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We solve the recursio® = Sy—1 — q"S—p, both, explicitly, and in the limit fon — co, proving in this way a formula
due to Merlini and Sprugnoli. It is also discussed how computer algebra could be applied.
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1 Fountains and histograms

Merlini and Sprugnoli[[6] discusfountainsand histograms for the reader’s convenience, we review a
few key issues here.

A fountain with n coings an arrangement ofcoins in rows such that each coin in a higher row touches
exactly two coins in the next lower row.

A p-histogramis a sequence of columns in which the height of ¢the 1)st column is at mosgt+ p, if
k is the height of columnj; the first column has height with 1 <r < p.

It can be shown that the enumeration of coins in a fountain is equivalent with the enumeration of
1-histograms. The paperi[6] addresses the enumeratipshistograms with respect to area (=number of
cells). Letf,Lp] be the numbep-histograms with areaandF [P (q) the corresponding generating function

Fp (@=>3n f,ﬁ”]q”. The authors of [6] use two different approaches: one produces the answer in the form

TPartially supported by SFB grant F1305 of the Austrian FWF.
*The research was started when this author visited the RISC in 2002. Partially supported by NRF grant 2053748.

1365-805Q0) 2003 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France


http://dmtcs.loria.fr/
http://dmtcs.loria.fr/volumes/

102 Peter Paule and Helmut Prodinger
with some polynomial®y,, En, defined in the next section, and the other gives it as
(k+1 qu+p(g)

Bl () (~1kgP('2) (-1)
R k;uq>...<1qk>/k§)<1q>...<1qk)'

According to [5], it would be nice to have a direct argument that these two answers coincide. This is
the subject of the present note.

2 Generalized Schur polynomials
The polynomials mentioned in the introduction are for fixed 1 defined as follows:
En e En71 _ann7p7 n Z p7 EO R Ep71 = 17
P
Dn:anl—annfpa n2p7 D|:1—qu,|:07,p—1
=1

They can be compared with the classical Schur polynonmials [8], which occpr#fd andq= —1. Then
Merlini and Sprugnoli want a direct proof of the formulee

ime v D)
Ew = r!moEn—kgo (1-q)...(1—g’
n - (_1)qu+p(|§)
Do, := lim Dy —%(1,@...(17(}")'

We will not only achieve that but actually deriegplicit expressions for these polynomials!
It should be mentioned that Ciglerl [4] developed independently a combinatorial method to deal with
recursions as ours, but also more general ones.

Let us study the generic recursion
S\ = 5'1—1 +tqn7ps1—p7

with unspecified initial value$y, ..., S,—1. Forp = 2, these polynomials were studied by Andrews (and
others) in the context ddchur polynomialssee|[2].
We will use standard notation froop-calculus, seé [1]:

(Xn=(1-x)(1-xq)...(1—xd"1), m :(q))nn_k'

It will be convenient to defingy] =0 forn<0ork > n.
Now we will proceed as inJ1] and consider noncommutative variakleg such thaixn = gnx; all
other variables commute.

Lemmal.
n

)= 3 [Tap-emeatigrmoiogn
k=0
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Proof. We write
x+xpr] Z)ankaern k

n+1 )n+1

and(x+xPn)"" " = (x+ xpn) (x+xPn) resp. agx+xPn (x+xPn) (x+xPn)", compare coeffi-

cients, and get the recursions

Ant+1k = ank—1+t an,quw(n*k),

A1k = an,k—lqn+l_k + an,kqp(n_k)
From this we derive, taking differences,
1 n+1—k
ank = j_qiqq p(n >an,k—1~
The result follows from iteration by noting tha o = qp(g). O

Of course we also have

n
(x+txpn)n _ Z {E] qp(g)fpnk+p(k§1)Xk+p(n—k)tn—knn—k.
k=0

Now we derive the generating function for

the following procedure is inspired byl/[2]. Note that we can alternatively viexg an operator, defined
by nf(x) = f(gx). Cigler worked also much with this techniqle[[8, 4]. We find

qux = ZSn 1X +th” PS-pX"=x Z Sx" +txp%nsqx”
f>

n>p n>p n>p—1

or
FOO— Y SX'=xF(x)—x 5 Sx"+tx’nF(x),

n<p n<p-1

and
1

i i+1
o (L 3 %)

Now we can apply our lemma and write

F(x):n; (x+txPn) <ZSX S Sxi“)

i<p i<p—1

F(x) =

n

_ Z)Z [ﬂ qp(g)—pnk+p( )Xk+p(n K)¢n— k n— k(ZSX _ z Sxiﬂ)
n>0k=0 I<p i<p—1

n

n n k41 ; . . .
_ qp(z)—pnker( 3 )Xk+p(nk)tnk< z Sq|(n—k)xl _ Z Sq(|+1)(nk)xl+l)
n;k; LJ i

i<p i<p—1
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;i { }qp - k+pktk<l<zpsqlkx .<§18q(i+1>kxi+l>
Zz [ } n+pktk(zsq'kx Z Sqli+Dky 1)

I<p i<p—-1

= qp(z)xpktk B ( z Sqlkx Z Sq(i+1)kxi+1> .

k>0 i<p i<p—1

From this we find an explicit formula fd, (the quantityS_; has to be interpreted as 0):

S5 (§ Z{ (p— 1) }qp(g)ﬂktk'

o<i<p k>0

Now we specialize this to our instance. Here; —qP, and thus
N—(P—DK—=i] o)k, 41k
S= 5 (S-S0 | g5k (1)K
0<|z<p k;) k
Therefore
En = [n_ (p- 1)k] o) (-1
K>0 k
From this, the limit ofg, is immediate. FoD,, we eventually get the following form
Dp = Z) |:n_ (p_ 1)(k_ 1):| qk+p(;) (_]_)k7
K> k
from which the formula foD., is immediate. To prove it, we need a simple lemma whose proof is just a

routine calculation.
Lemma2.

M=i] Ste) _ iy i = M= i e
[k }q g(i)—g(i—1)  where (i) [k+1]q :

Now we can plug into the general formula above and compute

Dy = E, :’;lk; [” (P*k k- i} P+l gk

—E- 3 ol y 1 B g

= K
=En- I;;j(—l)"qp(k?) {q"“ {” ‘lii—l 1)'1 etk [” - (pk— +1)1(k+ 1)] }
—1- Y (kP E) gt [”— ﬁ ” 1)!1 |
k>0

which is the announced formula after a simple change of variable. Note that in the penultimate step the
telescoping property of the lemma has been used.
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3 Computer algebra proofs

The polynomial familiegE,) and (D) give rise to the following study with respect to possible computer
proofs. Let us take as input our sum representatioris, @hdDy,:

En = k; {n_ (Fll_ 1)k}q'°(k51)(—1)"a 3.1)
D, — k; {n— (p—kl)(k— 1)} orP(5) (1)«

Then, if pis chosen as a specific positive integer, Riese’s paciZgé [7] returns the recurrence® =
S-1—0"S—p (n> p) together with a certificate functio@ert for independent verification. Despite the
fact that for general “generic” integer paramegethere is no algorithm available, a general pattern can
be easily guessed from running the algorithmget 1, p= 2, andp = 3, say.

For example, leF (n,k) be thekth summand in our sum representation (3. lEgfthen the recurrence
for E, can be refined to the following statement.

Theorem 3.1. For n> p anddf(n,k) = f(n,k) — f(n,k—1), we have
F(n,k) —F(n—1,k) +q"F(n— p,k) = &Cert(n,k)F (n,k), (3.2)

where
(qnf p(k+1)+1)p

(qnf(pfl)(kjtl))p

Cert(n,k) ="

Proof. After dividing both sides of[(3]2) bi (n, k) the proof reduces to checking equality of rational
functions. Namely, note that

F(n—1,k) 1—qgPk

F(nk) — 1—g(p-DK

Fink=1) g (P,
F(nk) — 1—qf (g (P-Dkil), 4’
and
Fin—pk)
W = q Cer‘t(n7 k)
O
Analogously, there is a refined version of the recurrenc®forThe certificate in this case is
G
Cert(n,k) =q RGN

Summarizing, with the sum representationEgrandD,, in hand, the corresponding recurrences follow
immediately by summing both sides of the computer recurreficgs (3.2) oker @l
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