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Algorithmic and combinatoric aspects of
multiple harmonic sums

Christian Costermans and Jean-Yves Enjalbert and Hoang Ngoc Minh
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Ordinary generating series ofultiple harmonic sums admitfall singular expansion in the basis of functions

{(1 = 2)*1og”(1 — 2)}Yaez sen, Near the singularity = 1. A constructiveproof of this result is given, and, by
combinatoricaspects, an explicit evaluation of Taylor coefficients of functions in spatgogarithmicalgebra is
obtained. In particular, thesymptotic expansioof multiple harmonic sums is easily deduced.
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1 Introduction

Hierarchical data structure occur in numerous domains, like computer graphics, image processing or bi-
ology (pattern matching). Among them, quadtrees, whose construction is based on a recursive definition
of space, constitute a classical data structure for storing and accessing collection of points in multidimen-
sional space. Their characteristics (depth of a node, number of nodes in a given subtree, number of leaves)
are studied by Laforest [12], with probabilistic tools. In particular, she shows, for a quadtree of size
ad-dimension space, that the probability; ;. for the first subtree to have sizecan be expressed as an
algebraic combination gf-th order harmonic numbeis; (V) andH;(k), j > 1, defined by

Hin=) . ®

m=1
For instance, fotl = 3, one has
[H1(N) — Hi(k)]* + Ho(N) — Ho(k)
2N '
Flajolet et al. [2] give this general expression for the splitting probability

T —— 3)

Z .. .Z _
N>ip>ig1>k d—1

)

TNk =

The probabilityr v ,, appears as a particular case of the following swiiV) associated to theulti-index

s = (s1,...,8), Which is strongly related to multiple harmonic sullg N) :
1 1
Ag(N) = — and Hg(N) = _ 4
(N) Z n1st ... nSr (N) Z nist ... ngSr “)
N>n1>-->2n.>0 N>n1>-->n,.>0

Let us note that there exist explicit relations, given by Hoffman [10] betweer\i&/) and Hs(V).

Indeed, letComp(n) be theset of compositionsf n, i.e. sequence&iy,...,,.) of positive integers
summing ton. If I = (i1,...,i;) (resp. J = (ji,...,Jp)) is @ composition of: (resp. ofr) then
Jol = (i1 +...+105,0541+ ...+ 8 1jo,- s ik—j,+1 + ...+ ix) IS @ composition ofe. By Mobius
inversion, one has

As(N)= > Hyes(N) and Ho(N)= > (D" A (), (5)

JeComp(r) JeComp(r)

wherel(.J) is the number of parts of.
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Example 1. Fors = (1, 1, 1), since the set of compositionsdis {(1,1,1), (1,2), (2,1), (3)}, we get
A11a(N) = Hipa(N)+Hio(N) + Ha 1 (N) + Hs(N),

Therefore, theAs(N) are Z-linear combinations ofs(N) (andvice versy. Thus, the remaining
problem is to know the asymptotic behaviourof , for N — oo [11]. For that, in this work, we
are interested in theombinatorialaspects of these sums by use of a symbolic encoding by words. This
enables then to transfehuffle relationson words into algebraic relations between multiple harmonic
sums, or betweepolylogarithmfunctions, defined for a multi-index= (s1,...,s,) by
z™M

Lig(z)= Y  ————, for [z|<L (6)

S1 Sy
ni>osne>0 Lo
These relations are recalled in Section 2. The reason to call upon polylogarithms is given in Section 3,
since the generating functidty(z) = >, - Hs(n)2" of {Hs(n) },>0, verifies

Pa(2) = 1 Lis(2). @)

So, we set the polylogarithmic algebra fPs}s, with coefficients inC = C[z, 27, (2 — 1)71], and

we then establislexacttransfer results between a functignn this algebra and its Taylor coefficients
[2N]g(2), in the C-algebra generated byN* Hs(N)}s, rez in both directions. The main result of this
paper is finally stated in Section 4, which gives a computation offdlesingular expansion of, in

the basis of functiong(1 — z)®log”(1 — 2)}aezsen, Near the singularity = 1. We deduce from

this afull asymptotic expansion of its Taylor coefficients. These results are based on the analysis of the
noncommutativgenerating series of functions of the form (7), in particular on its infinite factorization
indexed byLyndon words

2 Background

2.1 Combinatorics on words
s1—1

To the multi-indexs we can canonically associate the ward= z}' ™ "z ... a;f{‘lxl over the finite
alphabetX = {x,z1}. In the same way can be canonically associated to the worg y;, ...ys, over

the infinite alphabeY” = {y;};>1. Moreover, in both alphabets, the empty multi-index will correspond to
the empty word:. We shall henceforth identify the multi-indexwith its encoding by the word (resp.

v). We denote byX* (resp.Y*) the free monoid generated By (resp.Y’), which is the set of words over
X (resp.Y). Noting C(X) (resp.C(Y)) the algebra of noncommutative polynomials with coefficients in
C, we obtain so a concatenation isomorphism from@halgebra of multi-indexes into the algelfd.X)
(resp. C(Y")). The coefficient ofw € X* in a polynomialS € C(X) is denoted by(.S|w) or S,,. The
duality between polynomials is defined as follows

(SIp) = > Supw. peECX). 8)
weEX*

The set of Lie monomials is defined by induction: the lettersXirare Lie monomials and the Lie
bracket]a, b] = ab — ba of two Lie monomials: andb is a Lie monomial. A Lie polynomial is &-linear
combination of Lie monomials. The set of Lie polynomials is calledftbe Lie algebra

2.2 Shuffle products
Leta,b € X (resp.y;,y; € Y) andu,v € X* (resp. Y*). Theshuffle(resp. stuffl§ of u = av’ and
v =bv' (resp.u = y;u’ andv = y;v’) is the polynomial recursively defined by
cevu=vwe=u and wwv=a(u wv)+bluw), )
(resp. ewu=uwe=u and wwv=y;(u wov)+y;(uwv)+y ;@ wd)). (10)
Example 2.
ToT1w Ty = T1ToT1 + 2x0;1:f
Yoy = y1y2 +Y2y1 +Y3. (11)

This product is extended t6(X) (resp.C(Y")) by linearity. With this productC(X) (resp.C(Y)) is a
commutative and associati¢&algebra.
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l Q S
Zo Zo Zo
T T T
ToT1 [0, x1] ToT1
To2my [z0, [xo, 1] To T
1’0I12 [170, Il] Il] Iol“12
zo3m [»507 [zo, [z0, 21]]] T3z
xOS‘TlS [‘rOa [IOa [Hxﬂa "Eﬂ, 1’1], 2131}” IOSI,lS
zolz1womi? | (2o, ([0, 1], [[T0, 21], 21]]] | 3w03213 + moPz12021 2
zox1?zozy | [[wo, ([0, 1), 1], [0, 1]] | 620313 + 30 w1207 + 202212 T0 21
zox? [zo, [[[[z0, 1], 1], x1], z1]] | w0221 ?
zor1zor1® | [[wo, 21], [[[w0, 21), 21], 21]] | 4wo221? + wow1 20713
;onls [[ H‘T07 Il]? 1’1], Il}? xl]a ‘Tl} I0I15

Tab. 1: Lyndon words, bracket forms and dual basis

2.3 Lyndon words and Radford’s theorem

By definition, aLyndon wordis a non empty word € X* (resp. € Y*) which is lower than any of its
proper right factors [14] (for the lexicographical ordering) i.e. foralh € X*\ {e} (resp.€ Y*\ {¢}),
Il =wv =1 < v. The set of Lyndon words oX (resp.Y) is denoted byCyn(X) (resp.Lyn(Y")).

Example 3. For X = {zg, 21 } with the orderz, < z; the Lyndon words of length 5 on X* are (in
lexicographical increasing order)

4 3 3,2 .2 2 2,2 ..2.3 2 2 3 4
{l’o,onhl‘oxl,IOIEl,Zozl,IOIll’oIl,CCOIl,IOIl,£E0171,$01’1I0$1,$0I1,1‘01’1,17093171‘1}.

ForY = {y;,7 > 1}, with the ordery; < y; wheni > j, here are the corresponding Lyndon words over
Y

{55 Ya, Yay1, Y3, Y3Y2, Y3y1, Y3y, Y2, Y51, Y21, Y23t Y2y, U1 }-
Theorem 1 (Radford, [13, 14]). Let
C; =Co (C{X)\2oC(X)z1) and Cy=Ca (CY)\ 5 CY))
be the sets of convergent polynomials aXeandY respectively. Then,
(C(X), ) = (ClLyn(X)],w) = (Cifzo, 1], ),
(CY), w)~ (Cllyn(Y)], w) = (Cofp], ).
Example 4.

Yoyay1 + Yol Ya + Y1yoya + Yous T YsYs = Yamyo iy — yayo wyr — ye = y1 € C[Lyn(Y)]
= yoya=y1 € Coly]

2.4 Bracket forms and the dual basis

Thebracket form@Q; of a Lyndon wordl = uv, with [, u,v € Lyn(X) and the wordy being as long as
possible, is defined recursively by

9 = [Qu, Q]
Q, = « foreachletter € X,

It is classical that the sé8; = {Q; ; | € Lyn(X)}, ordered lexicographically, is a basis for the free
Lie algebra. Moreover, each wotd € X* can be expressed uniquely as a decreasing product of Lyndon
words:

w=I171g2 0, >l > >, k>0, (12)
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The Poincaé—Birkhoff-Witt basisB = {Q,,; w € X*} and its dual basi$* = {S,,; w € X*} are
obtained from (12) by setting [14]

Q. = QUQr...QM,

[Wiye? L Qg
S _ SN w WS,
v arlag!. . ay!
S = xS, Vi€ Lyn(X), wherel =zw, z € X, we X*.

In [14], it is proved that3 andB* are dual bases d(X) i.e. (Q,|S,) = J%, for all wordsu,v € X*
with 67 = 1 if u = v, otherwiseD.

Lemma 1. For all w € 2o X*z1, one hasS,, € zoZ(X)x;.

Proof. The Lyndon words involved in the decomposition (12) of a werd X *x; (resp.w € xqX*x1)
all belong toX*x; (resp.zoX*x1). O
2.5 Polylogarithms

LetC =Clz,1/2z,1/(z — 1)] and letw, andw, be the two following differential forms

d d
wol(2) = f and wi(z) = 7 _ZZ (13)

One verifies the polylogarithiis(z), defined by Formula (6), is also the followiitgrated integralwith
respect tavg andw;

Lis(z) = / wél_lwl . -wgr_lwl. (14)

O~z

Thanks to the bijection fromy™* to X *x; previously explained, we can index the polylogarithms by the
words of X *z1, or indistinctly by the words of"*. We can extend (14) ovex* by putting

Lic(z) =1, Liy,(2) =logz, Lig,.,(z)= / w;(t) Liy(t), forx; € X,we X*. (15)
O~z
Therefore Li,, verifies the following identity [4]
Yu,v € X*, Li, , » = Li, Li, . (16)
The extended definition enables to construct the noncommutative generating series [4]
L= Y Liyw (17)
weX*
as being the unique solution of theinfel’d equation i.e. the differential equation [4]
dL = [zowo + T1w1]L, (18)
satisfying the boundary condition
L(e) = e™ %8¢ 1 o(\/e), when ¢— 0. (19)

Proposition 1 ([5]). Leto be the monoid morphism defined ovét by o(z¢) = —z; ando(z1) = —xo.

Then,
N\,

L-2)=[oLz)] [  et0e
leLyn(X)\{zo,z1}
Example 5 ([5]).

1
legmf(l - Z) - le%xl (Z) + Lig, (Z) Ligoa, (Z) 9 Liig (Z) Liz, (Z) + C(g)v i.e.

Lisa(1—2) = —Lig(2) + loa(2) Lis(z) + 5 log*(z) oa(1 — 2) +¢(3).
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2.6 Harmonic sums
Definition 1. Letw =y, ...ys, € Y*. For N > r > 1, the harmonic surfil,,(N) is defined as

EON0 T N —

ni ...ny"
N>ny>...>n,.>0

For0 < N < r, H,(N) = 0 and, for the empty word, we put,.(N) = 1, forany N > 0.
Letw = ys, ...ys, € Y*. If 51 > 1then, by an Abel’s theorem,

. . . 1
dm By (V) =l Lig(:) = 30 o
ni>...>n,.>0

That is nothing but the pol¥ta (or MZV [16])¢((w) and the wordv € Y*\ ;Y * is said to beconvergent
A polynomial of C(Y) is said to be convergent when it is a linear combination of convergent words. The

doubleshuffle algebra of poly&tas is already pointed out and extensively studied in [3].
Forw = y,w’, we have

() = Y Rzl (20)
1>1
Hw(N + 1) — Hu)(N) = (N + 1)_SH11)/(N) (21)
and, for anyu,v € Y* [9]

3 Generating series

3.1 Definition and first properties
Definition 2 ([8]). Letw € Y™* and letP,,(z) be the ordinary generating series ., (V) } n>0

Py(z) = > Hy(N)2".

N>0

Proposition 2 ([8]). Extended by linearity, the map : « — P, is an isomorphism froniC(Y"), w1 )
to the Hadamard algebra P, }wey -, ®). Therefore, the mafl : v — H, = {H,(N)}n>0 IS an
isomorphism fron{C(Y"), ) to the algebra of {H,, }ey=, - ).

Proof. The definition of the Hadamard prodult, ja,z" ® > 7 b,2" = > 07 anby2™, and the
formula (22) gives® as an algebra morphism. Since the functi¢hs, }.,c x+ are linearly independent
over(C [4], P is the expected isomorphism. O

Proposition 3 ([8]). For every wordw € Y* and forz € C satisfying|z| < 1, one hasLi,(z) =
(1 = 2)Py(2).

Proof. Forw = ysw’, sinceP,,(z) =3y, H, (N)z" and by using (21),

(1= 2)Py(2) = Hy(0) + > ww = Liy(2).
N>1

A direct consequence of this proposition and Identity (16) is
Corollary 1. Forall u,v € X*, for all z € C satisfying|z| < 1, P, (2)P,(2) = (1 — 2) 7Py, 4(2).
Example 6. Sincer; w xoz1 = 712071 + 23077 then we get

P172(Z) = (1 - Z)Pl(Z)PQ(Z) - 2P271(Z).
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Proposition 3 allows to extend the definitionidf, over X* as we have already extended the definition
of Li,, over X*. Moreover,
Definition 3 ([8]). LetP be the noncommutative generating serie$f }.,c x« :
P= > P,uw.
weX*

Proposition 4 ([8]). Lets be the monoid morphism defined ovéf by o (z¢) = —21 ando(x1) = —xo.
Then

\
Pl—2)= 2Pz  [[ @9
? leLyn(X)\{zo,21}
Proof. It follows immediately from Proposition 1. O
Example 7.
1—2z 3
Poi(l—2)= <—P3(Z) + log(2)Pa(2) — log?(2)P1(2) + IC(—)2>
Thus,
B z zlog(1l — z) 1 zlog®(1 — z) ¢(3)
Poa(z) = 1—zP3(1 Z)+71—z Py(1-2) T 12 Py(1 Z)+71—z'

By Formula (22) and Proposition 2, far € Y*, there exist a finite setand(c;);c; € C such that the
three following identities are equivalent

wo= Y cwy (23)
el

Py = ) P OP (24)
icl

H, = Y H,H,. (25)
el

In particular, forw = y¥, we have,

Lemma 2. Let M = (miyj)1<i‘j<k be the matrix defined by.; ; = 6; ;+1 (Kronecker symbol). Let; ;
the matrix of sizeé: x k, whose coefficients are all zero, except the one equakioline : and columny.
Let

m 0 0 Hy, 0
-2 % 0 —p 3 0
A= . and B =
: : 0 : . 0
EDF g (=D Py Y1 (-1 'H,, (-1)*2H,, , Hy,
k k k k k
Then
U k—1 ) € Hy, k—1 1
=41l {MEA(tM)‘ +> e] | and | 1 | =B]] {MEB(tM)Z +> e} :
yic =1 =1 € Hy’f =1 =1 1

Proof. The formulay’ = (—1)*1k~1 321~ (—1)!y} ey, [6] can be written matricially as follows

U1 € € 0 e 0 €
yi Y1 0 Y1 0 €
. =Aww . =Aw | . . Lt
: : : 0 :
— —1)k=2,, —
ylf ylf 1 0 ( 1)k—lyk r % y/f 2

Here all powers and products are carried out with the stuffle product. Successively, we get the expected
result. O
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The wordy? appears then as a computable stuffle product of words of Idngtlence,
Proposition 5. H, is a combination o{H,, }1<,<x which are algebraically independent.

Proof. The {H,, }1<,< are algebraically independent according to Proposition 2, as image by the iso-
morphismH of the Lyndon wordgy, }1<,<x. By Lemma 2, we get the expected result. O

Example 8. Since

3 23—y wye) + (Y1 yr —y2) wy

Ll Y —
2_ 1Y — Y2 and =

Y1 9 1= 6
then we have
H2 - Hyz Z(Hyz - Hyl Hyz) + (H2 - Hyg)Hm

Identities (23-25) give rise to two interpretations : (24) enables to deconthpgea basis of singular
functions (1 — z)“ logﬁ(l — z) while (25) enables to compute an asymptotic expansion of its Taylor
coefficients in terms ofV®log® N (or equivalently in terms oI’\f‘lHZ1 (N)). Before stating a theorem
linking these two interpretations, we are interested in the actighaf Taylor coefficients; reciprocally,
we are interested in the effects of changing Taylor coefficients on a funct®fim, } .. |-

3.2 Operations on the generating functions P,

For f(z) = >, anz", we will henceforth denot¢:"|f(z) = a, its n-th Taylor coefficient. Since
multiplying or dividing byz acts very simply oriz"] f(z), we only have to study the effect of multiplying
or dividing by1 — z.

[Zn](l - Z)Pw(z) = Hw(n) - Hw(n - 1)' (26)
e S ) @)
k=0

(28)

and, more generally,
Proposition 6.

k
-2 =30 (N emun - ad Y G,
7=0

3.3 Operations on Taylor coefficients of P,
We are now to find how multiplying or dividin#,,(N) by N acts onP,,.

3.3.1 Aparticular case: w =¢
The simple case = ¢, corresponding tél. (V) = 1, can be studied and treated by the following
Proposition 7. For anyq € Z, one has

[2"](1 — 2)P_4(2) if ¢<0,
[2"](1 = 2)~! if ¢=0,

w1 Z 1 .

whereN, is defined by the following recurrence

—

q

No(X) =1, and N,(X)= X(l_ (1)1t (j) Nj(X)).

<
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Example 9.
n o= [ <(1 _ZZ)2> = [ ((1—12)2 - 1:2) ’
n? = [2"] (1 iZz)?’ a (1_22)2 =[] <(1 —22)3 - (1—33)2 i 1iz> .

3.3.2 How to divide by n*?

Letw = ys, - - - ys, andw’ = ys, - - - ys, be the suffix ofw, of lengthr — 1. The expression *H,,(n), k
positive integer, can be identified as follows

n"*Hy(n) = n *Hyu(n—1)4+n " "*Hy (n - 1) (29)
= [Zn] Liyk:w+y.g1+kw’ (2) (30)
= [ = 2)Pyuwpy,, g (2)]: (31)

3.3.3 How to multiply by n*?
In order to study the effect of multiplying by”*, k positive integer, we denote ly= 20/0z the Euler
operator. Then for any integér

nFH, (n) = [2"]0*P(2). (32)

So, we just have to compu@P.,,(z). As in [7], let us introduce
Definition 4. For any wordw = z;, - --x;, and for any compositiom = (rq,...,rg), let m.(w) be
defined byr,. (w) = 7, (z4,) - - - 7, (1, ) With,

7o(wo) = o , T(21) = 21,

" . % rlx
and, forr € N*,  7y(z0) = 0"2zg =0 and 7p(z1) =05 _12 = 1o 2)17“+1'

We define the degree oby deg(r) = k and its weight bywgt(r) = k + 71 + -+ + 7.
By applying successively the operatbto L, we get
Lemma 3. #'L = AL, whereA4, is defined by

Z Z def_([r)( r2+] 1>Tr(w).

wgt(r)=l we Xdes(r) i=1

Proof. This is a consequence of the recurrence relation verified byhich is A¢(z) = 1, and, for all

leN, AH_l(Z) = [7’0(560)+To(x1)]Al(Z)+9Al(Z). ]
This lemma enables to extract the expressio#f dfi,,, for any wordw € X*.

Example 10.

AO(Z) ]-7

Ai(z) = zo+ 1 x1,

2 2 2 1

Al = et et

So, forw = z3z1,
- Liwox,u
2 i 2 2 1 2
6? Lizz,, = ((zg5+ [ %o 1 + = Z)2x1 + = 2)2x1)L(z) THTe
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Lemma 4. Let L be the linear operator df[X| defined byl X" = (n+1) X" ™' +nX"™ and{B;},.y €
Z[X] defined byBy(X) = 1 and B;;+1(X) = LB;(X). Then

0l(1— )~ = (1— 2) "' By(2(1 — 2)71).

Note that the head term @;, [ > 1, is!! X" and its trail term isX .
Example 11. Bo(X) =1, Bi(X) = X, Bo(X) =2X? + X, B3(X) = 6X% +6X? + X.
Proposition 8. With the notations of Lemma 4,

iz 5 delg_([P)( n+J 1><’;>Tr(w)3j<1iz)1>(z).

wegt(r) weXdes(r) i=1

Using Leibniz formula, one has

0" P, (2) = Z()ek T Liy(2)67 ! (33)

- 1—=2
=0

i() <1z>129“hw<> (34)

J=0

<

Thanks to Lemma 3, we can extract the coeffici@iti,, of w in 6'L : this can be written ag-linear
combination ofLi,, with |v| < |w| — I (where|u| denotes the length of a worde X*). We deduce so
the expression df*P,,,.

Example 12. For w = x3z; andk = 2,

0°P,s, (2) = i(i)B (1;)1 i (2)

=0

2
1 . z 1 . z z .
L) 2 T L () + (2 () + = _Z> Lisg, (2

2 >+
= Puy(2) + T Pages (2) + TPz, (2):

So, n%Hs(n) = ["] <P1(2)+12_ZzP2(z)+le—;P3(z)).

4 The main theorem

Throughout the section, we will write
fn ~ qu(n) for n — +oo,

for a scale of function$g; );cy — i.€. verifyingg;+1(n) = O (g;(n)), for all i — to express that

fn—Z:gZ )+ O (gr41(n)), foranyl > 0.

In the same way, given a scale of functiofis);cny aroundz = 1 (i.e. verifying h;11(1 — 2z) =
O (hi(1 — 2)), whenz — 1) we will write

oo

g(z) ~ th(l —z) for z—1,

1=0
to mean

I
9(2) =Y hi(1—2) + O (hy11(1 - 2)) forall I >0.
=0
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Forw = y¥, we know the expression qﬁN]ny (z) = Hyr(IV) is given by Lemma 2. From the
second form of Euler-MacLaurin formula, involving the Bernoulli numbess } >0, we get the following
asymptotic expansions

=X B 1
H, (N) ~ 1ogN+’yfkilfk NE
+oo
1 Birp1 (k—1) 1
H, (N) ~ - - — —-, for 1.
v N) o~ ) = e ka—r—kl(r—l)N’“’ "

Thus, we can deduce the asymptotic expansiorﬁy?(N ), for N — 400, from the asymptotic expan-
sions of{H,, (N)}<r<k :
Example 13. From Example 8, we can deduce then

1 1 1log(N 1 1 1
Hp(N) = S(log(N) +9)* = 5¢(2) + 5 8 )]\J;wr -~ Nz T O (N2>
log?(N
H(N) = glog®(V) + 371og2(V) + 5(+7 — C(2)) log(N) — 3¢(2)7 + 36) + g0 + 1)
1
2

e Lo e gy L Lle ) (1 + 7) L) | (1) .

N 4 N 24 N? 8 12 N2 N2

Let us see in the general case how to reach the Taylor expansioa 6f(P.,)wey «]-
Theorem 2. Letg € C[(Py)wey~+]. There existi; € C,a; € Z and3; € N such that

o0
g(z) ~ Zaj(l —2)% log® (1 —2), for z— 1.
=0

Therefore, there exis$t € C,n; € Z andx; € N such that
o0
[Zn]g(z) ~ Zbinm log"“’ (n)’ for n — oo.
1=0

Proof. Considering Corollary 1, we only have firstly to obtain the asymptotic expansion for the case
g(z) = Pu(z). Indeed, we get then the expansionsfdt)g(z), for f € C by remarking that =
1—(1-z)andthat:"* = > _ (1 —2)".

The first expansion can be derived from Proposition 4 which links the behavidty, efoundz = 1
to the behaviour of some algebraic combination of functipRs},cx+ aroundz = 0. Moreover, by
Radford theorem 1, we can assume that each wandolved in this combination is a Lyndon word and
so belongs ta:o X *z1 U {zo, 21 }. But, remind that, in this case, we habg(z) = >, -, Hu(n)z" and
thatP,,(z) = (1 — z)~!log(z). So, the expected first expansion follows.

From

(1—2)*log(1 — 2)7 = (=1)7BU1 = 2)**'P s (2), (35)

we derive the second expansion by computing the Taylor coeffifiéHtl — 2) logﬂ(l — z). Since we
have already explained how the multiplication dy— z)* acts on the Taylor coefficients, we just have
then to compute[az"]Pyla =Hp (n). For this, we use Lemma 2 which completes our proof. O

Unfortunately, in the general case, knowing even the complete expansjof]@fz) only enables to
get an asymptotic expansion gfz), asz — 1 up to order0 (i.e. thesingular partof the expansion).
Indeed, Taylor coefficients of all functioris — 2)*, k > 0 eventually vanish as in the following identity :

1
= = [2"]Li1(2) = [2"][Li1(2) + (1 — 2)?], as soon ag > 2. (36)
n
In fact, to obtain this singular part, it is sufficient to know the asymptotic expansilft f( =) up to order
2 —¢€,¢e> 0[15].
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Remark 1. In the case of a finite surﬁ:iel b HY (), we are able to construct the unique function
f € C[(Pw)wey~] such that,

VneN,  [z"f(z) =) bn"Hf (n), (37)
el

as illustrated in Examples 9 and 12.

Remark 2. Note that the proof of Theorem 2 giveseffectiveconstruction of the asymptotic expansion
of Taylor coefficients. In particular, applied tg(z) = P, (z) directly, it enables to find an asymptotic
expansion oH,,(N), as shown in the corollary below. Another algorithm, based on Euler Mac-Laurin
formula, is available in [1].

Corollary 2. Let Z be theQ-algebra generated by convergent p@es and letz’ be theQ[+]-algebra
generated byZ. Then there exist algorithmically computable coefficiénts Z’, k; € Nandn; € Z
such that, for anyw € Y*,

+oo
H, (N) ~ Y ;N7 log™(N), for N — +oo.
=0

Example 14. From Example 7 we get, far — 1

Pyi(z) = f% Flog(l—z)—1— W (1 2) (—log (i —2) 10g(14— 2)> +O(|1 - z2]).
But
VB 1 -2)"" = ((3),
[ZN] lOg(l - Z) = -N~ ’
[ N]10g2(1 — Z) _ [ZN 2'(1 - Z)ny (Z)
2

We find finally, using Example 13:

[2V]Ps1(2) = Ha 1 (V) = ¢(3)

N 2 N2 N2

_log(N) +1+~ | 1log(IN) O( 1 )
N2 )

Otherwise, by Example 6,

PLQ(Z) = (]. — Z)Pl(Z)PQ(Z) — 2P211(Z)
~ (-2 — lolg(_lg z) 1 i . (P2(1 —2z)+log(l —2)P1(1—2)+ C(ZQ)) — 2P271(Z),

calculated thanks to Proposition 4. So,

[2NP1a(2) = Hio(N) = ¢(2)y — 2¢(3) + ¢(2) log(N) + C<22)]\;L 2.0 (J\;) .

Corollary 3 ([8]). For anyw € Y*, the N-free term in the asymptotic expansion1df,(V), when
N — +o0, is a polynomialg,, in Z[v]. This term is an element ig, if and only ifw is a convergent
word.

Example 15. Qyr1y> = <(2)’Y - 24(3) andqyzyl = C(S) = <(2a 1)
Question. For any convergent word,, are ¢(w) and~ algebraically independent ?

Now, let us go back to thag introduced in Section 1. We have seen that theyalieear combinations
on Hg, hence we get their asymptotic expansions with coefficiengs'in
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Example 16. Fors = (1,1, 1),

A17171(N) - H17171(N) JF H172(N) JF H271(N) + HB(N),
2
= 108 (V) 4y Iog (V) £ 512 + C2))log(N) — LC@p + 163 + 17+ 1B
1 log(N) 1 1 1log®(N) 1 log(N 1
b 5= DBy (@ - g + 5300 2 40 ().
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