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Renewed interest in caching techniques stems from their application to improving the performance of the World Wide Web, where
storing popular documents in proxy caches closer to end-users can significantly reduce the document download latency and overall
network congestion. Rules used to update the collection of frequently accessed documents inside a cache are referred to as cache
replacement algorithms. Due to many different factors that influence the Web performance, the most desirable attributes of a cache
replacement scheme are low complexity and high adaptability to variability in Web access patterns. These properties are primarily
the reason why most of the practical Web caching algorithms are based on the easily implemented Least-Recently-Used (LRU)
cache replacement heuristic.

In our recent paper Jelenković and Radovanović (2004c), we introduce a new algorithm, termed Persistent Access Caching (PAC),
that, in addition to desirable low complexity and adaptability, somewhat surprisingly achieves nearly optimal performance for
the independent reference model and generalized Zipf’s law request probabilities. Two drawbacks of the PAC algorithm are its
dependence on the request arrival times and variable storage requirements. In this paper, we resolve these problems by introducing
a discrete version of the PAC policy (DPAC) that, after a cache miss, places the requested document in the cache only if it is
requested at leastk times among the lastm, m ≥ k, requests. However, from a mathematical perspective, due to the inherent
coupling of the replacement decisions for different documents, the DPAC algorithm is considerably harder to analyze than the
original PAC policy. In this regard, we develop a new analytical technique for estimating the performance of the DPAC rule. Using
our analysis, we show that this algorithm is close to optimal even for small values ofk andm, and, therefore, adds negligible
additional storage and processing complexity in comparison to the ordinary LRU policy.

Keywords: persistent-access-caching, least-recently-used caching, least-frequently-used caching, move-to-front searching, gener-
alized Zipf’s law distributions, heavy-tailed distributions, Web caching, cache fault probability, average-case analysis

1 Introduction
Since the recent invention of the World Wide Web, there has been an explosive growth in distributed multimedia con-
tent and services that are now an integral part of modern communication networks (e.g., the Internet). This massively
distributed network information is repeatedly used by groups of users implying that bringing some of the more pop-
ular items closer to end-users can improve the network performance, e.g., reduce the download latency and network
congestion. This type of information replication and redistribution system is often termed Web caching.

One of the key components of engineering efficient Web caching systems is designing document placement (replace-
ment) algorithms that are selecting and possibly dynamically updating a collection of frequently accessed documents.
The design of these algorithms has to be done with special care since the latency and network congestion may actu-
ally increase if documents with low access frequency are cached. Thus, the main objective is to achieve high cache
hit ratios, while maintaining ease of implementation and scalability. Furthermore, these algorithms need to be self-
organizing and robust since the document access patterns exhibit a high degree of spatial as well as time fluctuations.
The well-known heuristic named the Least-Recently-Used (LRU) cache replacement rule satisfies all of the previously
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mentioned attributes and, therefore, represents a basis for designing many practical replacement algorithms. However,
as shown in Jelenković (1999) in the context of the stationary independent reference model with generalized Zipf’s
law requests, this rule is by a constant factor away from the optimal frequency algorithm that keeps most frequently
used documents in the cache, i.e., replaces Least-Frequently-Used (LFU) items. On the other hand, the drawbacks of
the LFU algorithm are its need to know (measure) the document access frequencies and employ aging schemes based
on reference counters in order to cope with evolving access patterns, which result in high complexity. In the context
of database disk buffering, O’Neil et al. (1999) proposes a modification of the LRU policy, called LRU-K, that uses
the information of the last K reference times for each document in order to make replacement decisions. It is shown
in O’Neil et al. (1999) that the fault probability of the LRU-K policy approaches, as K increases, the performance
of the optimal LFU scheme. However, practical implementation of the LRU-K policy would still be of the same or-
der of complexity as the LFU rule. Furthermore, for larger values ofK, that might be required for nearly optimal
performance, the adaptability of this algorithm to changes in traffic patterns will be significantly reduced.

In our recent paper Jelenković and Radovanović (2004c), we designed a new cache replacement policy, termed
the Persistent Access Caching (PAC) rule, that is essentially preserving all the desirable features of LRU caching,
while achieving arbitrarily close performance to the optimal LFU algorithm. Furthermore, the PAC algorithm has only
negligible additional complexity in comparison with the widely used LRU policy. However, the drawback of the PAC
policy is that its implementation and analysis depend on the Poisson assumption on the request arrival times. In this
paper, we propose a discrete version of the PAC rule (DPAC), that, upon a miss for a document, stores the requested
document in the cache only if there are at leastk requests for it amongm, m ≥ k, previously requested documents;
therefore, DPAC does not depend on request arrival times. Furthermore, the DPAC policy requires only a fixed amount
of additional storage form pointers and a small processing overhead that make it easier to implement than the original
PAC rule. On the other hand, due to the coupling of the request decisions, as pointed out in the abstract, DPAC is
significantly more difficult to analyze. To this end, we develop a new analytic technique, which, in conjunction with
the large deviation analysis and asymptotic results developed in Jelenković and Radovanović (2004c,a); Jelenković
(1999), shows that the performance of the DPAC policy is nearly optimal. It is surprising that even for small values of
k, m, the performance ratio between the DPAC and optimal LFU algorithm significantly improves when compared to
the ordinary LRU; for example, this ratio drops from approximately1.78 for LRU (k = 1) to 1.18, 1.08 for k = 2,
3, respectively. In other words, with only negligible computational complexity relative to the LRU rule, the DPAC
algorithm approaches the performance of the optimal LFU scheme without ever having to compute the document
access frequencies. Furthermore, we show that our asymptotic formulas and simulation experiments match each other
very well, even for relatively small cache sizes.

This paper is organized as follows. First, in Section 2, we formally describe the DPAC policy and develop a
representation theorem for the stationary cache fault probability. This representation formula and lemmas of Section 3
provide necessary tools for proving our main result, stated in Theorem 1, in Section 4. Informally, this theorem shows
that for large cache sizes, independent reference model and generalized Zipf’s law request distributions withα > 1, the
fault probability of the DPAC algorithm approaches the optimal LFU policy while maintaining low implementation
complexity. Furthermore, in Section 5, we provide an additional validation of our asymptotic approximations with
simulation experiments. A brief discussion of our results is presented in Section 6. In order to alleviate the reading
process, we present the proof of a technical lemma in Section 7.

2 Model description and preliminary results
Consider a setL = {1, 2, . . . , N} of N ≤ ∞ documents (items) of unit size, out of whichx documents can be
stored in an easily accessible location, called cache. The remainingN − x items are placed outside of the cache in
a slower access medium. Documents are requested at moments{τn}n≥1, with increments{τn+1 − τn}n≥0, τ0 = 0,
being stationary and ergodic havingEτ1 = 1/λ for someλ > 0, andτ1 > 0 a.s.. Furthermore, define i.i.d. random
variablesR(N), {R(N)

n }n≥1, independent from{τn}n≥1, where{R(N)
n = i} represents a request for itemi at time

τn. We denote the request probabilities asq
(N)
i , P[R(N) = i] and, unless explicitly required for clarity, we omit the

superscriptN and simply writeR, Rn, qi; also, without loss of generality, we assume thatq1 ≥ q2 ≥ . . . .
Now, we describe the cache replacement algorithm. First, we select fixed design parametersm ≥ k ≥ 1. Then, let

Mi(τn) be the number of requests for itemi among them consecutive requestsτn, τn+1, . . . , τn+m−1. Documents
stored in the cache are ordered in a list, which is sequentially searched upon a request for a document and is updated
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as follows. If a requested document at timeτn, sayi, is found in the cache, we have a cache hit. In this case, if
the number of requests for documenti among the lastm requests (including the current request) is at leastk, i.e.,
Mi(τn−m+1) ≥ k, item i is moved to the front of the list while documents that were in front of itemi are shifted
one position down; otherwise, the list stays unchanged. Furthermore, if documenti is not found in the cache, we call
it a cache miss or fault. Then, similarly as before, ifMi(τn−m+1) ≥ k, documenti is brought to the first position
of the cache list and the least recently moved item, i.e., the one at the last position of the list, is evicted from the
cache. We name the previously described cache replacement policy the Discrete Persistent Access Caching (DPAC
(m, k)) algorithm. Note that in the special case ofm ≥ k = 1, DPAC reduces to the ordinary LRU heuristic. Also,
the earlier proposed “k-in-a-row” rule (Kan and Ross (1980); Gonnet et al. (1981)), that was studied in the context of
the expected list search cost, is a special case of the DPAC(m, k) algorithm whenm = k. The performance measure
of interest is the cache fault probability, i.e., the probability that a requested document is not found in the cache. We
would like to mention that the probabilistic evaluation of an algorithm is typically referred to as the average-case
analysis; the pointers to the literature on combinatorial (competitive, worst case) approach can be found in Jelenković
and Radovanović (2004c).

Analyzing the DPAC(m, k) algorithm is equivalent to investigating the corresponding Move-To-Front (MTF) scheme
that is defined as follows. Consider the same arrival model{Rn}, {τn} as in the first paragraph and assume that all
documents are ordered in a listL = {1, 2, . . . , N}, N ≤ ∞. When a request for a document arrives, sayRn = i, the
list is searched and the requested item is moved to the front of the list only whenMi(τn−m+1) ≥ k; otherwise the list
stays unchanged. We term the previously described searching algorithm the Discrete Persistent-MTF (DPMTF(m, k)).
The performance measure of interest for this algorithm is the search costC

(N)
n that represents the position in the list

of the document requested at timeτn.
Now, we claim that computing the cache fault probability of the DPAC(m, k) algorithm is equivalent to evaluat-

ing the tail of the search costC(N)
n of the DPMTF(m, k) searching scheme. Note that the fault probability of the

DPAC(m, k) algorithm stays the same regardless of the ordering of documents in the slower access medium. In par-
ticular, these documents can be also ordered in an increasing order of the last times they are moved to the front of
the cache list. Therefore, it is clear that the fault probability of the DPAC(m, k) policy for the cache of sizex after
thenth request is the same as the probability that the search cost of the DPMTF(m, k) algorithm is greater thanx,
i.e., P[C(N)

n > x]. Hence, even though DPAC(m, k) and DPMTF(m, k) belong to different application areas, their
performance analysis is essentially equivalent. Thus, in the rest of the paper we investigate the tail of the stationary
search cost distribution.

First, we prove the convergence of the search costC
(N)
n to stationarity. Suppose that the system starts at timeτ0 = 0

with initial conditions given by an arbitrary initial permutationΠ0 of the list and a sequence of the precedingm − 1
requestsR0 = {r−m+2, r−m+2, . . . , r−1, r0}.

In order to prove the convergence ofC
(N)
n to stationarity, we construct a sequence of DPMTF searching schemes

that start at negative time points and are observed at timeτ0 = 0. To that end, let{R−n}n≥0 be a sequence of i.i.d.
requests, equal in distribution toR, that arrive at points{τ−n}n≥0, τ−n ≤ 0. These arrival points are constructed such
that sequence{τn+1 − τn}−∞<n<∞ is stationary and ergodic; in particular, for everyn ≥ 1, {−τk}−1

k=−n is equal in
distribution to{τk}n

k=1. Then, for eachn > 0, we construct a DPMTF(m, k) algorithm starting atτ−n with the same
initial condition as in the previous paragraph, given byΠ0 andR0, and having a sequence of requests{Rl}0

l=−n+1;

note that in this construction we assume that there is no request at timeτ−n. LetC(N)
−n be the search cost at timeτ0 = 0

for the DPMTF(m, k) algorithm starting atτ−n.
Now, if we consider the shift mappingRn−k → R−k, τn−k → τ−k for k = 0, 1, . . . n− 1, we conclude that, since

the corresponding sequences are equal in distribution, the search costsC
(N)
−n andC

(N)
n are also equal in distribution,

i.e.,C(N)
n

d= C
(N)
−n . Thus, instead of computing the tail of the search costC

(N)
n , we continue with evaluating the tail

of C
(N)
−n . In this regard, we define a sequence of random times{T (−n)

i }N
i=1, n ≥ 1, where−T

(−n)
i represents the last

time beforet = 0 that itemi was moved to the front of the list under the DPMTF(m, k) algorithm that started atτ−n;
if item i is not moved in(τ−n, 0), we setT (−n)

i = −τ−n. Next, we define random times{Ti}N
i=1 as

Ti , − sup{τ−n < 0 : R−n = i, Mi(τ−n−m+1) ≥ k}. (1)

From the definitions ofTi andT
(−n)
i , we conclude that the equalityTi = T

(−n)
i a.s. holds on event{T (−n)

i <
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−τ−n+m−1}, n > m − 1. Therefore, the complementary sets of events are the same, i.e.,{Ti ≥ τn−m+1} =
{T (−n)

i ≥ −τ−n+m−1}.
Then, given the previous observations, we bound the tail of the search costC

(N)
−n as

P[C(N)
−n > x,R0 = i,T

(−n)
i < −τ−n+m−1] ≤ P[C(N)

−n > x,R0 = i] ≤ (2)

P[C(N)
−n > x,R0 = i, T

(−n)
i < −τ−n+m−1] + P[C(N)

−n > x,R0 = i, T
(−n)
i ≥ −τ−n+m−1].

Next, observe that on event{R0 = i, T
(−n)
i < −τ−n+m−1}, n > m− 1, the search costC(N)

−n is equal to the number
of different documents (includingi) that are moved to the front of the list from the last time that itemi was brought to
the first position. Thus, we derive

P[C(N)
−n > x,R0 = i, T

(−n)
i < −τ−n+m−1] = P

R0 = i,
∑
j 6=i

1[T (−n)
j < T

(−n)
i < −τ−n+m−1] ≥ x


= qiP

∑
j 6=i

1[Tj < Ti < τn−m+1] ≥ x

 , (3)

where the last equality follows from the independence assumption on{τ−n}n≥0, {R−n}n≥0 and the equalityTi =
T

(−n)
i on{Ti < τn−m+1}, i ≥ 1.
Hence, by the monotone convergence theorem,

lim
n→∞

N∑
i=1

P[C(N)
−n > x,R0 = i, Ti < τn−m+1] =

N∑
i=1

qiP

∑
j 6=i

1[Tj < Ti] ≥ x

 . (4)

Furthermore, due to the stationarity and ergodicity of the arrival process{τn}, τn/n satisfies the strong law of large
numbers that, in conjunction with the a.s. finiteness ofTi < ∞, results in

lim
n→∞

P[Ti > τn] = 0.

Finally, equality of events{T (−n)
i ≥ −τ−n+m−1} = {Ti ≥ τn−m+1}, independence of requests, the preceding limit

and the dominated convergence theorem imply

lim
n→∞

N∑
i=1

P[R0 = i, T
(−n)
i ≥ −τ−n+m−1] = lim

n→∞

N∑
i=1

qiP[Ti ≥ τn−m+1] = 0.

The previous expression, in conjunction with (4) and (2), implies the following representation result:

Lemma 1 For any1 ≤ N ≤ ∞, arbitrary initial conditions(Π0,R0) and anyx ≥ 0, the search costC(N)
n converges

in distribution toC(N) asn →∞, where

P[C(N) > x] ,
N∑

i=1

qiP [Si(Ti) ≥ x] (5)

andSi(t) ,
∑

j 6=i 1[Tj < t].

Remark 1 (i) Note that the expression in (5) is independent from the selection of the arrival process{τn}n≥1. To see
this, assume two arrival processes{τn}n≥1 and{τ ′n}n≥1 that are independent from requests{Rn}n≥1 and satisfy the
stationarity, ergodicity and monotonicity conditions from the beginning of this section. Using (1), we define random
times{Ti}N

i=1, {T ′i}N
i=1, that correspond to processes{τn}n≥1, {τ ′n}n≥1, respectively. Then, it is easy to observe that

1[Tj < Ti] = 1[T ′j < T ′i ] a.s. for anyj 6= i, i.e., the sequences of random times{Ti}, {T ′i} are ordered in exactly
the same way. Thus, sinceSi(Ti) is completely determined by the ordering of these random times, it is clear that the
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distributions of the corresponding search costs are exactly the same. (ii) Using the preceding observation we assume
in the rest of the paper, without loss of generality, that{τn}n≥1 is a Poisson sequence of points with rate1. This
assumption will be helpful in Section 3 in decoupling the dependency among random times{Ti}N

i=1. In the context
of the LRU policy with i.i.d. requests, the Poisson embedding technique was first used in Fill and Holst (1996) to
derive a representation for the fault probability, as stated in (5), with independent random times{Ti}. The work in Fill
and Holst (1996) provides a probabilistic proof of an earlier result from Flajolet et al. (1992) that was obtained using
formal languages.

3 Preliminary results on Poisson processes
This section provides bounds on random timesTi and the sumSi(t), as defined in Lemma 1, that represent necessary
building blocks for the asymptotic analysis of the stationary search cost from Lemma 1. Furthermore, it is worth
noting that Lemmas 4 and 5 develop a new technique that allows the decoupling of the dependency among random
timesTi and, thus, enable us to estimate the sumSi(t). Throughout this section we assume thatN = ∞.

Recall the definition ofTi from (1). In order to avoid dealing with negative indices and signs, we define here a
sequence of random times on the positive sequence{τn}n≥1 that are equal in distribution to{Ti}i≥1. Thus, with a
small abuse of notation, we use the same nameTi for the following random times

Ti , inf{τn > 0 : Rn = i, Mi(τn) ≥ k}. (6)

Next, as proposed in the remark after Lemma 1, we assume that{τn}n≥1 is a Poisson process of rate 1. Then, let

{τ (i)
n }n≥1 be a sequence of requests for documenti. Given the i.i.d. assumption on{Rn}n≥1 and its independence

from the arrival points{τn}n≥1, the Poisson decomposition theorem implies that processes{τ (i)
n }n≥1, i ≥ 1, are

also Poisson with rateqi and mutually independent for differenti. This observation will be used in the proofs of the
subsequent lemmas.

In order to ease the notation, throughout the paper we useH to denote a sufficiently large positive constant andh
to denote a sufficiently small positive constant. The values ofH andh are generally different in different places. For
example,H/2 = H, H2 = H, H + 1 = H, etc. Also, we use the following standard notation. For any two real
functionsa(t) andb(t) and fixedt0 ∈ R ∪ {∞} we will usea(t) ∼ b(t) ast → t0 to denotelimt→t0 [a(t)/b(t)] = 1.
Similarly, we say thata(t) & b(t) ast → t0 if lim inft→t0 a(t)/b(t) ≥ 1; a(t) . b(t) has a complementary definition.

The following two lemmas compute upper and lower bounds on the tail of the distribution ofTi for largei.

Lemma 2 For any0 < ε < 1, there existsi0 and a fixed constanth > 0, such that for alli ≥ i0,

P[Ti > t] ≤ e−(m−1
k−1)(1−ε)2qk

i t + me−hεqk−1
i t. (7)

Proof: Fork = 1 the bound trivially holds sinceTi ≡ τ
(i)
1 and, thus, we assume thatk ≥ 2.

First, we define a sequence of random times{Θj}. We setΘ1 = τ
(i)
1 , and definen(j), j ≥ 1, to be the indices of

points{τ (i)
j }j≥1 in the original sequence{τn}n≥1, i.e.,τ (i)

j = τn(j), j ≥ 1. Then, if the first point from the sequence

{τ (i)
j } after timeτn(1)+m−1 is τ

(i)
j1

, we defineΘ2 = τ
(i)
j1

. Similarly, Θ3 is defined to be the first point from{τ (i)
j }

after timeτn(j1)+m−1, etc. Observe that{Θj} is a renewal process with its increments, forj ≥ 1, equal to

Θj+1 −Θj
d= τ

(i)
1 +

m−1∑
l=1

ξl, (8)

where
d= denotes equality in distribution and{ξj}j≥1 are independent, exponentially distributed random variables

with mean1 that are independent of{τ (i)
n }n≥1.

Next, we define
Ui , inf{Θj : Mi(Θj) ≥ k, j ≥ 1}.

Note that this definition ofUi has identical form to the one forTi in (6) sinceR(Θj) ≡ i is implied by{Θj} ⊂ {τ (i)
j }.

Therefore, given{Θj} ⊂ {τn}, it is clear that
Ti ≤ Ui. (9)



206 Predrag R. Jelenković and Xiaozhu Kang and Ana Radovanović

Similarly, we define
X ′ , inf{j ≥ 1 : Mi(Θj) ≥ k}.

Since{Rn} is i.i.d and independent of{τn}, X ′ is independent of{Θj}j≥1 with geometric distributionP[X ′ = j] =
(1− p)j−1p, j ≥ 1, wherep is equal to

p = P[Mi(τ
(i)
1 ) ≥ k].

Then, from the definition ofUi and (8) we obtain

Ui = ΘX′
d= τ

(i)
X +

(m−1)(X−1)∑
j=1

ξj ≤ τ
(i)
X +

(m−1)X∑
j=1

ξj , (10)

whereX is constructed such thatX
d= X ′ and it is independent of{τ (i)

n }, {ξj}.
Next, sinceτ (i)

X is a geometric sum of exponential random variables withX and{τ (i)
n }n≥1 independent, it is well

known (see Theorem5.3, p. 89 of Cinlar (1975)) thatτ (i)
X is also exponential with parameterpqi. Similarly,

∑X
j=1 ξj

is exponential with parameterp. Now, from monotonicity ofqi and
∑

i qi = 1, it follows that for anyε > 0, there
existsi0, such that for alli ≥ i0, qi is small enough to ensure

p = P[Mi(τ
(i)
1 ) ≥ k] =

m−1∑
l=k−1

(
m− 1

l

)
ql
i(1− qi)m−1−l ≥

(
m− 1
k − 1

)
qk−1
i (1− qi)m−k ≥ (1− ε)

(
m− 1
k − 1

)
qk−1
i .

(11)
At this point, using the observations from the previous paragraph, (9) and (10), we obtain, for alli large enough

(i ≥ i0),

P[Ti > t] ≤ P[Ui > t]

≤ P
[
τ

(i)
X > (1− ε)t

]
+ P

X(m−1)∑
j=1

ξj > εt


≤ e−pqi(1−ε)t + (m− 1)P

 X∑
j=1

ξj >
εt

m− 1


≤ e−(m−1

k−1)qk
i (1−ε)2t + (m− 1)e−

pεt
m−1 (12)

≤ e−(m−1
k−1)qk

i (1−ε)2t + me−hεqk−1
i t;

this completes the proof. 3

Lemma 3 For anyε > 0, there existsi0 such that for alli ≥ i0

P[Ti > t] ≥ e−(1+ε)(m−1
k−1)qk

i t. (13)

Proof: Since the bound is immediate fork = 1, we assumek ≥ 2.
First, we group the points{τ (i)

n }n≥1 into cycles using the following procedure. LetΘ1 = τ
(i)
1 and define a random

time
Z1 = inf{j ≥ 2 : Mi(τn(1)+m(j−1)) = 0},

wheren(1) is the index of the pointΘ1 ≡ τ
(i)
1 in the original sequence{τn}n≥1, i.e., τ (i)

1 = τn(1). Then, the first

cycle is the interval of timeC1 = [τn(1), τn(1)+mZ1−1]. Next, the first point of process{τ (i)
n } after timeτn(1)+mZ1−1,

sayτ
(i)
l , we label asΘ2 = τ

(i)
l and, similarly as before, we define a random time

Z2 = inf{j ≥ 2 : Mi(τn(2)+m(j−1)) = 0},
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wheren(2) is the index of the pointΘ2 in the original sequence{τn}n≥1, i.e.,Θ2 = τn(2). We continue this procedure
indefinitely.

Now, due to the i.i.d structure of{Rn} and its independence from{τn}, the sequence of random times{Zj} is i.i.d.
with geometric distribution

P[Zi = j] = (P[Mi(τ1) > 0])j−2P[Mi(τ1) = 0], j ≥ 2. (14)

Furthermore,{Θj} is a renewal process with renewal intervals equal to, forj ≥ 1,

Θj+1 −Θj
d= τ

(i)
1 +

mZ1−1∑
l=1

ξl, (15)

where{ξl} is an i.i.d. sequence of exponential random variables with mean1 that is independent ofτ (i)
1 , Z1. Note

that the sequences{Θj}j≥1, {n(j)}j≥1 as well as the other auxiliary variables (e.g.,X ′, X, p) are different from the
ones in the proof of Lemma 2. The same will apply for the proofs of the remaining lemmas in this section.

Next, we define sets, forj ≥ 1,

Aj , {ω : ∃τn ∈ Cj , R(τn) = i,Mi(τn) ≥ k};

note that eventsAj are independent sinceMi(τn(j)+m(Zj−1)) = 0. Then, since the union of the arrival points in all

cycles∪jCj contains all requests{τ (i)
n },

Ti = inf{τn : R(τn) = i,Mi(τn) ≥ k, τn ∈ Cj , j ≥ 1}
≥ Li , inf{Θj(ω) : ω ∈ Aj , j ≥ 1}, (16)

where the inequality is implied byτn ≥ Θj for anyτn ∈ Cj , j ≥ 1.
Now, we define

X ′ = inf{j ≥ 1 : ∃τn ∈ Cj , R(τn) = i,Mi(τn) ≥ k}.
The independence of eventsAj implies thatX ′ has a geometric distributionP[X ′ = j] = (1− p)j−1p, j ≥ 1 with p
satisfying

p = P[An] ≤ P[{Mi(τ
(i)
1 ) ≥ k} ∪ {Mi(τ

(i)
1 ,mZ1) ≥ k + 1}],

whereMi(τn, k) is defined as the number of references for documenti among the requests occurring atτn, τn+1, . . . , τn+k−1.
Furthermore, using the preceding definitions, we arrive at

Li = ΘX′
d
≥ τ

(i)
X , (17)

whereX is selected to be independent of{τ (i)
n } andX

d= X ′; the inequality is obtained by neglecting the sum in (15).
Furthermore, similarly as in the proof of Lemma 2,τ

(i)
X is an exponential random variable with distribution

P[τ (i)
X > t] = e−pqit. (18)

Thus, in order to complete the proof, we need an upper bound onp. In this respect, using the union bound, we upper
bound the success probabilityp as

p ≤ P[{Mi(τ
(i)
1 ) ≥ k} ∪ {Mi(τ

(i)
1 ,mZ1) ≥ k + 1}]

≤ P[Mi(τ1,m− 1) ≥ k − 1] + P[Z1 > k + 1] + P[Mi(τ1,m(k + 1)) ≥ k]

= P[Mi(τ1,m− 1) ≥ k − 1] + P[Mi(τ1) ≥ 1]k + P[Mi(τ1,m(k + 1)) ≥ k], (19)

where in the last equality we used the geometric distribution ofZ1 from (14). Finally, (16), (17), (18), (19) and the
fact that uniformly for all1 ≤ l2 ≤ l1 ≤ m(k + 1) and any fixedε > 0,

P[Mi(τ1, l1) ≥ l2] =
l1∑

s=l2

(
l1
s

)
qs
i (1− qi)l1−s ≤ (1 + ε)

(
l1
l2

)
ql2
i
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for all i large enough (i ≥ i0), yield the stated bound in this lemma. 3

In the following lemmas, we develop an analytic technique that allows us to decouple the dependency of random
timesTi for i large and to compute necessary estimates used in the proof of Theorem 1 in Section 4. The following
lemmas use the asymptotic estimate from Lemma 2 of Jelenković (1999) and the large deviation bound from Lemma 4
of Jelenkovíc and Radovanović (2004a); for reasons of completeness, we restate these lemmas in the Appendix.

Lemma 4 Let{Ti}i≥1 be random variables defined in (6). Then, forqi ∼ c/iα asi →∞, α > 1 and

ϑx =
(1 + ε)αkxαk

(1− ε)k+2ck
(
m−1
k−1

)
[Γ(1− 1

αk )]αk
,

we obtain

P

[ ∞∑
i=1

1[Ti < ϑx] ≤ x

]
= o

(
1

xα−1

)
as x →∞.

Proof: Note that for anyi0 ≥ 1

P

[ ∞∑
i=1

1[Ti < ϑx] ≤ x

]
≤ P

[ ∞∑
i=i0

1[Ti < ϑx] ≤ x

]
. (20)

Let {τ (i0)
j }j≥1 be an ordered sequence of request times for documentsi ≥ i0, i.e.,{τ (i0)

j }j≥1 = ∪i≥i0{τ
(i)
n }n≥1.

We usen(j), j ≥ 1, to denote the index of pointτ (i0)
j in the original sequence{τn}n≥1, i.e., τ (i0)

j = τn(j). Then,
since process{τn} is Poisson and{Rn} is i.i.d. sequence independent of{τn}, by the Poisson decomposition theorem,

process{τ (i0)
j ≡ τn(j)}j≥1 is also Poisson with rate

∑
i≥i0

qi. Next, in order to estimate an upper bound for random
timesTi, i ≥ i0, we proceed as follows.

First, we define a sequence of random times{Θj}. We setΘ1 = τn(1) ≡ τ
(i0)
1 ; then, if the first point from the

sequence{τn(j)} after timeτn(1)+m−1 is τn(j1), we defineΘ2 = τn(j1). Similarly, Θ3 is defined to be the first point
from {τn(j)} after timeτn(j1)+m−1, etc. Note that, due to the renewal structure of{τn}, {Θj} is a renewal process
whose increments, forj ≥ 1, satisfy

Θj+1 −Θj
d= τ

(i0)
1 +

m−1∑
l=1

ξl, (21)

whereτ (i0)
1 , {ξl}l≥1 are independent exponential random variables withτ

(i0)
1 having parameter

∑
i≥i0

qi andξl having
parameter1.

Next, for all i ≥ i0, define
Ui , inf{Θj : R(Θj) = i, Mi(Θj) ≥ k, j ≥ 1}.

Similarly as in the proof of Lemma 2, the definition ofUi has identical form to the one forTi in (6). The only
difference is that{Θj} ⊂ {τn} and, therefore,

Ti ≤ Ui. (22)

Then, using (21), we have that

Θj
d= τ

(i0)
j + ν

(1)
j−1 + · · ·+ ν

(m−1)
j−1 , j ≥ 1, (23)

whereν
(l)
0 = 0, 1 ≤ l ≤ m − 1 and{ν(l)

j }j≥1, 1 ≤ l ≤ m − 1, are independent Poisson processes of rate1 that

are also independent of the Poisson process{τ (i0)
j }j≥1 having rate

∑
i≥i0

qi. Using this observation and the fact that
{Rn} and{τn} are independent, we arrive at the following representation

Ui
d= τ

(i0)
Xi

+
m−1∑
l=1

ν
(l)
Xi−1 ≤ τ

(i0)
Xi

+
m−1∑
l=1

ν
(l)
Xi

, (24)
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whereXi is a geometric random variable independent from{ν(l)
j }j≥1, 1 ≤ l ≤ m − 1 and{τ (i0)

j }j≥1 with P[Xi =
j] = (1− pi)j−1pi, where

pi ,
∑

l≥k−1

qi∑
j≥i0

qj

(
m− 1

l

)
ql
i(1− qi)m−1−l.

Then, again, due to the Poisson decomposition theorem, variables{τ (i0)
Xi

}i≥i0 are independent and exponentially

distributed withτ (i0)
Xi

having parameterpi

∑
i≥i0

qi. Similarly, for each fixed1 ≤ l ≤ m− 1, variables{ν(l)
Xi
}i≥i0 are

also independent and exponential withν
(l)
Xi

having parameterpi. (Note that for differentl the sequences{ν(l)
Xi
}i≥i0

can be mutually dependent and also potentially dependent on{τ (i0)
Xi

}i≥i0 .) Furthermore, observe that for anyε > 0
andi0 large enough

(1 + ε)
qi∑

j≥i0
qj

qk−1
i

(
m− 1
k − 1

)
≥ pi ≥ (1− ε)

qi∑
j≥i0

qj
qk−1
i

(
m− 1
k − 1

)
. (25)

Next, inequalities (22) and (24) imply, for anyi ≥ i0 andε > 0,

1[Ti < ϑx] ≥ 1

[
τ

(i0)
Xi

+
m−1∑
l=1

ν
(l)
Xi

< ϑx

]

≥ 1[τ (i0)
Xi

≤ (1− ε)ϑx]−
m−1∑
l=1

1
[
ν

(l)
Xi

>
εϑx

m

]
,

and, therefore,

P

[ ∞∑
i=i0

1[Ti < ϑx] ≤ x

]
≤ P

bx log xc∑
i=i0

1[τ (i0)
Xi

≤ (1− ε)ϑx]−
m−1∑
l=1

bx log xc∑
i=i0

1
[
ν

(l)
Xi

>
εϑx

m

]
≤ x


≤ P

bx log xc∑
i=i0

1[τ (i0)
Xi

≤ (1− ε)ϑx] ≤ (1 + ε/2)x


+ mP

bx log xc∑
i=i0

1
[
ν

(1)
Xi

>
εϑx

m

]
>

xε

2m

 . (26)

Now, usingqi ∼ c/iα asi →∞, Lemma 6 of the Appendix and settingi0 = b
√

xc, we derive, asx →∞,

E

 ∞∑
i=b

√
xc

1[τ (i0)
Xi

≤ (1− ε)ϑx]

 & x(1 + ε). (27)

Then, usingqi ∼ c/iα asi →∞ and1− e−x ≤ x, we arrive at

E

 ∞∑
i=bx log xc+1

1[τ (i0)
Xi

≤ (1− ε)ϑx]

 =
∞∑

i=bx log xc+1

P
[
τ

(i0)
Xi

≤ (1− ε)ϑx

]

≤
∞∑

i=bx log xc+1

1− e−Hqk
i t0(x) ≤ H

∞∑
i=bx log xc+1

xαk

iαk

≤ H
xαk

(x log x)(αk−1)
=

Hx

(log x)αk−1
= o(x) asx →∞.
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Thus, applying the preceding estimate and (27), we obtain

E

bx log xc∑
i=b

√
xc

1[τ (i0)
Xi

≤ (1− ε)ϑx]

 ∼ E

 ∞∑
i=b

√
xc

1[τ (i0)
Xi

≤ (1− ε)ϑx]

 & x(1 + ε) as x →∞.

The previous expression, in conjunction with Lemma 7 of the Appendix, implies that the first term of (26) satisfies, as
x →∞,

P

bx log xc∑
i=b

√
xc

1[τ (i0)
Xi

≤ (1− ε)ϑx] ≤ (1 + ε/2)x

 = o

(
1

xα−1

)
. (28)

Next, it is left to estimate the second term of (26). To this end, by using the monotonicity ofqi-s, assumption
qi ∼ c/iα asi →∞, inequality (25), and replacingϑx, we obtain

E

bx log xc∑
i=b

√
xc

1
[
ν

(1)
Xi

>
εϑx

m

] ≤ x log xe
−(1−ε) ε

m qk
bx log xc(m−1

k−1) 1P
i≥b

√
xc qi

ϑx

= x log xe
−hxαkx

α−1
2

(x log x)αk = x log xe
− hx

α−1
2

(log x)αk = o(x) as x →∞.

Finally, applying Lemma 7 of the Appendix, we derive

P

bx log xc∑
i=bxc

1
[
ν

(1)
Xi

>
εϑx

m

]
>

xε

2m

 = o

(
1

xα−1

)
as x →∞,

which, in conjunction with (20), (26) and (28), completes the proof of this lemma. 3

Note that in the following lemma, with a small abuse of notation, we assign a different value toϑx from the one in
Lemma 4.

Lemma 5 Let{Ti}i≥1 be random variables defined in (6). Then, forqi ∼ c/iα asi →∞, α > 1 and

ϑx =
xαk(1− 2ε)αk

(1 + ε)k+1ck
(
m−1
k−1

)
[Γ(1− 1

αk )]αk
,

we obtain

P

[ ∞∑
i=1

1[Ti < ϑx] ≥ x

]
= o

(
1

xα−1

)
asx →∞.

Proof: The proof of this lemma uses the idea of cycles from the proof of Lemma 3 in order to lower bound the random
times{Ti} with a sequence of independent random variables. Thus, since many of the arguments are repetitive, we
postpone this proof until Section 7. 3

4 Near optimality of the DPAC algorithm
Consider the class of online caching algorithms that make their replacement decisions using only the knowledge of
the past requests and cache contents. Assume also that, at times of cache faults, the replacement decisions are only
optional, i.e., the algorithm may keep the cache content constant (static). Within this context and the independent
reference model, it is well known that the static LFU policy that stores the most popular documents in the cache is
optimal. For direct arguments that justify this intuitively apparent statement see the first paragraph of Subsection
4.1 in Jelenkovíc and Radovanović (2004b); this is also recently shown in Bahat and Makowski (2003) using the
formalism of Markov Decision Theory. Therefore,P[R > x] is the fault probability of the optimal static policy and
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P[C > x]/P[R > x] is the average-case competitive ratio between the stationary fault probabilities of the DPAC and
the optimal static algorithm.

In the following theorem we show that, for the case of generalized Zipf’s law request distributions withα > 1 and
large caches, the competitive ratioP[C > x]/P[R > x] approaches1 very rapidly ask grows. The proof of the theorem
is based on preliminary results from Section 3 as well as the probabilistic and sample path arguments introduced in
Jelenkovíc and Radovanović (2004a,c) for the case of ordinary LRU and continuous time PAC algorithm, respectively.
The starting point of our analysis is the representation formula in (5) from Section 2. We assume thatN = ∞ and
denoteC ≡ C(∞).

Theorem 1 Assume thatqi ∼ c/iα asi →∞ andα > 1. Then, asx →∞,

P[C > x] ∼ Kk(α)P[R > x], (29)

where

Kk(α) ,

[
Γ

(
1− 1

αk

)]α−1

Γ
(

1 +
1
k
− 1

αk

)
. (30)

Furthermore, functionKk(α) is monotonically increasing inα, for fixedk, with

lim
α↓1

Kk(α) = 1, lim
α↑∞

Kk(α) = Kk(∞) ,
1
k

Γ
(

1
k

)
eγ/k, (31)

whereγ is the Euler constant, i.e.,γ ≈ 0.57721 . . . , and monotonically decreasing ink, for fixedα, with

lim
k→∞

Kk(α) = 1. (32)

Remark 2 (i) The same asymptotic result holds for the case of the continuous time PAC policy that was recently
derived in Theorem1 of Jelenkovíc and Radovanović (2004c). (ii) After computing the second limit in (31) for
k = 1, 2, 3, we notice a significant improvement in performance of the DPAC (m, k) algorithm when compared to
the LRU policy (k = 1). Observe that already fork = 3, the DPAC policy performs approximately within8% of the
optimal static algorithm (K3(∞) ≈ 1.08), which shows the near optimality of the DPAC rule even for small values of
k.

Proof: The proofs of monotonicity ofKk(α) and limits (31) and (32) can be found in Jelenković and Radovanović
(2004c).

Next, we prove the upper bound for the asymptotic relationship in (29). Define the sum of indicator functions
S(t) ,

∑∞
j=1 1[Tj < t]; note thatS(t) is a.s. non-decreasing int, i.e.,S(t) ≤ S(ϑx) a.s. for allt ≤ ϑx, whereϑx is

defined in Lemma 5. Then, after conditioning onTi being larger or smaller thanϑx, the expression in (5) can be upper
bounded as

P[C > x] ≤ P[S(ϑx) > x] +
∞∑

i=1

qiP[Ti ≥ ϑx],

where in the previous expression we applied
∑∞

i=1 qi = 1 andP[S(t) > x] ≤ 1. Then, applying Lemma 5, we obtain
that the tail of the search costC is upper bounded by

P[C > x] ≤ o

(
1

xα−1

)
+

∞∑
i=1

qiP[Ti ≥ ϑx] as x →∞. (33)

Next, due to the Poisson decomposition theorem, times of requests for documenti are Poisson of rateqi and mutually
independent for differenti. Therefore, sinceqi ≥ qi0 for i ≤ i0, Poisson process of rateqi can be constructed by
superposition of Poisson processes with ratesqi0 andqi − qi0 . Thus, it is easy to conclude that, fori ≥ i0,

P[Ti ≥ t] ≤ P[Ti0 ≥ t]. (34)
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Therefore, using Lemma 2, we obtain, fori0 large enough,

∞∑
i=1

qiP[Ti ≥ ϑx] ≤ P[Ti0 ≥ ϑx]
i0∑

i=1

qi +
∞∑

i=i0

qie
−qk

i (1−ε)2(m−1
k−1)ϑx +

∞∑
i=i0

mqie
−hεqk−1

i ϑx

, I1(x) + I2(x) + I3(x). (35)

After using bound (7) and replacingϑx, it immediately follows that

I1(x) ≤ e−qk
i0

(1−ε)2ϑx(m−1
k−1) + me−hεqk−1

i0
ϑx = o

(
1

xα−1

)
as x →∞. (36)

Now, by assumption of the theorem, for alli large enough (i ≥ i0, wherei0 is possibly larger than in (35))

(1− ε)c/iα < qi < (1 + ε)c/iα. (37)

Furthermore, fori large enough (i ≥ i0) inequalityc/iα ≤ (1 + ε)c/uα holds for anyu ∈ [i, i + 1] and, therefore,
using this bound, (37), the monotonicity of the exponential function and replacingϑx from Lemma 5, yields

I2(x) ≤ (1 + ε)
∞∑

i=i0

c

iα
e−ι(ε)[Γ(1− 1

αk )]−αk xαk

iαk

≤ (1 + ε)2
∫ ∞

1

c

uα
e−ι(ε)[Γ(1− 1

αk )]−αk xαk

uαk du, (38)

whereι(ε) , (1 + ε)−(k+1)(1 − ε)k+2(1 − 2ε)αk. Next, applying the change of variable method for evaluating the
integral withz = ι(ε)[Γ(1− 1

αk )]−αkxαku−αk, we obtain that the integral in (38) is equal to

c

xα−1(α− 1)

[
Γ

(
1− 1

αk

)]α−1

(ι(ε))
1

αk−
1
k

α− 1
αk

∫ ι(ε)[Γ(1− 1
αk )]−αkxαk

0

e−zz
1
k−

1
αk−1dz,

which, in conjunction with (38), implies

lim sup
x→∞

I2(x)
P[R > x]

≤ Kk(α)(ι(ε))
1

αk−
1
k (1 + ε)2 → Kk(α) as ε → 0, (39)

whereKk(α) is defined in (30).
In order to estimate the asymptotics ofI3(x), we use analogous steps as we applied in evaluatingI2(x). Thus, using

inequalities from (37),c/iα ≤ (1 + ε)c/uα for u ∈ [i, i + 1] and replacingϑx, we obtain

I3(x) ≤ m(1 + ε)
∞∑

i=i0

c

iα
e
−hε xαk

iα(k−1)

≤ m(1 + ε)2
∫ ∞

1

c

uα
e
−hε xαk

uα(k−1) du. (40)

Now, if k = 1, it is straightforward to compute the integral in the preceding expression and obtainI3(x) ≤ m(1 +
ε)2(c/(α− 1))e−hεxα

= o(1/xα−1) asx →∞. Otherwise, fork ≥ 2, after using the change of variable method for
solving the integral in (40) withz = hεxαku−α(k−1), we obtain, asx →∞,

I3(x) ≤ m(1 + ε)3
c

(hε)
1

k−1 (1− 1
α )

1
α(k − 1)

1

x
k

k−1 (α−1)
Γ

(
1

k − 1
− 1

α(k − 1)

)
= o

(
1

xα−1

)
. (41)

Therefore, (41), (39), (36), (35) and (33), yield, asx →∞,

P[C > x] . Kk(α)P[R > x]. (42)
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For the lower bound onP[C > x], starting from (5), we derive

P[C > x] =
∞∑

i=1

qiP[Si(Ti) ≥ x] ≥
∞∑

i=1

qiP[S(ϑx) ≥ x− 1, Ti ≥ ϑx]

≥
∞∑

i=i0

qiP[Ti ≥ ϑx]− P[S(ϑx) ≤ x− 1],

where we chooseϑx as in Lemma 4. Next, we apply Lemma 4 to estimate the second term in the preceding expression.
Then, after applying Lemma 3 to lower bound the tail of random times{Ti}i≥i0 , in conjunction with the analogous
reasoning as in estimatingI2(x), we complete the proof of this theorem. 3

In Theorems 2 and 3 of Jelenković and Radovanović (2004c), we characterize the asymptotic performance of the
continuous time PAC algorithm for Zipf’s law distributions with0 < α ≤ 1. Careful examination of the proofs of these
results and the lemmas from Section 3 strongly suggests that exactly the same results hold for the DPAC algorithm as
well. Since the rigorous proofs of these results would involve lengthy calculations and repetitive arguments without
basically adding any new insights, we refrain from proving these results. Instead, for reasons of convenience, we just
restate them here and illustrate them with simulation experiments in the following section.

Theorem 2 Assume thatq(N)
i = hN/i, 1 ≤ i ≤ N , wherehN is the normalization constant. Then, for any0 < δ < 1,

asN →∞,

(log N)P[C(N) > δN ] ∼ Fk(δ) ,
1
k

Γ(0, ηδ), (43)

whereηδ uniquely solves the equation

1− 1
k

η
1
k Γ

(
−1

k
, η

)
= δ;

note that,Γ(x, y), y > 0, is the incomplete Gamma function, i.e.,Γ(x, y) =
∫∞

y
e−ttx−1dt. Furthermore, for any

0 < δ < 1,

lim
k→∞

Fk(δ) = log
(

1
δ

)
. (44)

Remark 3 (i) Note that(log N)P[R(N) > δN ] → log(1/δ) as N → ∞. Thus, for large caches, the limit in
(44) shows that the DPAC policy approaches the optimal static algorithm ask increases; (ii) A related result from
Lemma 4.7 of Fill (1996), in the context of the ordinary MTF searching (k = 1), shows the convergence in distribution
of the ratiolog C(N)/ log N to a uniform random variable on a unit interval; this result corresponds to a sub-linear
scalingP[C(N) > Nu] → 1− u asN →∞, 0 < u < 1.

Theorem 3 Assume thatq(N)
i = hN/iα, 1 ≤ i ≤ N , wherehN is the normalization constant and0 < α < 1. Then,

for any0 < δ < 1, asN →∞,

P[C(N) > δN ] ∼ Fk(δ) ,
1− α

αk
(ηδ)

1
αk−

1
k Γ

(
1
k
− 1

αk
, ηδ

)
, (45)

whereηδ is the unique solution of the equation

1− 1
αk

Γ
(
− 1

αk
, η

)
η

1
αk = δ;

note thatΓ(x, y), y > 0, is the incomplete Gamma function, i.e.,Γ(x, y) =
∫∞

y
e−ttx−1dt. Furthermore,1− Fk(δ),

δ ∈ (0, 1), is a proper distribution, withlimδ↓0 Fk(δ) = 1, limδ↑1 Fk(δ) = 0 and

lim
k→∞

Fk(δ) = 1− δ1−α. (46)

Remark 4 (i) Similarly, (46) andP[R(N) > δN ] → 1−δ1−α asN →∞ demonstrate the asymptotic near optimality
of the DPAC policy; (ii) For the ordinary MTF searching (k = 1), the convergence ofC(N)/N in distribution as
N → ∞ and the Laplace transform of the limiting distribution function were obtained in Lemma 4.5 of Fill (1996).
The result in its presented form, also for the ordinary LRU, was derived in Jelenković (2002).
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5 Numerical experiments
In this section we illustrate our main results stated in Theorems 1, 2 and 3. Even though the results are valid for large
cache sizes, our simulations show that the fault probability approximations, suggested by formulas (29), (43) and (45),
work very well for small caches as well.

5.1 Convergence to stationarity
In the presented experiments, we use a discrete time model without Poisson embedding, i.e.,τn = n; recall from the
remark after Lemma 1 that the fault probability does not depend on the selection of the request arrival times{τn}n≥1.
In order to ensure that the simulated values of the fault probabilities do not deviate significantly from the stationary
ones, we first estimate the difference between the distributions ofC(N) andC

(N)
n , whereC

(N)
n is the search cost after

n requests with arbitrary initial conditions.
Thus, using (2) – (3), it is not hard to show that the difference between the tails of these distributions can be upper

bounded as

sup
x

∣∣∣P[C(N)
n > x]− P[C(N) > x]

∣∣∣ ≤ en ,
N∑

i=1

qiP [Ti ≥ n−m + 1] .

Now, using similar arguments as in (12) of Lemma 2, we obtain

P[Ti > t] ≤ P[τ (i)
Xi

+ (m− 1)Xi > t]

≤ P
[
τ

(i)
Xi

>
t

2

]
+ P

[
(m− 1)Xi >

t

2

]
, (47)

where now{τ (i)
n } denote success times in a Bernoulli process with parameterqi andXi is independent of{τ (i)

n } with
geometric distribution having parameter

pi = P[Mi(τ
(i)
1 ) ≥ k] =

m−1∑
l=k−1

(
m− 1

l

)
ql
i(1− qi)m−1−l.

Next, (47) and the well known fact thatτ
(i)
Xi

is geometric with parameterqipi yield

P[Ti > t] ≤ (1− piqi)
t
2 + (1− pi)

t
2(m−1) .

Thus, using the preceding bound, we obtain

en ≤
N∑

i=1

qi

[
(1− piqi)

n−m
2 + (1− pi)

n−m
2(m−1)

]
. (48)

Note that, sincepi is increasing inm, the larger values ofm speed up the convergence of the search cost process
{C(N)

n } to the stationary value. In other words, increasingm makes the algorithm more adaptable. On the other
hand, the largerm implies the larger size of the additional storage needed to keep track of the past requests. Thus,
although the stationary performance of the DPAC algorithm is invariant tom, this parameter provides an important
design component whose choice has to balance algorithm complexity and adaptability.

5.2 Experiments
In the presented experiments we choose the number of documents to beN = 1300 with popularities satisfying
qi = hN/iα, 1 ≤ i ≤ 1300, wherehN = (

∑N
i=1 1/iα)−1. Also, for the respective three experiments, we select

m = 20 andα: 1. α = 1.4, 2. α = 1 and3. α = 0.8. The initial permutation of the list is chosen uniformly at
random and the set of initialm requests is taken to be empty. The fault probabilities are measured for cache sizes
x = 50j, 1 ≤ j ≤ 15. Simulation results are presented with “*” symbols on Figures 1, 2 and 3, while the optimal
static performance is presented with a thick solid line on the same figures.
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In our first experiment, we illustrate Theorem 1. Since our asymptotic formula is obtained for infinite number of
documentsN , it can be expected that asymptotic expression gives reasonable approximation of the fault probability
P[C(N) > x] only if both N andx are large (withN much larger thanx). However, our experiment shows that the
obtained approximation works well for relatively small values ofN and almost all cache sizesx < N .

Experiment 1 Here we selectα = 1.4. Before conducting the measurements, we allow for a warm-up time of the
first n requests to let the system reach its stationarity; then, the actual measurement time is also set to ben requests
long. We measure the cache fault probabilities of the DPAC(20, k) policy for valuesk = 1, 2. The experimental results
for the cases whenk ≥ 3 are almost indistinguishable from the optimal performance,P[R > x], and, thus, we do
not present them on Figure 1. After estimatingen in (48) for a given warm-up time of1010 requests, we obtain that
en < 10−12, which is negligible compared to the smallest measured probabilities (> 10−2). Therefore, the measured
fault probabilities are essentially the stationary ones. The accuracy of approximationP (e)(x) and the improvement in
performance are apparent from Figure 1.
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Fig. 1: Illustration for Experiment 1.

Experiment 2 Here, we setα = 1 and measure the cache fault probabilities fork = 1, 2, 3. Again, both the warm-up
and measurement time are chosen to ben requests long and equal to:n = 2×108 for k = 1, 2 andn = 1011 for k = 3.
Since the normalization constant(hN )−1 = log N +γ +o(1) asN →∞, whereγ is the Euler’s constant, the product
hN log N converges slowly to1 and, therefore, instead of using the approximationP[C(N) > x] ≈ Fk(x/N)/ log N ,
as suggested by Theorem2, we defineP(e)(x) = hNFk(x/N). We obtain that fork = 1, 2, en < 3 × 10−11, while
for k = 3, en < 2 × 10−6, which are insignificant when compared to the smallest measured probabilities. Thus,
the process is basically stationary. The accuracy of approximationP (e)(x) and the improvement in performance are
apparent from Figure 2.

Experiment 3 Finally, the third example assumesα = 0.8 and considers casesk = 1, 2, 3. Here, we selectn = 1010

to be the warm-up time as well as the actual measurement time. Similarly as in the case ofα = 1, due to the slow
convergence ofhNN1−α/(1 − α) → 1 asN → ∞, we use an estimateP(e)(x) = hN (N1−α/(1 − α))Fk(x/N)
instead ofFk(x/N) that can be inferred from Theorems3. We computeen < 3 × 10−5, which is insignificant
compared to the smallest measured probabilities. Thus, the process is basically stationary. Once again, the validity of
approximationP (e)(x) and the benefit of the DPAC algorithm are evident from Figure 3.
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Fig. 2: Illustration for Experiment 2.
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Fig. 3: Illustration for Experiment 3.

6 Concluding remarks

In this paper we introduce a discrete version of the recently proposed continuous time PAC replacement rule in Je-
lenkovíc and Radovanović (2004c) that possesses all the desirable properties of the LRU policy, such as low com-
plexity, ease of implementation and adaptability to variable Web access patterns. In addition to these attributes, the
new DPAC policy eliminates drawbacks of the PAC rule, such as its dependence on the request arrival times and
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variable storage requirements. However, the DPAC policy is significantly harder to analyze than the continuous PAC
rule. In this respect, we develop a new analytic technique that allows us to decouple replacement decisions of the
requested documents and show that the fault probability of the DPAC algorithm, for large cache sizes, is very close
to the optimal frequency algorithm even for small values ofk = 2, 3; this implies negligible additional complexity
relative to the classical LRU policy. In addition, the theoretical results are further validated using simulations that
show significant improvement in performance of the DPAC algorithm in comparison with the LRU scheme, even for
small cache sizesx and the number of documentsN . Overall, given the considerable improvement in performance
and low implementation complexity, we expect that the DPAC algorithm has a high potential for practical use.

Finally, in Web caching applications, documents typically have variable sizes. In this regard, by straightforward ex-
tension of the randomization procedure from Jelenković and Radovanović (2004b), one can easily design a randomized
DPAC algorithm that is nearly optimal for variable document sizes as well.

7 Proof of Lemma 5
The casek = 1, corresponding to the ordinary LRU algorithm, is easy since the variablesTi are independent and expo-
nentially distributed with parametersqi. Thus, the result follows from Lemmas 3 and 4 of Jelenković and Radovanović
(2004a). Hence, in the rest of the proof we assumem ≥ k ≥ 2.

Note that, for anyi0 ≥ 1,

P

[ ∞∑
i=1

1[Ti < ϑx] ≥ x

]
≤ P

[ ∞∑
i=i0

1[Ti < ϑx] ≥ x− i0

]
; (49)

a specifici0 will be selected later in the proof. Let{τ (i0)
j }j≥1 be an ordered sequence of request times for documents

i ≥ i0, i.e., {τ (i0)
j }j≥1 = ∪i≥i0{τ

(i)
n }n≥1. We usen(j), j ≥ 1, to denote the index of pointτ (i0)

j in the original

sequence{τn}n≥1, i.e.,τ (i0)
j = τn(j). Then, since process{τn} is Poisson and{Rn} is an i.i.d. sequence independent

of {τn}, by Poisson decomposition theorem, process{τn(j) ≡ τ
(i0)
j }j≥1 is also Poisson with rate

∑
i≥i0

qi.

Next, similarly as in Lemma 3, we group the points{τ (i0)
j } into cycles. The first cycleC1 will be closed interval of

time that starts withτn(1) and its length is determined by the following procedure. Let random variableZ1 be defined
as

Z1 , inf{j > 0 : Mi0
(τn(1)+(j−1)m+1) = 0},

whereMi0
(τn) ,

∑
i≥i0

Mi(τn). In other words, we observe groups ofm consecutive requests until we come to a
group ofm requests where there are no requests for documentsi ≥ i0. Then, the first cycle,C1, will be the interval
[τn(1), τn(1)+mZ1 ]. Next, starting from the first point of process{τn(j)}j≥1 after requestτn(1)+mZ1 , sayτn(l), we
define

Z2 , inf{j > 0 : Mi0
(τn(l)+(j−1)m+1) = 0},

and, therefore, the second cycle is intervalC2 = [τn(l), τn(l)+mZ2 ]. We continue this procedure indefinitely.
Then, denote the points of time that represent the beginnings of the previously defined cyclesCj , j ≥ 1, by{Θj}j≥1.

Clearly, from the independence assumptions on{τn} and{Rn}, {Θj} is a renewal process with renewal intervals, for
j ≥ 1, satisfying

Θj+1 −Θj
d= τ

(i0)
1 +

mZ1∑
i=1

ξi,

where{ξi} is an i.i.d. sequence of exponential random variables with mean 1 that is independent fromτ
(i0)
1 andZ1.

Thus, by neglecting the sum in the preceding expression (i.e., the lengths of the cycles), the beginning of each cycle
can be lower bounded with

Θj

d
≥ τ

(i0)
j . (50)

Next, on each cycleCj , j ≥ 1, define an event that at least two distinct items are moved to the first position of the
list during that cycle

A(0)
j , {ω : ∃i1, i2 ≥ i0, i1 6= i2,∃τn1 , τn2 ∈ Cj , R(τnl

) = il,Mil
(τnl

) ≥ k for l = 1, 2}.
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Similarly, for eachi ≥ i0, we define an event that exactly one documenti (but no other documents) is moved to the
first position of the list during cycleCj

A(i)
j , {ω : ∃τn ∈ Cj , R(τn) = i,Mi(τn) ≥ k} ∩

(
A(0)

j

)c

,

whereAc denotes a complement of eventA; for each fixedj, these events are disjoint. Then, due to the independence
properties of our reference model and the fact that the lastm points in each cycle do not contain requests for documents
i ≥ i0, they are independent on different cycles and for fixedi equally distributed; letpi , P[A(i)

1 ], i ≥ i0 or i = 0.
Now, using the bound in (50) and the Poisson decomposition theorem, it is easy to see that, for each fixedi, the

beginning of the first cycle where eventA(i)
j happens is lower bounded byLi, whereLi are independent exponential

random variables with parameters equal topi

∑
i≥i0

qi. Then, fori ≥ i0, the random times defined in (6) are lower

bounded by the beginning of the first cycle where eventA(0)
j ∪ A(i)

j occurs, which is further lower bounded by

Ti ≥ Li ∧ L0, (51)

wherex ∧ y = min(x, y).
Next, we provide upper bounds on each of the probabilitiespi. Using the same arguments as in (19) of Lemma 3,

we obtain that for anyε > 0, we can chosei0 large enough, such that for alli ≥ i0,

pi ≤ (1 + ε)
qi∑∞

j=i0
qj

(
m− 1
k − 1

)
qk−1
i . (52)

The probabilityp0 can be bounded as

p0 ≤ P[Zj > l] + P[A(0)
j , Zj ≤ l]

≤ H

 ∞∑
j=i0

qj

l

+ P[A(0)
j , Zj ≤ l]

≤ H

 ∞∑
j=i0

qj

l

+
∑

j1,j2≥i0,j1 6=j2

P[A(0)
j (j1, j2), Zj ≤ l], (53)

wherel is a fixed constant that will be selected later andA(0)
j (j1, j2) is the event that during cycleCj documentsj1

andj2 are moved to the first position of the list. Then,

P
[
A(0)

1 (j1, j2), Z1 ≤ l
]

= P
[
R(Θ1) = j1,A(0)

1 (j1, j2), Z1 ≤ l
]

+ P
[
R(Θ1) = j2,A(0)

1 (j1, j2), Z1 ≤ l
]

+ P
[
R(Θ1) 6= j1, j2,A(0)

1 (j1, j2), Z1 ≤ l
]

, p01(j1, j2) + p02(j1, j2) + p03(j1, j2). (54)

Now, we upper bound the first term of (54),

p01(j1, j2) ≤
qj1∑∞

j=i0
qj

P
[
Mj1(τn(1)+1,ml) ≥ k − 1,Mj2(τn(1)+1,ml) ≥ k

]
≤ qj1∑∞

j=i0
qj

P[Mj1(τ1,ml) ≥ k − 1,Mj2(τ1,ml) ≥ k]

≤ qj1∑∞
j=i0

qj

[
ml−k∑

l1=k−1

ml−l1∑
l2=k

(ml)!
l1!l2!(ml − l1 − l2)!

ql1
j1

ql2
j2

(1− qj1 − qj2)
ml−l1−l2

]
≤ qj1∑∞

j=i0
qj

(Hqk−1
j1

qk
j2);
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the last inequality holds becauseml is fixed and finite,j1, j2 ≥ i0, andi0 is large enough. Thus, we obtain

p01(j1, j2) ≤
Hqk

j1
qk
j2∑∞

j=i0
qj

. (55)

Similarly, we derive

p02(j1, j2) ≤
Hqk

j1
qk
j2∑∞

j=i0
qj

(56)

and, by applying the same type of arguments, we bound

p03(j1, j2) ≤ Hqk
j1q

k
j2 ≤

Hqk
j1

qk
j2∑∞

j=i0
qj

. (57)

Therefore, (55), (56), (57) and (54) imply that for anyj1, j2 ≥ i0, j1 6= j2,

P[A(0)
j (j1, j2), Zj ≤ l] ≤ H

qk
j1

qk
j2∑∞

j=i0
qj

, (58)

where constantH is independent ofj1 andj2. Now, by replacing the preceding bound in (53), we derive that for all
i0 large enough

p0 ≤ H

 ∞∑
j=i0

qj

l

+
H

(i0 − 1)2αk−2
∑∞

j=i0
qj

. (59)

After setting the necessary ground for our analysis, we upper bound the left hand side of (49) as

P

[ ∞∑
i=i0

1[Ti < ϑx] ≥ x− i0

]
≤ P

[ ∞∑
i=i0

1[Li ∧ L0 < ϑx] ≥ x− i0

]

≤ P

[ ∞∑
i=i0

1[Li ∧ L0 < ϑx, L0 > ϑx] ≥ x− i0

]
+ P[L0 ≤ ϑx]

≤ P

[ ∞∑
i=i0

1[Li < ϑx] ≥ x− i0

]
+ P[L0 ≤ ϑx]. (60)

Now, from (52),P[Li < ϑx] ≤ 1 − e−(1+ε)(m−1
k−1)qk

i ϑx for i ≥ i0 and i0 large enough. Furthermore, assigning
i0 = dεxe and applying Lemma 6 of the Appendix, we derive asx →∞,

E

∑
i≥εx

1[Li < ϑx]

 . Γ
(

1− 1
αk

)
c

1
α

((
m− 1
k − 1

)) 1
αk

(1 + ε)
k+1
αk ϑ

1
αk
x . (61)

Then, if we replaceϑx and use (61), it follows, asx →∞, thatE
[∑

i≥εx 1[Li < ϑx]
]

. (1−2ε)x ≤ (1−ε)(x−εx).
Thus, sinceLi, i ≥ i0, are mutually independent, using large deviation result from Lemma 7, we show that the first
term in (60) is bounded, for someθ > 0, by

P

∑
i≥εx

1[Li < ϑx] ≥ x− εx

 ≤ 2e−θx = o

(
1

xα−1

)
as x →∞. (62)
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Next, we estimate the second term of (60). Using (59) withi0 = dεxe and choosingl = d(2αk − 2)/(α− 1)e − 1,
such that(α− 1)(l + 1) ≥ 2αk − 2, we derive

P[L0 ≤ ϑx] ≤ 1− e−ϑxp0
P

i≥εx qi

≤ Hxαk

[
1

x(α−1)(l+1)
+

1
x2αk−2

]
≤ Hxαk

x2αk−2
≤ H

xαk−2
= o

(
1

xα−1

)
as x →∞, (63)

sincek ≥ 2 andα > 1. Finally, replacing (63) and (62) in (60), implies the statement of the lemma. 3

Appendix
The following lemmas correspond to Lemma 2 of Jelenković (1999) and Lemma 4 of Jelenković and Radovanović
(2004a), respectively.

Lemma 6 LetS(t) =
∑∞

i=1 Bi(t) and assumeqi ∼ c/iα asi →∞, with α > 1 andc > 0. Then, ast →∞,

m(t) , ES(t) ∼ Γ
(

1− 1
α

)
c

1
α t

1
α .

Lemma 7 Let {Bi, 1 ≤ i ≤ N}, N ≤ ∞, be a sequence of independent Bernoulli random variables,S =
∑N

i=1 Bi

andm = E[S]. Then for anyε > 0, there existsθε > 0, such that

P[|S −m| > mε] ≤ 2e−θεm.
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