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We consider two probability distributions on Boolean functions defined in terms of their representations byand/or
trees (or formulas). The relationships between them, and connections with the complexity of the function, are studied.
New and improved bounds on these probabilities are given for a wide class of functions, with special attention being
paid to the constant functionTrue and read-once functions in a fixed number of variables.
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1 Introduction
An and/or formula is a Boolean formula formed from literals (variables and their negations) using binary∧ and∨
connectives (and brackets). An example is

((x̄1 ∨ x2) ∧ x̄3) ∨ (x1 ∧ x̄3) .

Corresponding to the formula is a binary planar (Catalan) tree with its leaves labelled by literals and its internal nodes
labelled by connectives. (In the above example the root is labelled∨.) Assigning truth values at the leaves and
thinking of the internal nodes as logic gates, such anand/or treecomputes at its root the truth value of the Boolean
function defined by the formula. In the example above, the function isx̄3, or more precisely, the same function as is
defined by this much simpler formula.

We will use the termsand/or formula andand/or tree synonymously.n will denote the number of variables
x1, . . . , xn from which the variables in the formula are to be drawn. Thesizem is the number of occurrences of
literals (i.e., the number of leaves). As the tree is binary, the number of connectives (internal nodes) ism − 1 and
the total number of nodes is2m− 1. ThecomplexityL(f) of a Boolean functionf is the minimal size of anand/or
formula definingf .

Fix n, the number of variables. One natural way to define a probability distribution on Boolean functionsf is to let
Tm denote the total number ofand/or trees of sizem, let Tm(f) be the number of these which computef , and put

P (f) = lim
m→∞

Tm(f)

Tm
.

Lefmann and Savicḱy [4] seem to have been the first to show explicitly that for each choice ofn this limit distribution
P (which depends implicitly onn) is well defined, i.e., that there is convergence for allf , and that in fact the limit
P (f) is always strictly positive. A rather different proof can be given using the methods of Woods [9], who established
the analogous results for non-binaryand/or trees which take account of the associativity and commutativity of∧ and
∨, and whose size is taken to be the total number of nodes.

A second natural probability distributionπ(f) on Boolean functionsf is obtained by generating anand/or tree by
means of a random process. Start with the root and throw a fair coin. With probability1/2 decide to make the root a
leaf, throw a fair2n-sided die to decide which literal will be its label, and then stop. With probability1/2 make the
root an internal node and then throw the coin again to decide which connective∧ or ∨ will be its label. Then repeat
the process with each of the two “daughter” nodes in place of the root.

Technically this is acritical Galton–Watson branching process. With probability1 the tree is finite. The probability
π(f) is simply defined to be the sum of the probabilities associated with those finiteand/or trees that computef .
Notice that as with the limit distributionP , theπ distribution depends onn. We will be interested in their asymptotic
behaviour asn →∞, as well as actually calculating or estimating probabilities whenn is small. In this direction, in
an early, but very interesting paper (predating the work of Lefmann and Savický) Paris, Venkovsḱa and Wilmers [7]
proved among many other things thatlimn→∞ P (f) = 0 for the constant functionsf ∈ {True, False}.

The π distribution was first studied explicitly by Chauvin, Flajolet, Gardy and Gittenberger [1].π is definitely
different fromP (even asymptotically forn → ∞, as we will see below). However as they found, there are some
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important relationships between these distributions. The extensive calculations reported in [1] led them to also make
conjectures regarding the relationship between the numerical values ofπ(f) andP (f) for particular functionsf .
Some of these conjectures are settled here. We will prove thatP (f) > π(f) for f ∈ {True, False}, while on the
other hand, iff is a read-once function of some fixed set ofr variables then forn sufficiently large,P (f) < π(f).

For other variants ofand/or formulas and the corresponding probability distributions see [2],[1] and [8]. Analogues
of P (True) have also been studied for tree-like formulas involving other connectives [6, 10, 11, 3, 5]. Mostly the
results are restricted to explicit small values ofn. Exceptionally Moczurad, Tyszkiewicz and Zaionc [6] have shown
that for formulas inn variables (without negation) having implication as the only connective, the probability of a
tautologyP (True) lies in the interval[(4n + 1)/(2n + 1)2, (3n + 1)/(n + 1)2]. However they do not seem to
address the convergence issue for general values ofn. In a similar vein, Matecki [5] has studied the probability of
Truewhen equivalence is the only connective, obtaining results valid for alln.

Which of these various models is of most significance? Well it depends on the situation. If short formulas are
of importance, theπ distribution may be suitable. If the formulas are large, thenP (which is, roughly speaking,
π conditioned on the sizem being large) is more appropriate. As noted in [6], there is a correspondence between
intuitionistic implicational tautologies (without negation) and inhabited types inλ-calculus. (However not all Boolean
functions can be defined using only implication and variables.) In another arena, if a close relationship with the
underlying Boolean function is needed, e.g., if the real aim as in [8] is to estimate the number of Booleanfunctions
defined byand/or formulas of some type, then it may be desirable to regard formulas as being “the same” if they can
be converted into each other by means of the commutative and associative laws for∧ and∨. And so on. A decided
advantage of the particular distributionsπ andP considered here is that they are less complicated to analyse than
some of the others, while presumably often having qualitatively similar properties.

One reason for interest in probability distributions for Boolean functionsf is the suggestion (appearing in [9] for
an analogue ofP (f)) that the probability off might be related to its complexityL(f). Lefmann and Savicḱy [4]
proved that forP (f) this is indeed the case. In fact for some constantc > 0,

1

4

„
1

8n

«L(f)+1

≤ P (f) ≤ (1 + O(1/n)) exp

„
−c

L(f)

n2

«
. (1)

where the upper bound incorporates an improvement from Chauvin, Flajolet, Gardy and Gittenberger [1]. Lefmann
and Savicḱy prove their bounds by associating the limit distributionP with a distribution on certain sets ofand/or
trees having aninfinitebranch. Here we will sketch an alternative proof of a sharper lower bound by using generating
series (and avoiding infinite trees). As a bonus, the proof also provides an analogous lower bound forπ(f).

The plan of the paper is as follows: In Section 2, the connections between the two probability distributions and the
generating functions for classes ofand/or trees are recalled. These connections, which underlie the whole paper, are
used in Section 3 to give improved lower bounds onπ(f) andP (f) in terms of the complexityL(f) and number
k(f) of minimal size representations off . The main idea is to deal with a subset of the trees which computeTrue
which is both simple to describe and sufficiently large. Then in a move of particular significance forP (f), the lower
bounds for this set of tautologies are “transferred” to obtain lower bounds for any Boolean functionf . In Section 4
we consider a variety of simple Boolean functions, comparing our lower bounds numerically with the exact values for
smalln, and with the Lefmann/Savický lower bound (1) whenn is large. This is followed in Section 5 by comparisons
between theexactvalues of the probabilitiesP (f) andπ(f) for constant and read-once functionsf . We conclude
with some discussion and a conjecture in Section 6.

2 Generating functions for and/or trees
The generating functionT (z) =

P∞
m=1 Tmzm enumerating the classT of all and/or trees by sizem satisfies

T (z) = 2n z + 2 T (z)2.

Solving this gives

T (z) =
1

4

`
1−

√
1− 16nz

´
. (2)

Expanding as a power series inz using the binomial theorem shows that the number ofand/or trees of sizem is

Tm = 2m−1(2n)mCm−1 ∼
(16n)m

8m
√

πm
,

whereCm−1 is the(m − 1)th Catalan number. ClearlyT (z) has radius of convergenceρ = 1/(16n), andT (ρ) =
1/4. (More details of items in this section can be found in [1].)

Similarly for any classE of and/or trees, letE(z) =
P∞

m=1 Emzm denote the corresponding generating series. It
is easy to check that for anyand/or treeτ of sizem, the probability thatτ is the tree generated by the Galton–Watson
process described above is2−2m+12−m+1(2n)−m = 4 ρm, so the definition ofπ can be extended toE by putting

π(E) = 4

∞X
m=1

Emρm = 4 E(ρ) ,
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which always converges. In generalEm/Tm need not converge to a limitP (E). Howeverif this limit does existit
must satisfy

P (E) = lim
m→∞

Em

Tm
= lim

z→ρ−

E ′(z)

T ′(z)
.

This follows from an easily provedAbelian theoremwhich uses only that the derivativeT ′(z) has positive coefficients
and diverges atz = ρ. To establish convergence, we will appeal to the following standard lemma, the idea being that
(under certain conditions) ifE(z) has the same form of singularity atρ as (2) then its coefficients will be asymptotic
to those ofβE T (z), for some constantβE .

LEMMA 1 Let E be a class ofand/or trees. If the corresponding generating functionE(z) has on the circle
|z| = ρ, a single dominant algebraic singularity atρ = 1/(16n), and aroundρ has an expansionE(z) =
(αE − βE

√
1− 16nz)/4 + o(

√
1− 16nz), then

π(E) = αE = 4 E(ρ) ; P (E) = βE = lim
z→ρ−

E ′(z)

T ′(z)
. (3)

For any Boolean functionf we will denote byTf the class of alland/or trees which computef . Tf (z) will be the
corresponding generating function. As noted in [1] (cf. [9]), on the circle|z| = ρ, Tf (z) always has only an algebraic
singularity atρ = 1/(16n), with

Tf (z) =
1

4

“
αf − βf

p
1− z/ρ

”
+ O(z − ρ)

nearρ for some constantsαf , βf > 0. So by the Lemma,P (f) exists,P (f) is positive, and

π(f) = αf = 4 Tf (ρ) ; P (f) = βf = lim
z→ρ−

T ′
f (z)

T ′(z)
.

3 Improved lower bounds
For n variables, there is a system of22n

quadratic equations in the generating functionsTf (z) (with f ranging over
all possible Boolean functions ofn variables) which in principle can be solved for these22n

generating functions.
(See [1] for the details.) The underlying idea of our lower bound method is that simpler equations which are easier to
solve can still give interesting bounds (instead of exact values) for the probabilities. Rather than work with the whole
setTf of all trees that computef , we will work with a more easily described subsetEf ⊆ Tf obtaining lower bounds
onπ(f) and (providedP (Ef ) exists) onP (f).

Let us begin by considering the set of alland/or trees, and apropersubsetETrue ⊂ TTrue. SoETrue is a set of
someof theand/or trees that computeTrue. ETrue is defined (in obvious notation) by

ETrue = ⊕1≤i≤n(∨, xi, x̄i) ⊕ ...⊕1≤i≤n (∨, x̄i, xi) ⊕ (∧, ETrue, ETrue)⊕ (∨, ETrue, ETrue)

⊕ (∨, ETrue, T \ ETrue)⊕ (∨, T \ ETrue, ETrue).

A symmetrical equation defines a setEFalse consisting of some of the trees that computeFalse. Now letETrue(z)
be the generating function that enumerates the setETrue. It satisfies the following equation, in whichT (z) is the
function enumerating alland/or trees onn literals:

ETrue(z) = 2nz2 + 2ETrue(z)T (z).

We obtainETrue(z) = (2nz2)/(1− 2T (z)) = zT (z); hence

ETrue(z) =
ρ(1−

√
1− 16nz)

4
+ O(z − ρ)

for z nearρ. Using Lemma 1 (the conditions for which are clearly satisfied) we can read offπ(ETrue) = ρ,
P (ETrue) = ρ. Recalling thatρ = 1/(16n), these give the common lower bound:

THEOREM 2 π(True) ≥ 1

16n
; P (True) ≥ 1

16n
.

Of course the same bounds apply toFalse. Notice also that asETrue(z) = z T (z), we even get a lower bound on
the numberTm(True) of trees of sizem which computeTrue, namely

Tm(True) ≥ 2m−2(2n)m−1Cm−2 whereCm−2 is a Catalan number.

Now define a subsetEx of the trees that compute the literalx by

Ex = {x} ⊕ (∨, Ex, Ex)⊕ (∧, Ex, Ex)⊕ (∧, ETrue, Ex)⊕ (∧, Ex, ETrue)

⊕ (∨, EFalse, Ex)⊕ (∨, Ex, EFalse).
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The generating functionEx(z) for this set satisfies the equation

Ex(z) = z + 2Ex(z)2 + 4Ex(z)ETrue(z),

which gives

Ex(z) =
1

4

„
1− z + z

√
1− 16nz −

q
1− 10z + 2z2 − 16nz3 + 2z(1− z)

√
1− 16nz

«
.

ExpandingEx(z) near its singularityρ = 1/(16n) gives

Ex(z) =
1

4

`
αx − βx

√
1− 16nz

´
+ O(1− 16nz),

with αx = (16n − 1 − √
η)/(16n) andβx = αx/

√
η = ραx/

p
1− 10ρ + ρ2, whereη = 256n2 − 160n + 1.

Hence

π(x) >
16n− 1−√η

16n
=

1

4n
+

3

64n2
+ O(1/n3); P (x) ≥

16n− 1−√η

16n
√

η
=

1

64n2
+

1

128n3
+ O(1/n4).

What we have just done for literals can be mimicked for any Boolean functionf 6∈ {True, False}. Let us consider
a Boolean functionf 6∈ {True, False}, let L(f) be its complexity (i.e., the number of leaves in the trees of smallest
size representingf ),M(f) be the set of such trees of minimal complexity, andk(f) = |M(f)| the number of these
trees. Next define a subsetEf of the trees that computef by

Ef = M(f) ⊕ (∧, Ef , Ef )⊕ (∨, Ef , Ef )⊕ (∧, Ef , ETrue)

⊕ (∧, ETrue, Ef )⊕ (∨, Ef , EFalse)⊕ (∨, EFalse, Ef ).

The generating functionEf (z) of Ef satisfies

Ef (z) = k(f) zL(f) + 2 E2
f (z) + 4 Ef (z) ETrue(z) .

Using the form ofETrue(z) found above, it can be checked thatEf (z) has only one dominant singularity on|z| = ρ,
namely atρ, and that this singularity is algebraic. (We omit the details.) ExpandingEf (z) aroundρ, we get

Ef (z) =
1

4

“
αf − βf

p
1− z/ρ

”
+ O(1− z/ρ),

where, settingµ(f) = 8k(f)ρL(f)/(1− ρ)2, we have

αf = (1− ρ)
“
1−

p
1− µ(f)

”
; βf = ρ

 
1p

1− µ(f)
− 1

!
.

Finally we apply Lemma 1 to get lower bounds for the probabilitiesP (f) andπ(f):

THEOREM 3 For any non-constant Boolean functionf , if L(f) is the complexity off andk(f) is the number of trees
of minimal sizeL(f) that computef , then

π(f) ≥ (1− ρ)
“
1−

p
1− µ(f)

”
; P (f) ≥ ρ

 
1p

1− µ(f)
− 1

!
,

whereρ = 1/(16n) and

µ(f) :=
8 k(f) ρL(f)

(1− ρ)2
.

From this Theorem, we can obtain weaker bounds, easier to compute, but (in the form involvingk(f)) asymptotically
equivalent for largen.

COROLLARY 4 π(f) ≥ 4k(f)

(16n)L(f)
≥ 2

(8n)L(f)
; P (f) ≥ 4k(f)

(16n)L(f)+1
≥ 1

(8n)L(f)+1
.

Here we have used the inequalityk(f) ≥ 2L(f)−1. This is related to the “folklore” fact that minimaland/or trees
for f are rigid, and can be proved by induction onL(f). The caseL(f) = 1 is trivial. If L(f) > 1, observe that in
a tree representation off of minimal size, the root has two daughters computingf1 andf2, say. Eitherf = f1 ∨ f2

or f = f1 ∧ f2. Notice thatf1 6= f2. For if f1 = f2 thenf = f1 = f2 and the representation off cannot be
minimal. Clearly the two daughters must also be of the minimal sizesL(f1) andL(f2), andL(f) = L(f1) + L(f2).
By the induction hypothesis,k(f1) ≥ 2L(f1)−1 andk(f2) ≥ 2L(f2)−1 giving 2L(f1)−1 2L(f2)−1 distinct minimal
trees computingf . In each case we can exchange the daughter subtrees without modifying the function computed.
As f1 6= f2 the representations off resulting from doing this are alldifferent, so

k(f) ≥ 2 2L(f1)−1 2L(f2)−1 = 2L(f1)+L(f2)−1 = 2L(f)−1 .

If we knowk(f), or a better lower bound onk(f), we may get a substantial improvment on the bound of Lefmann
and Savicḱy for P (f). (See the numerical results below.) Even if we do not knowk(f), we still get at least four times
their bound.
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4 Numerical results
For several Boolean functions, we will compare our lower bound forP (f) with that of Lefmann and Savický, and
numerical values of our best lower bounds with the exact values forn ≤ 3.

• For the constantsTrue andFalse, π andP are greater than1/(16n), which is much better than Lefmann and
Savicḱy’s bound of1/(2 048n3).

π(True) Lower bound onπ(True) P (True) Lower bound onP (True)

n = 1 0.1339 0.0625 0.2886 0.0625
n = 2 0.08642 0.03125 0.2094 0.03125
n = 3 0.0642 0.015625 0.165 0.015625

• For a literalx, k(x) = L(x) = 1, and Lefmann and Savický’s bound onP (x) is 1/(256n2). Our lower bound
onP (x) is

P (x) ≥ 1

16n

0@ 1q
1− 1

2n(1−1/(16n))2

− 1

1A ∼ 1

64n2
.

The lower bound onπ(x) is

π(x) ≥
„

1− 1

16n

«  
1−

s
1− 1

2n(1− 1/(16n))2

!
∼ 1

4n
.

Let us see how these bounds compare with the actual values forn ≤ 3:

π(x) Lower bound onπ(x) P (x) Lower bound onP (x)

n = 1 0.3660 0.3219 0.2113 0.03268
n = 2 0.1595 0.1390 0.06717 0.005235
n = 3 0.0994 0.08916 0.0314 0.002087

• For the functionsl1 ∧ l2 or l1 ∨ l2 (for literals l1 6= l2, l̄2), we have thatL(f) = 2 = k(f). Lefmann and
Savicḱy’s bound onP (l1 ∧ l2) is 1/(2 048 n3). Our lower bound is

P (l1 ∧ l2) ≥
1

16n

0@ 1q
1− 1

16n2(1−1/(16n))2

− 1

1A ∼ 1

512n3
,

and the lower bound onπ(l1 ∧ l2) is

π(l1 ∧ l2) ≥
„

1− 1

16n

«  
1−

s
1− 1

16n2(1− 1/(16n))2

!
∼ 1

32n2
.

Again we compare these lower bounds with the actual values forn = 2, 3:

π(l1 ∧ l2) L. B. onπ(l1 ∧ l2) P (l1 ∧ l2) L. B. onP (l1 ∧ l2)

n = 2 0.02345 0.008098 0.03848 0.0002634
n = 3 0.00776 0.00355 0.00995 0.7586 10−4

• For a functionl1 ∧ l2 ∧ l3 (with l1, l2, l3 literals in distinct variables),L(f) = 3 andk(f) = 12. Lefmann and
Savicḱy’s bound onP (l1 ∧ l2 ∧ l3) is 1/(16 384 n4). Our lower bound is now

P (l1 ∧ l2 ∧ l3) ≥
1

16n

0@ 1q
1− 3

128n3(1−1/(16n))2

− 1

1A ∼ 3

4096n4
,

and the lower bound onπ(l1 ∧ l2 ∧ l3) is

π(l1 ∧ l2 ∧ l3) ≥
„

1− 1

16n

«  
1−

s
1− 3

128n3(1− 1/(16n))2

!
∼ 3

256n3
,

The exact values forn = 3 are:

π(l1 ∧ l2 ∧ l3) L. B. onπ P (l1 ∧ l2 ∧ l3) L. B. onP

n = 3 0.00282 0.0004433 0.00768 0.943 10−5
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• For a functionl1 ∧ (l2 ∨ l3) (with l1, l2, l3 literals in distinct variables), of similar complexityL(f) = 3 but
smallerk(f) = 4, π(f) ≥ 1/(256n3). Lefmann and Savicḱy’s bound onP (l1 ∧ (l2 ∨ l3)) is 1/(16 384 n4),
i.e. the same as for the functions of the typel1 ∧ l2 ∧ l3. Our lower bound is

P (l1 ∧ (l2 ∨ l3)) ≥
1

16n

0@ 1q
1− 1

128n3(1−1/(16n))2

− 1

1A ∼ 1

4096n4
,

and the lower bound onπ(l1 ∧ (l2 ∨ l3)) is„
1− 1

16n

«  
1−

s
1− 1

128n3(1− 1/(16n))2

!
∼ 1

256n3
.

We check the lower bounds against the exact values forn = 3:

π(l1 ∧ (l2 ∨ l3)) L.B. onπ P (l1 ∧ (l2 ∨ l3)) L. B. onP

n = 3 0.000817 0.0001477 0.00211 0.3144 10−5

• For the functionf = x1 xor x2, L(f) = 4 andk(f) = 16; we basically have two minimal representations:
(x1 ∧ x̄2) ∨ (x̄1 ∧ x2) and(x1 ∨ x2) ∧ (x̄1 ∨ x̄2), and each representation gives eight different trees. This
gives:

1. Forn = 2: the lower bound onπ is 0.630 10−4 and the lower bound onP is 0.203 10−5 (the actual
values are0.000635 for π and0.00229... for P ).

2. Forn = 3: the lower bound onπ is 0.123 10−4 and the lower bound onP is 0.261 10−6 (the actual
values are0.635 10−3 for π and0.192 10−3 for P ).

3. For largen, π(x1 xor x2) ≥ 1/(1 024n4) andP (x1 xor x2) ≥ 1/(16 384n5).

All these numerical computations show that the lower bounds forP (f) are quite far from the actual values of the
probabilities, when we know them! Forπ(f) the gap is not quite so large, perhaps hinting at the major contribution
of trees of the minimal sizeL(f) to bothπ(f) and our lower bound.

5 Comparison of P (f) and π(f)
We will now compare the probabilitiesP (f) andπ(f) for some particular Boolean functionsf . If S is a set of
Boolean functions, writeP (S) =

P
f∈S P (f).

LEMMA 5 (PARIS, VENCOVSKÁ AND WILMERS [7]) Fix k in the interval 0 ≤ k ≤ 1. Let S(k) be the set of
all Boolean functionsf : {True, False}n → {True, False} such that2−n |{x ∈ {True, False}n : f(x) =
True}| = k . ThenP (S(k)) → 0 asn →∞.

Let f be a function ofx1, x2, . . . , xr. Consideringf to be a function ofx1, x2, . . . , xn which does not depend on
the variablesxr+1, xr+2, . . . , xn, the probabilitiesP (f) andπ(f) make sense for alln ≥ r.

THEOREM 6 Suppose thatr is fixed andf(x1, x2, . . . , xr) is any Boolean function that depends essentially on all of
the r variablesx1, x2, . . . , xr. ThenP (f) = o(n−r) asn →∞.

PROOF: As the functionf depends essentially on all ofx1, x2, . . . , xr, distinct choices of1≤ i1 < i2 < · · · < ir ≤
n correspond todistinct functionsf(xi1 , xi2 , . . . , xir ) . Let S be the set of all such functions. Clearly,

P (S) =
“n

r

”
P (f)

andS ⊆ S(k) for the fixed real numberk = 2−r |{x ∈ {True, False}r : f(x) = True}|. Applying Lemma 5
shows thatP (S) ≤ P (S(k)) = o(1). Consequently,

P (f) = P (S)

ffi„
n
r

«
= o(n−r) . 2

An and/or formula isread–onceif each variable appears at most once (possibly negated). It is well known (see
e.g. [8]) that the function defined by a read–once formula depends essentially on all the variables appearing. A
Boolean function isread–onceif there is some read–onceand/or formula which defines it.

THEOREM 7 Fix r and suppose thatf(x1, x2, . . . , xr) is any read–once Boolean function ofr variables. Then

lim
n→∞

P (f)

π(f)
= 0 so certainlyP (f) < π(f) oncen is sufficiently large.
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PROOF: We can assume thatf depends essentially on all of the variablesx1, x2, . . . , xr. By Theorem 6, it is only
necessary to show thatπ(f) ≥ crn

−r for some constantcr > 0. However we saw in Section 3 thatπ(f) ≥
2 (8n)−L(f), and asL(f) = r for the read–once functionf , this lower bound is indeed of the formcrn

−r. 2

For example,P (x1) < π(x1), P (x1 ∨ x2) < π(x1 ∨ x2) andP (x̄1 ∨ (x̄2 ∧ x3)) < π(x̄1 ∨ (x̄2 ∧ x3)) oncen is
large enough.

We now return to considering the probability that anand/or formula is a tautology.

THEOREM 8 P (True) > π(True) for all n.

PROOF: As before,T , Tx andTTrue will denote respectively the class of alland/or trees, the class of all trees
computing the literalx, and the class of all trees computing the constant functionTrue. The corresponding generating
functions areT (z), Tx(z) andTTrue(z). Consider the class

G = ⊕1≤i≤n(∨, Txi , Tx̄i) ⊕... ⊕1≤i≤n(∨, Tx̄i , Txi)
⊕ (∧, TTrue, TTrue) ⊕ (∨, TTrue, TTrue)
⊕ (∨, T \ TTrue, TTrue) ⊕ (∨, TTrue, T \ TTrue).

ClearlyG ⊆ TTrue. The generating seriesG(z) for G is given by

G(z) = 2n Tx(z)2 + 2 TTrue(z) T (z) .

Each of the functionsT (z), TTrue(z) andTx(z) on the right has radius of convergenceρ = 1/(16n) and on their
circle of convergence only an algebraic singularity atz = ρ, so the same is clearly true ofG(z). Similarly, for z

nearρ, G(z) ≈
“
α− β

p
1− z/ρ

”
/4 for some positive constantsα, β. Using Lemma 1 we see thatP (True) ≥

P (G) = limz→ρ−(G ′(z)/T ′(z)). Now

G ′(z) = 4n Tx(z) T ′
x(z) + 2 T ′

True(z) T (z) + 2 TTrue(z) T ′(z)

and dividing byT ′(z) gives

P (True) ≥ lim
z→ρ−

G ′(z)

T ′(z)
= 4n Tx(ρ) lim

z→ρ−

T ′
x(z)

T ′(z)
+ 2 T (ρ) lim

z→ρ−

T ′
True(z)

T ′(z)
+ 2 TTrue(ρ)

= n π(x)P (x) +
1

2
P (True) +

1

2
π(True) .

So P (True) ≥ 2n π(x)P (x)+π(True) > π(True) , as the probabilitiesπ(x) andP (x) of computing the literal
functionx are strictly positive for alln. 2

6 Final remarks
Notice that in the case of read–once functionsf of r variables, withr fixed, the lower boundπ(f) ≥ crn

−r from
Section 3 differs from the trivial upper bound

π(f) ≤ 1

ffi„
n
r

«
proved similarly to Theorem 6, by only a constant factor. (The constant depends onr). ForP (f) the agreement is not
quite so good, the lower bound from Section 3 differing from the upper bound in Theorem 6 by a factor of ordero(n).

CONJECTURE1 Suppose thatf(x1, x2, . . . , xr) is a read–once Boolean function ofr variables, withr fixed. Then
there exist constantsbf andBf such thatπ(f) ∼ bf n−r andP (f) ∼ Bf n−r−1 asn →∞.

The conjecture asserts that, aside from constant factors depending onf , the lower bounds in Corollary 4 give
correct asymptotic formulas whenf is a read-once function. All the examples given in Section 4, apart from the first
and last, are read-once functions. So in particular, the asymptotic formulas for them should look like the computed
asymptotic lower bounds except for the values of the constant factors.

Random generation ofand/or trees, forn = 2, has been simulated by F. Quessette and D. Villa Moreira. This
was done for two variablesx1 andx2, and e.g. the number of internal nodes equal to 1000, with106 trees generated
at random. The random generation algorithm is as follows: first a random binary tree is generated, using Remy’s
algorithm, then a random labelling of internal nodes and of leaves takes place.

This simulation gave good agreement with the calculated values of the probabilitiesP (f), for the 16 Boolean
functions considered. We then computed, for each Boolean function, the following parameters: height, width, number
of occurrences of∧, number of occurrences of a specified literal. Simulations appear to indicate that in each case,
these parameters followthe sameGaussian limiting distribution whatever the Boolean function.
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