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Algorithmic and combinatoric aspects of
multiple harmonic sums

Christian Costermans and Jean-Yves Enjalbert and Hoang Ngoc Minh

Universit́e Lille II, 1, Place D́eliot, 59024 Lille, France

Ordinary generating series ofmultipleharmonic sums admit afull singular expansion in the basis of functions
{(1 − z)α logβ(1 − z)}α∈Z,β∈N, near the singularityz = 1. A constructiveproof of this result is given, and, by
combinatoricaspects, an explicit evaluation of Taylor coefficients of functions in somepolylogarithmicalgebra is
obtained. In particular, theasymptotic expansionof multiple harmonic sums is easily deduced.
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1 Introduction
Hierarchical data structure occur in numerous domains, like computer graphics, image processing or bi-
ology (pattern matching). Among them, quadtrees, whose construction is based on a recursive definition
of space, constitute a classical data structure for storing and accessing collection of points in multidimen-
sional space. Their characteristics (depth of a node, number of nodes in a given subtree, number of leaves)
are studied by Laforest [12], with probabilistic tools. In particular, she shows, for a quadtree of sizeN in
a d-dimension space, that the probabilityπN,k for the first subtree to have sizek can be expressed as an
algebraic combination ofj-th order harmonic numbersHj(N) andHj(k), j ≥ 1, defined by

Hj(n) =
n∑

m=1

1
mj

. (1)

For instance, ford = 3, one has

πN,k =
[H1(N)−H1(k)]2 + H2(N)−H2(k)

2N
. (2)

Flajolet et al. [2] give this general expression for the splitting probability

πN,k =
∑

N≥i1···≥id−1>k

1
i1 · · · id−1

. (3)

The probabilityπN,k appears as a particular case of the following sumAs(N) associated to themulti-index
s = (s1, . . . , sr), which is strongly related to multiple harmonic sumsHs(N) :

As(N) =
∑

N≥n1≥···≥nr>0

1
n1

s1 . . . nr
sr

and Hs(N) =
∑

N≥n1>···>nr>0

1
n1

s1 . . . nr
sr

. (4)

Let us note that there exist explicit relations, given by Hoffman [10] between theAs(N) andHs(N).
Indeed, letComp(n) be theset of compositionsof n, i.e. sequences(i1, . . . , ir) of positive integers
summing ton. If I = (i1, . . . , ir) (resp. J = (j1, . . . , jp)) is a composition ofn (resp. ofr) then
J ◦ I = (i1 + . . . + ij1 , ij1+1 + . . . + ij1+j2 , . . . , ik−jp+1 + . . . + ik) is a composition ofn. By Möbius
inversion, one has

As(N) =
∑

J∈Comp(r)

HJ◦s(N) and Hs(N) =
∑

J∈Comp(r)

(−1)l(J)−rAJ◦s(N), (5)

wherel(J) is the number of parts ofJ .
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Example 1. For s = (1, 1, 1), since the set of compositions of3 is {(1, 1, 1), (1, 2), (2, 1), (3)}, we get

A1,1,1(N) = H1,1,1(N) + H1,2(N) + H2,1(N) + H3(N),

H1,1,1(N) = A1,1,1(N)−A1,2(N)−A2,1(N) + A3(N).

Therefore, theAs(N) are Z-linear combinations onHs(N) (and vice versa). Thus, the remaining
problem is to know the asymptotic behaviour ofπN,k, for N → ∞ [11]. For that, in this work, we
are interested in thecombinatorialaspects of these sums by use of a symbolic encoding by words. This
enables then to transfershuffle relationson words into algebraic relations between multiple harmonic
sums, or betweenpolylogarithmfunctions, defined for a multi-indexs = (s1, . . . , sr) by

Lis(z) =
∑

n1>...>nr>0

zn1

ns1
1 . . . nsr

r
, for |z| < 1. (6)

These relations are recalled in Section 2. The reason to call upon polylogarithms is given in Section 3,
since the generating functionPs(z) =

∑
n≥0 Hs(n)zn of {Hs(n)}n≥0, verifies

Ps(z) =
1

1− z
Lis(z). (7)

So, we set the polylogarithmic algebra of{Ps}s, with coefficients inC = C[z, z−1, (z − 1)−1], and
we then establishexacttransfer results between a functiong in this algebra and its Taylor coefficients
[zN ]g(z), in theC-algebra generated by{Nk Hs(N)}s, k∈Z in both directions. The main result of this
paper is finally stated in Section 4, which gives a computation of thefull singular expansion ofg, in
the basis of functions{(1 − z)α logβ(1 − z)}α∈Z,β∈N, near the singularityz = 1. We deduce from
this afull asymptotic expansion of its Taylor coefficients. These results are based on the analysis of the
noncommutativegenerating series of functions of the form (7), in particular on its infinite factorization
indexed byLyndon words.

2 Background
2.1 Combinatorics on words
To the multi-indexs we can canonically associate the wordu = xs1−1

0 x1 . . . xsr−1
0 x1 over the finite

alphabetX = {x0, x1}. In the same way,s can be canonically associated to the wordv = ys1 . . . ysr
over

the infinite alphabetY = {yi}i≥1. Moreover, in both alphabets, the empty multi-index will correspond to
the empty wordε. We shall henceforth identify the multi-indexs with its encoding by the wordu (resp.
v). We denote byX∗ (resp.Y ∗) the free monoid generated byX (resp.Y ), which is the set of words over
X (resp.Y ). NotingC〈X〉 (resp.C〈Y 〉) the algebra of noncommutative polynomials with coefficients in
C, we obtain so a concatenation isomorphism from theC-algebra of multi-indexes into the algebraC〈X〉
(resp. C〈Y 〉). The coefficient ofw ∈ X∗ in a polynomialS ∈ C〈X〉 is denoted by(S|w) or Sw. The
duality between polynomials is defined as follows

(S|p) =
∑

w∈X∗

Swpw, p ∈ C〈X〉. (8)

The set of Lie monomials is defined by induction: the letters inX are Lie monomials and the Lie
bracket[a, b] = ab− ba of two Lie monomialsa andb is a Lie monomial. A Lie polynomial is aC-linear
combination of Lie monomials. The set of Lie polynomials is called thefree Lie algebra.

2.2 Shuffle products
Let a, b ∈ X (resp. yi, yj ∈ Y ) andu, v ∈ X∗ (resp. Y ∗). Theshuffle(resp. stuffle) of u = au′ and
v = bv′ (resp.u = yiu

′ andv = yjv
′) is the polynomial recursively defined by

ε tt u = u tt ε = u and u tt v = a(u′ tt v) + b(u tt v′), (9)

(resp. ε u = u ε = u and u v = yi(u′ v) + yj(u v′) + yi+j(u′ v′)). (10)

Example 2.

x0x1 tt x1 = x1x0x1 + 2x0x
2
1

y2 y1 = y1y2 + y2y1 + y3. (11)

This product is extended toC〈X〉 (resp.C〈Y 〉) by linearity. With this product,C〈X〉 (resp.C〈Y 〉) is a
commutative and associativeC-algebra.
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l Ql Sl

x0 x0 x0

x1 x1 x1

x0x1 [x0, x1] x0x1

x0
2x1 [x0, [x0, x1]] x0

2x1

x0x1
2 [[x0, x1], x1] x0x1

2

x0
3x1 [x0, [x0, [x0, x1]]] x0

3x1

...
...

...
x0

3x1
3 [x0, [x0, [[[x0, x1], x1], x1]]] x0

3x1
3

x0
2x1x0x1

2 [x0, [[x0, x1], [[x0, x1], x1]]] 3x0
3x1

3 + x0
2x1x0x1

2

x0
2x1

2x0x1 [[x0, [[x0, x1], x1]], [x0, x1]] 6x0
3x1

3 + 3x0
2x1x0x1

2 + x0
2x1

2x0x1

x0
2x1

4 [x0, [[[[x0, x1], x1], x1], x1]] x0
2x1

4

x0x1x0x1
3 [[x0, x1], [[[x0, x1], x1], x1]] 4x0

2x1
4 + x0x1x0x1

3

x0x1
5 [[[[[x0, x1], x1], x1], x1], x1] x0x1

5

Tab. 1: Lyndon words, bracket forms and dual basis

2.3 Lyndon words and Radford’s theorem
By definition, aLyndon wordis a non empty wordl ∈ X∗ (resp.∈ Y ∗) which is lower than any of its
proper right factors [14] (for the lexicographical ordering) i.e. for allu, v ∈ X∗ \ {ε} (resp.∈ Y ∗ \ {ε}),
l = uv ⇒ l < v. The set of Lyndon words ofX (resp.Y ) is denoted byLyn(X) (resp.Lyn(Y )).

Example 3. For X = {x0, x1} with the orderx0 < x1 the Lyndon words of length≤ 5 on X∗ are (in
lexicographical increasing order)

{x0, x
4
0x1, x

3
0x1, x

3
0x

2
1, x

2
0x1, x

2
0x1x0x1, x

2
0x

2
1, x

2
0x

3
1, x0x1, x0x1x0x

2
1, x0x

2
1, x0x

3
1, x0x

4
1, x1}.

For Y = {yi, i ≥ 1}, with the orderyi < yj wheni > j, here are the corresponding Lyndon words over
Y

{y5, y4, y4y1, y3, y3y2, y3y1, y3y
2
1 , y2, y

2
2y1, y2y1, y2y

2
1 , y2y

3
1 , y1}.

Theorem 1 (Radford, [13, 14]). Let

C1 = C⊕ (C〈X〉 \ x0C〈X〉x1) and C2 = C⊕ (C〈Y 〉 \ y1C〈Y 〉)

be the sets of convergent polynomials overX andY respectively. Then,

(C〈X〉, tt) ' (C[Lyn(X)], tt) = (C1[x0, x1], tt),
(C〈Y 〉, ) ' (C[Lyn(Y )], ) = (C2[y1], ).

Example 4.

y2y4y1 + y2y1y4 + y1y2y4 + y2y5 + y3y4 = y4 y2 y1 − y4y2 y1 − y6 y1 ∈ C[Lyn(Y )]
= y2y4 y1 ∈ C2[y1]

2.4 Bracket forms and the dual basis
Thebracket formQl of a Lyndon wordl = uv, with l, u, v ∈ Lyn(X) and the wordv being as long as
possible, is defined recursively by{

Ql = [Qu,Qv]
Qx = x for each letterx ∈ X,

It is classical that the setB1 = {Ql ; l ∈ Lyn(X)}, ordered lexicographically, is a basis for the free
Lie algebra. Moreover, each wordw ∈ X∗ can be expressed uniquely as a decreasing product of Lyndon
words:

w = lα1
1 lα2

2 . . . lαk

k , l1 > l2 > · · · > lk, k ≥ 0. (12)
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The Poincaŕe–Birkhoff–Witt basisB = {Qw; w ∈ X∗} and its dual basisB∗ = {Sw; w ∈ X∗} are
obtained from (12) by setting [14]

Qw = Qα1
l1
Qα2

l2
. . .Qαk

lk
,

Sw =
Stt α1

l1
tt . . . tt Stt αk

lk

α1!α2! . . . αk!
,

Sl = xSw, ∀l ∈ Lyn(X), wherel = xw, x ∈ X, w ∈ X∗.

In [14], it is proved thatB andB∗ are dual bases ofC〈X〉 i.e. (Qu|Sv) = δv
u, for all wordsu, v ∈ X∗

with δv
u = 1 if u = v, otherwise0.

Lemma 1. For all w ∈ x0X
∗x1, one hasSw ∈ x0Z〈X〉x1.

Proof. The Lyndon words involved in the decomposition (12) of a wordw ∈ X∗x1 (resp.w ∈ x0X
∗x1)

all belong toX∗x1 (resp.x0X
∗x1).

2.5 Polylogarithms
Let C = C[z, 1/z, 1/(z − 1)] and letω0 andω1 be the two following differential forms

ω0(z) =
dz

z
and ω1(z) =

dz

1− z
. (13)

One verifies the polylogarithmLis(z), defined by Formula (6), is also the followingiterated integralwith
respect toω0 andω1

Lis(z) =
∫

0 z

ωs1−1
0 ω1 · · ·ωsr−1

0 ω1. (14)

Thanks to the bijection fromY ∗ to X∗x1 previously explained, we can index the polylogarithms by the
words ofX∗x1, or indistinctly by the words ofY ∗. We can extend (14) overX∗ by putting

Liε(z) = 1, Lix0(z) = log z, Lixiw(z) =
∫

0 z

ωi(t) Liw(t), for xi ∈ X, w ∈ X∗. (15)

Therefore,Liw verifies the following identity [4]

∀u, v ∈ X∗, Liutt v = Liu Liv . (16)

The extended definition enables to construct the noncommutative generating series [4]

L =
∑

w∈X∗

Liw w (17)

as being the unique solution of theDrinfel’d equation, i.e. the differential equation [4]

dL = [x0ω0 + x1ω1]L, (18)

satisfying the boundary condition

L(ε) = ex0 log ε + o(
√

ε), when ε → 0+. (19)

Proposition 1 ([5]). Letσ be the monoid morphism defined overX∗ byσ(x0) = −x1 andσ(x1) = −x0.
Then,

L(1− z) = [σL(z)]
↘∏

l∈Lyn(X)\{x0,x1}

eζ(Sl)Ql .

Example 5 ([5]).

Lix0x2
1
(1− z) = −Lix2

0x1
(z) + Lix0(z) Lix0x1(z)− 1

2
Li2x0

(z) Lix1(z) + ζ(3), i.e.

Li2,1(1− z) = −Li3(z) + log(z) Li2(z) +
1
2

log2(z) log(1− z) + ζ(3).
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2.6 Harmonic sums
Definition 1. Letw = ys1 . . . ysr

∈ Y ∗. For N ≥ r ≥ 1, the harmonic sumHw(N) is defined as

Hw(N) =
∑

N≥n1>...>nr>0

1
ns1

1 . . . nsr
r

.

For 0 ≤ N < r, Hw(N) = 0 and, for the empty wordε, we putHε(N) = 1, for anyN ≥ 0.

Let w = ys1 . . . ysr
∈ Y ∗. If s1 > 1 then, by an Abel’s theorem,

lim
N→∞

Hw(N) = lim
z→1

Liw(z) =
∑

n1>...>nr>0

1
ns1

1 . . . nsr
r

.

That is nothing but the polyzêta (or MZV [16])ζ(w) and the wordw ∈ Y ∗\y1Y
∗ is said to beconvergent.

A polynomial ofC〈Y 〉 is said to be convergent when it is a linear combination of convergent words. The
doubleshuffle algebra of polyẑetas is already pointed out and extensively studied in [3].

Forw = ysw
′, we have

ζ(w) =
∑
l≥1

Hw′(l − 1)
ls

, (20)

Hw(N + 1)−Hw(N) = (N + 1)−sHw′(N) (21)

and, for anyu, v ∈ Y ∗ [9]

Hu v(N) = Hu(N)Hv(N). (22)

3 Generating series
3.1 Definition and first properties
Definition 2 ([8]). Letw ∈ Y ∗ and letPw(z) be the ordinary generating series of{Hw(N)}N≥0

Pw(z) =
∑
N≥0

Hw(N)zN .

Proposition 2 ([8]). Extended by linearity, the mapP : u 7→ Pu is an isomorphism from(C〈Y 〉, )
to the Hadamard algebra of({Pw}w∈Y ∗ ,�). Therefore, the mapH : u 7→ Hu = {Hu(N)}N≥0 is an
isomorphism from(C〈Y 〉, ) to the algebra of({Hw}w∈Y ∗ , . ) .

Proof. The definition of the Hadamard product
∑∞

n=0 anzn �
∑∞

n=0 bnzn =
∑∞

n=0 anbnzn, and the
formula (22) givesP as an algebra morphism. Since the functions{Liw}w∈X∗ are linearly independent
overC [4], P is the expected isomorphism.

Proposition 3 ([8]). For every wordw ∈ Y ∗ and for z ∈ C satisfying|z| < 1, one hasLiw(z) =
(1− z)Pw(z).

Proof. Forw = ysw
′, sincePw(z) =

∑
N≥0 Hw(N)zN and by using (21),

(1− z)Pw(z) = Hw(0) +
∑
N≥1

Hw′(N − 1)
Ns

zN = Liw(z).

A direct consequence of this proposition and Identity (16) is

Corollary 1. For all u, v ∈ X∗, for all z ∈ C satisfying|z| < 1, Pu(z)Pv(z) = (1− z)−1Putt v(z).

Example 6. Sincex1 tt x0x1 = x1x0x1 + 2x0x
2
1 then we get

P1,2(z) = (1− z)P1(z)P2(z)− 2P2,1(z).
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Proposition 3 allows to extend the definition ofPw overX∗ as we have already extended the definition
of Liw overX∗. Moreover,

Definition 3 ([8]). LetP be the noncommutative generating series of{Pw}w∈X∗ :

P =
∑

w∈X∗

Pww.

Proposition 4 ([8]). Letσ be the monoid morphism defined overX∗ byσ(x0) = −x1 andσ(x1) = −x0.
Then

P(1− z) =
1− z

z
[σP(z)]

↘∏
l∈Lyn(X)\{x0,x1}

eζ(Sl)Ql .

Proof. It follows immediately from Proposition 1.

Example 7.

P2,1(1− z) =
1− z

z

(
−P3(z) + log(z)P2(z)− log2(z)P1(z) +

ζ(3)
1− z

)
Thus,

P2,1(z) = − z

1− z
P3(1− z) +

z log(1− z)
1− z

P2(1− z)− 1
2

z log2(1− z)
1− z

P1(1− z) +
ζ(3)
1− z

.

By Formula (22) and Proposition 2, forw ∈ Y ∗, there exist a finite setI and(ci)i∈I ∈ CI
2 such that the

three following identities are equivalent

w =
∑
i∈I

ci y i
1 , (23)

Pw =
∑
i∈I

Pci
� P�i

y1
, (24)

Hw =
∑
i∈I

Hci
Hi

y1
. (25)

In particular, forw = yk
1 , we have,

Lemma 2. LetM =
(
mi,j

)
1≤i,j≤k

be the matrix defined bymi,j = δi,j+1 (Kronecker symbol). Letei,j

the matrix of sizek × k, whose coefficients are all zero, except the one equal to1 at line i and columnj.
Let

A =


y1 0 . . . 0
−y2

2
y1
2 . . . 0

...
...

... 0
(−1)k−1yk

k
(−1)k−2yk−1

k . . . y1
k

 and B =


Hy1 0 . . . 0
−Hy2

2

Hy1
2 . . . 0

...
...

... 0
(−1)k−1Hyk

k

(−1)k−2Hyk−1
k . . .

Hy1
k

 .

Theny1

...
yk
1

 = A
k−1∏
`=1

[
M `A(tM)` +

∑̀
ι=1

eι,ι

]ε
...
ε

 and

Hy1

...
Hyk

1

 = B
k−1∏
`=1

[
M `B(tM)` +

∑̀
ι=1

eι,ι

]1
...
1

 .

Proof. The formulayk
1 = (−1)k−1k−1

∑k−1
l=0 (−1)lyl

1 yk−l [6] can be written matricially as follows
y1

y2
1
...

yk
1

 = A


ε
y1

...
yk−1
1

 = A


ε 0 . . . 0
0 y1 . . . 0
...

...
... 0

0 (−1)k−2yk−1
k−1 . . . y1

k−1




ε
ε
...

yk−2
1

 .

Here all powers and products are carried out with the stuffle product. Successively, we get the expected
result.
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The wordyk
1 appears then as a computable stuffle product of words of length1. Hence,

Proposition 5. Hyk
1

is a combination of{Hyr
}1≤r<k which are algebraically independent.

Proof. The{Hyr
}1≤r<k are algebraically independent according to Proposition 2, as image by the iso-

morphismH of the Lyndon words{yr}1≤r<k. By Lemma 2, we get the expected result.

Example 8. Since

y2
1 =

y1 y1 − y2

2
and y3

1 =
2(y3 − y1 y2) + (y1 y1 − y2) y1

6

then we have

Hy2
1

=
H2

y1
−Hy2

2
and Hy3

1
=

2(Hy3 −Hy1Hy2) + (H2
y1
−Hy2)Hy1

6
.

Identities (23-25) give rise to two interpretations : (24) enables to decomposePw in a basis of singular
functions(1 − z)α logβ(1 − z) while (25) enables to compute an asymptotic expansion of its Taylor
coefficients in terms ofNa logb N (or equivalently in terms ofNaHb

y1
(N)). Before stating a theorem

linking these two interpretations, we are interested in the action ofC on Taylor coefficients; reciprocally,
we are interested in the effects of changing Taylor coefficients on a function inC[{Pw}w∈Y ∗ ].

3.2 Operations on the generating functions Pw

For f(z) =
∑

n≥0 anzn, we will henceforth denote[zn]f(z) = an its n-th Taylor coefficient. Since
multiplying or dividing byz acts very simply on[zn]f(z), we only have to study the effect of multiplying
or dividing by1− z.

[zn](1− z)Pw(z) = Hw(n)−Hw(n− 1). (26)

[zn]
Pw(z)
1− z

=
n∑

k=0

Hw(k) (27)

=

{
(n + 1)Hw(n)−Hys−1w′(n) if w = ysw

′, with s 6= 1
(n + 1)Hw(n)−

∑n
j=1 Hw′(j − 1) if w = y1w

′.
(28)

and, more generally,

Proposition 6.

[zn](1− z)kPw(z) =
k∑

j=0

(
k

j

)
(−1)jHw(n− j) and [zn]

Pw(z)
(1− z)k

=
∑

n≥j1≥···≥jk≥0

Hw(jk).

3.3 Operations on Taylor coefficients of Pw

We are now to find how multiplying or dividingHw(N) by N acts onPw.

3.3.1 A particular case : w = ε

The simple casew = ε, corresponding toHε(N) = 1, can be studied and treated by the following

Proposition 7. For anyq ∈ Z, one has

nq =


[zn](1− z)P−q(z) if q < 0,
[zn](1− z)−1 if q = 0,

[zn]
z

1− z
Nq

(
1

1− z

)
if q > 0,

whereNq is defined by the following recurrence

N0(X) = 1, and Nq(X) = X

(q−1∑
j=0

(−1)q−1−j

(
q

j

)
Nj(X)

)
.
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Example 9.

n = [zn]
(

z

(1− z)2

)
= [zn]

(
1

(1− z)2
− 1

1− z

)
,

n2 = [zn]
(

2z

(1− z)3
− z

(1− z)2

)
= [zn]

(
2

(1− z)3
− 3

(1− z)2
+

1
1− z

)
.

3.3.2 How to divide by nk?
Let w = ys1 · · · ysr

andw′ = ys2 · · · ysr
be the suffix ofw, of lengthr−1. The expressionn−kHw(n), k

positive integer, can be identified as follows

n−kHw(n) = n−kHw(n− 1) + n−s1−kHw′(n− 1) (29)

= [zn] Liykw+ys1+kw′(z) (30)

= [zn][(1− z)Pykw+ys1+kw′(z)]. (31)

3.3.3 How to multiply by nk?
In order to study the effect of multiplying bynk, k positive integer, we denote byθ = z∂/∂z the Euler
operator. Then for any integerk,

nkHw(n) = [zn]θkPw(z). (32)

So, we just have to computeθkPw(z). As in [7], let us introduce

Definition 4. For any wordw = xi1 · · ·xik
and for any compositionr = (r1, . . . , rk), let τr(w) be

defined byτr(w) = τr1(xi1) · · · τrk
(xik

) with,

τ0(x0) = x0 , τr(x1) = x1,

and, forr ∈ N∗, τr(x0) = θrx0 = 0 and τr(x1) = θr zx1

1− z
=

r!x1

(1− z)r+1
.

We define the degree ofr bydeg(r) = k and its weight bywgt(r) = k + r1 + · · ·+ rk.

By applying successively the operatorθ to L, we get

Lemma 3. θlL = AlL, whereAl is defined by

Al(z) =
∑

wgt(r)=l

∑
w∈Xdeg(r)

deg(r)∏
i=1

(∑i
j=1 ri + j − 1

ri

)
τr(w).

Proof. This is a consequence of the recurrence relation verified byAl, which isA0(z) = 1, and, for all
l ∈ N, Al+1(z) = [τ0(x0) + τ0(x1)]Al(z) + θAl(z).

This lemma enables to extract the expression ofθl Liw, for any wordw ∈ X∗.

Example 10.

A0(z) = 1,

A1(z) = x0 +
z

1− z
x1,

A2(z) = x2
0 +

z

1− z
x0 tt x1 +

z2

(1− z)2
x2

1 +
1

(1− z)2
x1.

So, forw = x2
0x1,

θ Lix2
0x1

=
(

(x0 +
z

1− z
x1)L(z)

∣∣∣ x2
0x1

)
= Lix0x1 ,

θ2 Lix2
0x1

=
(

(x2
0 +

z

1− z
x0 tt x1 +

z2

(1− z)2
x2

1 +
1

(1− z)2
x1)L(z)

∣∣∣ x2
0x1

)
= Lix1 .
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Lemma 4. Let⊥ be the linear operator ofZ[X] defined by⊥Xn = (n+1)Xn+1 +nXn and{Bl}l∈N ∈
Z[X] defined byB0(X) = 1 andBl+1(X) = ⊥Bl(X). Then

θl(1− z)−1 = (1− z)−1Bl(z(1− z)−1).

Note that the head term ofBl, l ≥ 1, is l!X l and its trail term isX.

Example 11. B0(X) = 1, B1(X) = X, B2(X) = 2X2 + X, B3(X) = 6X3 + 6X2 + X.

Proposition 8. With the notations of Lemma 4,

θkP(z) =
k∑

j=1

∑
wgt(r)

∑
w∈Xdeg(r)

deg(r)∏
i=1

(∑i
j=1 ri + j − 1

ri

)(
k

j

)
τr(w)Bj

(
z

1− z

)
P(z).

Using Leibniz formula, one has

θkPw(z) =
k∑

j=0

(
k

j

)
θk−j Liw(z)θj 1

1− z
(33)

=
k∑

j=0

(
k

j

)
Bj

(
z

1− z

)
1

1− z
θk−j Liw(z). (34)

Thanks to Lemma 3, we can extract the coefficientθl Liw of w in θlL : this can be written asC-linear
combination ofLiv, with |v| ≤ |w| − l (where|u| denotes the length of a wordu ∈ X∗). We deduce so
the expression ofθkPw.

Example 12. For w = x2
0x1 andk = 2,

θ2Px2
0x1

(z) =
2∑

j=0

(
2
j

)
Bj

(
z

1− z

)
1

1− z
θ2−j Liw(z)

=
1

1− z
Lix1(z) + 2

z

1− z

1
1− z

Lix0x1(z) +

(
2
(

z

1− z

)2

+
z

1− z

)
Lix2

0x1
(z)

= Px1(z) +
2z

1− z
Px0x1(z) +

z2 + z

1− z
Px2

0x1
(z).

So, n2H3(n) = [zn]
(

P1(z) +
2z

1− z
P2(z) +

z2 + z

1− z
P3(z)

)
.

4 The main theorem
Throughout the section, we will write

fn ∼
∞∑

i=0

gi(n) for n → +∞,

for a scale of functions(gi)i∈N – i.e. verifyinggi+1(n) = O (gi(n)), for all i – to express that

fn =
I∑

i=0

gi(n) + O (gI+1(n)) , for anyI ≥ 0.

In the same way, given a scale of functions(hi)i∈N aroundz = 1 (i.e. verifying hi+1(1 − z) =
O (hi(1− z)), whenz → 1) we will write

g(z) ∼
∞∑

i=0

hi(1− z) for z → 1,

to mean

g(z) =
I∑

i=0

hi(1− z) + O (hI+1(1− z)) for all I ≥ 0.
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For w = yk
1 , we know the expression of[zN ]Pyk

1
(z) = Hyk

1
(N) is given by Lemma 2. From the

second form of Euler-MacLaurin formula, involving the Bernoulli numbers{Bk}k≥0, we get the following
asymptotic expansions

Hy1(N) ∼ log N + γ −
+∞∑
k=1

Bk

k

1
Nk

,

Hyr
(N) ∼ ζ(r)− 1

(r − 1)Nr−1
−

+∞∑
k=r

Bk−r+1

k − r + 1

(
k − 1
r − 1

)
1

Nk
, for r > 1.

Thus, we can deduce the asymptotic expansions ofHyk
1
(N), for N → +∞, from the asymptotic expan-

sions of{Hyr
(N)}1≤r<k :

Example 13. From Example 8, we can deduce then

Hy2
1
(N) =

1
2
(log(N) + γ)2 − 1

2
ζ(2) +

1
2

log(N) + γ + 1
N

− 1
12N2

+ O
(

1
N2

)
,

Hy3
1
(N) =

1
6

log3(N) +
1
2
γ log2(N) +

1
2
(γ2 − ζ(2)) log(N)− 1

2
ζ(2)γ +

1
3
ζ(3) +

1
6
γ3 +

1
4

log2(N)
N

+
1
2
(γ + 1)

log(N)
N

+
1
4
(
2γ + γ2 − ζ(2)

) 1
N
− 1

24
log2(N)

N2
−
(

1
8

+
γ

12

)
log(N)

N2
+ O

(
1

N2

)
.

Let us see in the general case how to reach the Taylor expansion ofg ∈ C[(Pw)w∈Y ∗ ].

Theorem 2. Letg ∈ C[(Pw)w∈Y ∗ ]. There existaj ∈ C, αj ∈ Z andβj ∈ N such that

g(z) ∼
+∞∑
j=0

aj(1− z)αj logβj (1− z), for z → 1.

Therefore, there existbi ∈ C, ηi ∈ Z andκi ∈ N such that

[zn]g(z) ∼
+∞∑
i=0

bin
ηi logκi(n), for n →∞.

Proof. Considering Corollary 1, we only have firstly to obtain the asymptotic expansion for the case
g(z) = Pw(z). Indeed, we get then the expansions off(z)g(z), for f ∈ C by remarking thatz =
1− (1− z) and thatz−1 =

∑
n≥0(1− z)n.

The first expansion can be derived from Proposition 4 which links the behaviour ofPw aroundz = 1
to the behaviour of some algebraic combination of functions{Pu}u∈X∗ aroundz = 0. Moreover, by
Radford theorem 1, we can assume that each wordu involved in this combination is a Lyndon word and
so belongs tox0X

∗x1 ∪ {x0, x1}. But, remind that, in this case, we havePu(z) =
∑

n≥0 Hu(n)zn and
thatPx0(z) = (1− z)−1 log(z). So, the expected first expansion follows.

From

(1− z)α log(1− z)β = (−1)ββ!(1− z)α+1Pyβ
1
(z), (35)

we derive the second expansion by computing the Taylor coefficient[zn](1 − z)α logβ(1 − z). Since we
have already explained how the multiplication by(1 − z)α acts on the Taylor coefficients, we just have
then to compute[zn]Pyβ

1
= Hyβ

1
(n). For this, we use Lemma 2 which completes our proof.

Unfortunately, in the general case, knowing even the complete expansion of[zn]g(z) only enables to
get an asymptotic expansion ofg(z), asz → 1 up to order0 (i.e. thesingular partof the expansion).
Indeed, Taylor coefficients of all functions(1− z)k, k ≥ 0 eventually vanish as in the following identity :

1
n

= [zn] Li1(z) = [zn][Li1(z) + (1− z)2], as soon asn > 2. (36)

In fact, to obtain this singular part, it is sufficient to know the asymptotic expansion of[zn]g(z) up to order
2− ε, ε > 0 [15].
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Remark 1. In the case of a finite sum
∑

i∈I bin
ηiHκi

1 (n), we are able to construct the unique function
f ∈ C[(Pw)w∈Y ∗ ] such that,

∀n ∈ N, [zn]f(z) =
∑
i∈I

bin
ηiHκi

1 (n), (37)

as illustrated in Examples 9 and 12.

Remark 2. Note that the proof of Theorem 2 gives aneffectiveconstruction of the asymptotic expansion
of Taylor coefficients. In particular, applied tog(z) = Pw(z) directly, it enables to find an asymptotic
expansion ofHw(N), as shown in the corollary below. Another algorithm, based on Euler Mac-Laurin
formula, is available in [1].

Corollary 2. LetZ be theQ-algebra generated by convergent polyzêtas and letZ ′ be theQ[γ]-algebra
generated byZ. Then there exist algorithmically computable coefficientsbi ∈ Z ′, κi ∈ N andηi ∈ Z
such that, for anyw ∈ Y ∗,

Hw(N) ∼
+∞∑
i=0

biN
ηi logκi(N), for N → +∞.

Example 14. From Example 7 we get, forz → 1

P2,1(z) =
ζ(3)
1− z

+ log(1− z)− 1− log2(1− z)
2

+ (1− z)
(
− log2(1− z)

4
+

log(1− z)
4

)
+ O(|1− z|).

But

[zN ]ζ(3)(1− z)−1 = ζ(3),
[zN ] log(1− z) = −N−1,

[zN ]
log2(1− z)

2
= [zN ]

2!(1− z)Py2
1
(z)

2
= [zN ](1− z)Py2

1
(z)

= Hy2
1
(N)−Hy2

1
(N − 1),

...

We find finally, using Example 13 :

[zN ]P2,1(z) = H2,1(N) = ζ(3)− log(N) + 1 + γ

N
+

1
2

log(N)
N2

+ O
(

1
N2

)
.

Otherwise, by Example 6,

P1,2(z) = (1− z)P1(z)P2(z)− 2P2,1(z)

= (1− z)
− log(1− z)

1− z

z

1− z

(
−P2(1− z) + log(1− z)P1(1− z) +

ζ(2)
z

)
− 2P2,1(z),

calculated thanks to Proposition 4. So,

[zN ]P1,2(z) = H1,2(N) = ζ(2)γ − 2ζ(3) + ζ(2) log(N) +
ζ(2) + 2

2N
+ O

(
1

N2

)
.

Corollary 3 ([8]). For any w ∈ Y ∗, the N -free term in the asymptotic expansion ofHw(N), when
N → +∞, is a polynomialqw in Z[γ]. This term is an element inZ, if and only ifw is a convergent
word.

Example 15. qy1y2 = ζ(2)γ − 2ζ(3) andqy2y1 = ζ(3) = ζ(2, 1).

Question. For any convergent wordw, areζ(w) andγ algebraically independent ?

Now, let us go back to theAs introduced in Section 1. We have seen that they areZ-linear combinations
onHs, hence we get their asymptotic expansions with coefficients inZ ′.
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Example 16. For s = (1, 1, 1),

A1,1,1(N) = H1,1,1(N) + H1,2(N) + H2,1(N) + H3(N),

=
1
6

log3(N) +
1
2
γ log2(N) +

1
2
[γ2 + ζ(2)] log(N)− 1

2
ζ(2)γ +

1
3
ζ(3) +

1
6
γ3 +

1
4

log2(N)
N

+
1
2
(γ − 1)

log(N)
N

+
1
4
[γ2 − 2γ + ζ(2)]

1
N
− 1

24
log2(N)

N2
+

1
24

(9− 2γ)
log(N)

N2
+ O

(
1

N2

)
.
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