. Hence the compensator is
just the integral w.r.t time of this rate. We first show that the variance converges to 0 and then calculate
its expectation. By exchangeability 	 
 fk � t � 
 ��� 
 �C1 � � k 
 where �C1 � is the size of the component that
contains 1 at time t. It is not hard to see that this quantity at time bn � 2 converges in distribution to the total
progeny τ of a branching process with offspring distribution Poisson(b), which happens to be subcritical
since b � 1 (see lemma 52 in Pitman (2002a)). Using the exploration random walk associated with such
a branching process, we find that the expected value of τ is 1 � � 1 	 b � (see Pitman (1997)). Hence by
integrating w.r.t b we get the desired expected value, κ � c � .

To prepare for later developments, it is useful to take a second combinatorial approach to this result.
We begin with Cayley’s result that there are kk � 2 trees with k labelled vertices. At time cn � 2 each edge is
present with probability � cn � 2 � n2 � � c � n so the expected number of trees of size k present is�

n
k � kk � 2 	 c

n 
 k � 1 	 1 	 c
n 
 k � n � k ��
 � k

2 � � k 
 1

since each of the k 	 1 edges need to be present and there can be no edges connecting the k point set to its
complement or any other edges connecting the k points. For fixed k the above is

� n
kk � 2

k!
ck � 1 	 1 	 c

n 
 kn

The quantity in parentheses at the end converges to e � ck so we have an asymptotic formula for the the
number of tree components at time cn � 2. As a side result we get :

Corollary 1. The probability distribution of the total progeny T of a Poisson(c) branching process with
c � 1 is given by � 
 T � k 
 � 1

c
kk � 1

k! � ce � c � k

See section 4.1 of Pitman (1998) for another proof of this result. It was first discovered by Borel (1942)
and the distribution of T is called the Borel distribution. It is a particular case of the so-called Borel-Tanner
distribution, see Devroye (1992) and Pitman (1997) for further references. In this context it appeared in
the problem of the total number of units served in the first busy period of a queue with Poisson arrivals
and constant service times. Of course, this becomes a branching process if we think of the customers that
arrive during a person’s service time as their children.

3.2 The critical regime
Now let us consider the more delicate and also more interesting critical regime. It is well known in the
theory of random graphs that the critical regime takes place at times t crit

n � λ ��� 1
2 n � 1 � λn � 1 � 3 � 
 λ ��� (see
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Aldous (1997a) for an extremely interesting account of some properties of the critical random graph such
as cluster growth, and its relation to the multiplicative coalescent). Until this range of times we are still in
the subcritical regime so that the arguments in the proof of theorem 1 are still valid. More precisely, we
can show that if cn � r � � 1 	 n � r � 3 for 0 � r � 1, then the expected number of fragmentations up to time
cn � r � n � 2 is again given by κ � cn � r � � �n � ∞

� r � 6 � logn. Hence define :

Wn � r � : �
�

6
logn � 1 � 2

� Zcn � r � 	 r
6

logn � �
�

6
logn � 1 � 2 ��

∑
s � cn � r � n2 1 � Fs � 	 r

6
logn �� (4)

Theorem 2. The following convergence holds with respect to the Skorokhod topology on the space of
càdlàg functions on 
 0 
 1 
 :

Wn ��� � D	 �
n � ∞

W ��� � (5)

where � W � r � 
 0 � r � 1 � is a standard Brownian Motion on 
 0 
 1 
 .
Sketch of the proof. Wn � r � is by definition a martingale whose jumps are asymptotically zero and whose
quadratic variation process is r thanks to our time-change cn � r � � 1 	 n � r � 3. Therefore it converges to
Brownian Motion.

After time � 1 	 n � 1 � 3 � n � 2 � tcrit
n ��	 1 � we are in the critical range of the random graph. Then expected

value estimates (see Łuczak et al. (1994) and Janson et al. (1993)) imply that the number of fragmentations
between times tcrit

n � 	 1 � and tcrit
n � � 1 � is bounded in expectation and hence can be ignored. Therefore we

have the

Corollary 2. Let λ � � be any fixed real number. Then the number of fragmentations up to time t crit
n � λ �

satisfies : �
6

logn � 1 � 2 ��
∑

s � tcrit
n � λ � 1 � Fs � 	 1

6
logn �� D	 �

n � ∞
W � 1 � 
 (6)

a standard Gaussian random variable. In particular for λ � 0 the central limit theorem holds at time n � 2.

3.3 The supercritical regime

This is the most interesting case, and also the hardest one. We start by establishing a law of large numbers.

For all c � 0 define βk � c � � 1
c

kk � 1

k! � ce � c � k so that for c � 1 it coincides with the Borel distribution of
Corollary 1. When c � 1,

lim
n � ∞

� 
 � C1 � � k 
 � βk � c �

still holds but the βk � c � ’s no longer sum up to 1 because there is a probability β∞ � c ��� 0 that C1 is the giant
component (this is also the probability that a supercritical branching process with offspring distribution
Poisson(c) doesn’t die out). Then β∞ � c � � 1 	 ∑k � 1 βk � c � .

Let us denote by ϒ � c � a random variable that take value 1 � k with probability βk � c � when 1 � k � ∞ and
0 with probability β∞ � c � .
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Theorem 3. Let c � 0 be a fixed positive number. Then the expected number of cycles in the random walk
at time cn � 2 is g � c � n

�
O ��� n � , where :

g � c � : � 	�
 ϒ � c � 
 �
∞

∑
k � 1

1
c

kk � 2

k!
� ce � c � k 
 c � 0 (7)

and for c � 1, g � c � � 1 	 c � 2. In particular the distance is given by Dcn � 2 � u � c � n
�

O � � n � where
u � c ��� 1 	 g � c � � c � 2 
 c � 0

Note that the theorem is valid for all regimes. The behavior of the function g before and after c � 1
is very different : thus there is phase transition in the behavior of the distance of the random walk to the
identity at time n � 2 from linear to sublinear.

Sketch of the proof. In the critical regime the dynamics of the large components is quite complicated but
(i) there can never be more than � n components of size � n or larger and (ii) an easy argument shows that
the number of fragmentations occurring to clusters of size ��� n is at most O ��� n � . These two observations
plus results from the theory of random graphs (Bollobàs (1985), Theorem 5.12) imply the result stated
above.

Remark. Theorem 3 extends easily to the cycle distance for random reversals and thus explains the result
found by simulation in Bourque and Pevzner (2002). However in studying fluctuations it is important to
know whether a reversal that acts on a single cycle increases the distance or leaves it the same, so our
results on fluctuations are restricted to the case of random transpositions.

Theorem 4. Let σ � c � 2 � var � ϒ � c � � . Then

Dcn � 2 	 u � c � n

σ � c � n1 � 2 D	 �
n � ∞

N � 0 
 1 � (8)

Sketch of the proof. This is much harder than Theorem 3 since if we restrict our attention to cycles of
size � na with a � 1 � 2 to make the number of large cycles o � � n � then the number of fragmentations that
involve large components will be O � na � and hence too big to ignore. To prove Theorem 4 one must use
the fact that the fragmentation of the large components is a (time-changed) M � M � ∞ queue. Pieces of a
fixed size k break off the giant component at a rate that depends on the total mass of large components, but
each fragment of that size is re-absorbed at k times that rate, so at any time there are only O � logn � extra
pieces. Once this estimation is done, the next step is to realize that the number Γ � c � of components at time
cn � 2, is given by Γ � c � � ∑i

1
Ci

where Ci is the size of the component containing i. 	 1 � Ci are increasing
functions of the i.i.d. random variables that define the random graph, so they are associated. They are also
asymptotically uncorrelated, so the desired conclusion follows from an argument of Newman and Wright
Newman and Wright (1981).

Remark. Let � ϒi � c � 
 i � 1 � and � ζi � c � 
 i � 1 � denote i.i.d random variables such that ϒi � c � (law)� ϒ � c � and

ζi � c � (law)� 1 	 ϒ � c � . Then the above argument gives that the number of components of the supercritical
random graph behaves asymptotically as ∑1 � i � n ϒi � c � so that the distance to the identity, which is just n
minus the number of components, behaves asymptotically as ∑1 � i � n ζi � c � . This provides an explanation
for both Theorem 3 and 4.
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3.4 Equilibrium behavior
Our final topic is to consider the behavior of the cycle structure of the random permutation as c � ∞.
As is well known, (Pitman (2002a), Arratia et al. (2001)), the cycle sizes of a random permutation when
divided by n tend to a Poisson-Dirichlet distribution. In Section 2, we observed that the cycles themselves
are a coagulation-fragmentation process. Ranking and letting n � ∞ and gives the following result :

Theorem 5. The Poisson-Dirichlet distribution with parameters 0 and 1 is an invariant measure for the
ranked coagulation-fragmentation process on the space of real partitions of 1, with corresponding kernels
given by K � x 
 y � � xy and F � x � � K � x 
 x � � x2.

This result has already been recently derived in various ways (including this weak convergence argument)
in Pitman (2002b) and Mayer-Wolf et al. (2002). The uniqueness of the invariant measure for this process
was conjectured by Vershik and proved in 2002 in Diaconis et al. (2003).
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Application au problème de l’attente à un guichet. C.R. Acad. Sci. Paris., 214:452–456, 1942.

G. Bourque and P. A. Pevzner. Genome-scale evolution: reconstructing gene orders in the ancestral
species. Genome Research, 12:26–36, 2002.

L. Devroye. The branching process method in the Lagrange random variate generation. Technical report,
McGill University, cgm.cs.mcgill.ca/˜luc/branchingpaper.ps, 1992.

P. Diaconis, E. Mayer-Wolf, O. Zeitouni, and M. Zerner. Uniqueness of invariant distributions for split-
merge transformations and the Poisson-Dirichlet law. Ann. Prob., 2003. to appear.

R. Durrett. Probability : Theory and Examples. Duxbury Press, second edition, 1996.

R. Durrett. Probability models for DNA Sequence evolution. Probability and Its Applications. Springer-
Verlag, New York, 2002.

R. Durrett. Shuffling chromosomes. Ann. App. Prob., to appear, 2003.

S. Hannehalli and P. Pevzner. Transforming cabbage into turnip (polynomial algorithm for sorting signed
permutations by reversals). Proceedings of the 27th Annual Symposium on the Theory of Computing,
pages 178–189, 1995. full version in the Journal of the ACM, 46:1-27.
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