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Using recent results on singularity analysis for Hadamard products of generating functions, we obtain the limiting
distributions for additive functionals om-ary search trees om keys with toll sequence () witha > 0 (« = 0

anda = 1 correspond roughly to the space requirement and total path length, respectiveﬂyj;(gﬁl), which
corresponds to the so-called shape functional; andi(ij..,—1, which corresponds to the number of leaves.
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1 Introduction

We begin by providing a brief overview afi-ary search trees. For integer > 2, them-ary search

tree, or multiway tree, generalizes the binary search tree. The quantgycalled thebranching factor
According to [17], search trees with branching factors higher than 2 were first suggested by Muntz and
Uzgalis [20] “to solve internal memory problems with large quantities of data.” For further background
we refer the reader to [14, 15] and [17].

We consider the space of-ary search treesnn keys, and assume that the keys can be linearly ordered.
Since we shall be concerned only with the structure of the tree and not its specific contents, we can then
without loss of generality take the set of keys to[hk:= {1,2,...,n}. An m-ary search tree can be
constructed from a sequengef n distinct keys in the following way:

(a) If n < m, then all the keys are stored in the root node in increasing order.

(b) If n > m, then the firstn — 1 keys in the sequence are stored in the root in increasing order, and the
remainingn — (m — 1) keys are stored in the: subtrees subject to the condition thatif < o <
- < km—1 denotes the ordered sequence of keys in the root, then the keys jthteabtree are
those that lie betwees;_; andx;, wherek, := 0 andx,, := n + 1, sequenced as i

(c) Recursively, all the subtrees areary search trees that satisfy conditions (a), (b), and (c).

In this work we consider additive functionals enary search trees, as we describe next.

Fix m > 2. Given anm-ary search tre€’, let L,(T), ..., L,,(T) denote the subtrees rooted at the
children of the root off". Thesize|T'| of a treeT is the number of keys in it. We will call a functiongl
onme-ary search treeadditiveif it satisfies the recurrence

m

J(T) =3 F(L(T) + by, (1)
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for any treel’ with |T'| > m —1. Here(b,,),>m—1 IS a given sequence, henceforth calledttiesequence
or toll function Note that the recurrence (1.1) does not make any refererigefts 0 < n < m — 2 nor
specify the initial conditiong'(T") for 0 < |T'| < m — 2.

Several interesting examples can be cast as additive functionals.

Examplel.1l If we specifyf(T) arbitrarily for0 < |T'| < m—2 and take,, = cforn > m—1, we obtain
the “additive functional” framework of [17%3.1]. (Our definition of an additive functional substantially
generalizes this notion.) In particular if we defifi)) := 0 and f(T) := 1 for the uniquem-ary search
treeT onn keys forl <n <m—2andlet,, = 1forn > m —1, thenf(T) counts the number of nodes
in T" and thus gives thepace requiremeritinctional discussed in [133.4].

Examplel.2 If we definef(T) := 0 when|T| = 0, f(T) := 1 whenl < |T| < m — 2, andb,, :=
1,—._1, thenf is thenumber of leavem them-ary search tree.

Examplel.3. If we definef(T) := 0when0 < |T| < m—2andb, :=n—(m—1)forn >m—1, then
f is theinternal path lengtHunctional discussed in [1%3.5]: f(T) is the sum of all root-to-key distances
inT.

In this work we choose to treat explicitly the tel| rather tham — (m — 1). However our techniques
reveal that the lead-order asymptotics of moments and the limiting distributions of these two additive
functionals are the same.

Examplel.4 As described above, each permutatiorfrdfgives rise to anm-ary search tree. Suppose
we place the uniform distribution on such permutations. This induces a distributionary search trees
called therandom permutation modeDenote its probability mass function l8y. Dobrow and Fill [2]

noted that )
Q) = —— 7+
SRS TN

where the product in (1.2) is over all nodesTinthat containm — 1 keys. This functional is sometimes
called the “shape functional” as it serves as a crude measure of the “shape” of the tree, with “full” trees
(such as the complete tree) achieving the larger valu&3. ofFor further discussions along these lines,
consult [2] and [4]. If we defing (T') := 0for0 < |T| < m—2andb, :=In(,",) forn >m—1, then

f(T) = —1InQ(T). Henceforth throughout this extended abstract we will refer ta @ (rather thar)

as theshape functional

Several authors [18, 16, 1, 9] have studied additive functionals under the random permutation model.
Clearly the random permutation model does not induce the uniform distributiorrany search trees with
n keys since different permutations can give rise to the same tree. In this extended abstract we consider
additive functionals under the uniform model, i.e., when each tree keys is considered equally likely.

The shape functional for the case = 2 (uniformly distributed binary search trees) was considered by

Fill [4], who derived (limited) asymptotic information about its mean and variance. Limiting distributions

for the shape functional and other additive functionals treated in the present extended abstract were identi-
fied in [7] form = 2. We now generalize these results to include all values.ofVhat makes the analysis

for generalbn significantly more intricate is that several key quantities (such as the nyntiscussed at

the beginning of Section 3) are for generaknown only implicitly.

One motivation for the present work can be understood in the context of the shape functional. The
probability mass functio) corresponding to the random permutation model (a reasonably realistic model
in practice) is an object of natural interest. Dobrow and Fill [2] determined the smallest and largest values
of Q; but what are “typical” values? We can study this question probabilistically by placing a distribution
onT and considering the distribution f(T"). Two rather natural choices for this distribution arétself
(as treated in [9]) and the uniform distribution on trees (as treated herein).

We follow the “repertoire” approach of Greene and Knuth [13], determining the effect of a family of
basic tolls (for example, those of the forn¥). Then the effect of a new toll could be determined by
expressing it in terms of the basic tolls.

For tolls of the formn® with o« > 0 and the tolldn (m’jl) and1,,_,,_1, we determine asymptotics of
moments of all orders and our main results (Theorems 4.1, 5.1, 5.3, and 5.4) use these to yield limiting
distributions. Here, in broad terms for the talt, is a summary of lead-order results under both the
random permutation model and the uniform model:

It is not surprising that the orders of magnitude under the uniform model are at least as large as under
the random permutation model. Indeed, it is well known that trees produced by the uniform model are
generally much “stringier” than trees produced by the random permutation model; for example, height is

(1.2)
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Model
Toll function n® Random permutation  Uniform
« smaller than 1/2 n n
o between 1/2 and n nots
o bigger than 1 ne nots

Tab. 1: Order of magnitude of the additive functional corresponding to theatbll

of order,/n under the uniform model and ordkeig n under the random permutation model. Furthermore
“stringy” trees tend to give large values of the functional.

Qualitatively the uniform model differs significantly from the random permutation model, where, for
example, there is a “phase change” in the limiting behavianhat 26 from asymptotic normality to
non-existence of a limiting distribution, for any toll whose order of growth does not exceégsee [9]
for precise results. On the other hand, forralthe uniform model leads to the normal distribution for the
shape functional, space requirement, and number of leaves, and to (apparently) non-normal distributions
for tolls of the formn® with « > 0.

We use methods from analytic combinatorics, in particular singularity analysis of generating func-
tions [11], to derive the asymptotics of moments of the functional under consideration and then the method
of moments to characterize the limiting distribution. A key singularity analysis tool is the newly-developed
“Zigzag algorithm” [6] to handle Hadamard products of generating functions.

The limiting distributions (and even local limit theorems) for the space requirement and the number
of leaves presumably can also be derived using Theorem 2 of [3] since the bivariate generating function
for these parameters satisfy suitable functional equations. (Thist the case for the other tolls that we
consider.) We include our proofs of these results for completeness and uniformity of treatment of tolls.

This extended abstract is organized as follows. In Section 2 we set up the problem using generating
functions. In Section 3, a singular expansion for the generating function of the numbeaof search
trees om keys is obtained. Sections 4 and 5 treat Examples 1.1-1.4.

Notation Throughout, we will usé&™] f (=) to denote the coefficient ef* in the Taylor series expansion
of f(z) aroundz = 0. We useL(Y") to denote the law (or distribution) of a random variablgthe symbol

£ to denote equality in law, and> to denote convergence in law. We denote the (univariate) normal
distribution with mean: and variance? by N (u, 02).

2 Preliminaries

Our starting point is the recursive constructiomofary search trees. Leéf,, = X,,(T") denote an additive
functional on a randonm-ary search tre@ onn keys. LetJ = (Jy,..., ) be the (random) vector of
sizes of the subtrees rooted at the children of the ro@t.off 7" is a uniformly distributedn-ary search

tree onn keys, thenX,, satisfies the distributional recurrence

X, £ ZX.(]I}:) +bn, n>m-—1, (2.1)
k=1
with (X, ..., X,n—2) =: x denoting the vector of deterministic values of the functional for trees with

fewer thanm — 1 keys. The sequendé,,),,>.,—1 is called theoll sequenceOn the right in (2.1),

e foreachk =1,...,m, we haveXJ(k’) £ X
e the quantitiesT; X(El),...,Xﬁ(7n71); X(()Q),...,Xg(mil); X(E""),...,Xﬁzmil) are all
independent;
o the distribution ofJ if given by
P =jiyeeey o = ) = 22T 2.2)
Tn
for (j1,...,Jm) = Owith j; +-- -+ j,, = n— (m —1), wherer, = 7,(m) is the number ofn-ary

search trees oh keys.
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(Throughout we taken > 2 to be fixed and so suppress the dependence of various parameters on

Denote thesth moment ofX,, by /Af] := E X 2. Now taking thesth power of (2.1) and conditioning on
(Jiy..., Jm) Qives

S| __ S S * T] .'.Tjnl [5 ] [57n.]
TR DI G [ D

.., 8
S0+ +Sm=s »om "

where Z* denotes the sum over ak-tuples(ji,...,jm) > 0 such thaty”  j; = n — (m — 1).
Isolating the terms in the sum whese= s for somei € [m], we get (after some rearrangement)

n—(m—1)

Tl = m Z leﬂg‘jl] Z Ty - Tjm + T, (2.3)
Jj1=0 Jot-tim=n—(m—1)—j;

where

s S S * S Sm
7‘1[1] = Z (SO )bno Z le:ug'lll e ij/’bgm ] (24)

S
s Om
S0+ t+Sm=s

S1,-0,5m <S

Let u*)(z), 7I¥)(2), 7(z) denote the ordinary generating functions(f 1\),>0, (k) n=0, (Tn)ns0
respectively. Multiplying (2.3) by™ and summing oven > m — 1 yields (observe thaty = --- =
Tm—2 =1 andr([f] =..=7r" ,=0)

m—2
pl(z) = 37 asz? = m2m bl )7 () 4+ 0B (2),
j=0

so that
ol @) + S 25
S i e o 25)
Furthermore
S - S S
OEDY (80 s )6@50 (2) @ (= u(z) bl (2)) (2.6)
S04 Fsm=s rrroom

S15.0,8m <S

whereb(z) := Y07 b,z" andf(z) © g(z) = (f © g)(z) is the Hadamard product of the power serfes
andg. Note that sincdz"] (2™~ puls1l(2) - ulsml(z)) = 0 for 0 < n < m — 2 we may instead use
b(z) =S b, 2™ when convenient.

n=m-—1

3 Singular expansions

We will employ singularity analysis [11, 10, 6] to derive asymptoticgu}gﬁt using (2.5). In order to do
so we need a singular expansion fdiz) around its dominant singularity. We will use the theory of
analytic continuation of algebraic functions (see, for example,{llB45] or [12, §VII.4]) to derive such
an expansion. The terminology used is from [§\211.4].

Before we begin, we note that Fill and Dobrow [5] were able to use large-deviations techniques to
obtain lead-order asymptotics of. However their techniques do not seem to be sufficient to derive the
higher-order results we will need.

We now proceed with our analytic approach. As observed by Fill and Dobrow [5], it follows from the
recursive definition ofn-ary search trees that

m—2
7(z) — Z 2 =" (). (3.1)
j=0
ThusT(z) is an algebraic series satisfyidz, 7(z)) = 0, where

m—2

P(z,w) == 2" tw™ —w + Z 2. (3.2)
5=0
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The exceptional set dP [excludingz = 0, at which7(z) clearly has no singularity] is

U {z: P(z,w)=0 andiP(z,w) = 0} = U {z: 2™ — w4 mz:_sz =0andm(zw)™ ' -1 = O}

weC Ow weC 7=0
m—1 m—1
:{z:mm(z zj> :(m—l)m_l}.
j=1

The singularities of-(z) lie in the exceptional set. It is clear [5, Theorem 3.1] that there exists a unique
p € (0,1) contained in this set. Furthermore, since the Taylor coefficient§ of are nonnegative, by
Pringsheim’s theorem [19, Theorem 1.17.13]s a dominant singularity of(z). It is straightforward to
check that the polynomial system given by writifRfz, w) = 0 in the formw = ®(z,w) is a-proper,
a-positive, a-irreducible, and a-aperiodic (cf. [$¥]1.4.2]), so that by Theorem VII.7 of [12] we have
thatp is the uniqgue dominant singularity and-as- p a singular expansion of the form

7(z) ~ Zal(l —pi)lV2, (3.3)
1>0

Remark3.1 Singularity analysis immediately yields from (3.3) a complete asymptotic expansiaep,for
the number ofn-ary search trees amkeys:

—n a21+1 -3
Tn ~ p Z 1 n 2 . (3'4)

In particular,

- —ar —-n
Tn=[14+0(n 1)]ﬁ%n 3/2pm,

3.1 Determination of the coefficients ¢,
Definew, := - Z;n:_Oij,SO that

m—1

0
P(p,w,) = 0and— P(p, = 0.
(p. ) = 0 and—P(p,uw) 0

W=wWp

Using the definition ofp and the fact thatv, > 0 by definition, we havev, = m‘ﬁpfl. Now
(%P(p, w) is negative, zero, or positive as > 0 is less than, equal to, or greater thap. Hence, for
w >0, P(p,w) =0ifand only if w = w,. Butay > 0and0 = P(p, 7(p)) = P(p, ao), SO that

ap = w, = mfﬁpfl. (3.5)

To obtain values of,; for I > 1, we rewrite (3.1) forz: # 1 as

1—m-1
m—1_m o —
2T (2) — 1(2) + T 0
and, then defining := 1 — p~ 'z, equivalently as
L+ p" A= 2)" A= p+pZ)r™(2) = 1] — (1 — p+ pZ)7(2). (3.6)

By comparing the coefficients d¢f in this equation and observing that < 0 we obtain
a1 = —V2marm~m-1p7 8.7)
where, matching the notation of [5], we define the key quantity
o i=m— (mrfﬁl (-1t (3.8)
In the sequel we will also need the following relation, which follows from comparing coefficier#s/8f

in (3.6):
n(36) ap(ag —az) m—2

- . (3.9)

5 =
af 6
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Let A denote a generic (formal) power seriesdnpossibly different at each appearance. Similarly, let
‘P, denote a generic polynomial i of degree at most. In the sequel we will likewise us#” to denote
a generic (formal) power series in powersof'. Then, using (3.3) and (3.5), we have

(1 — m[zr(z)]m_l)_l ~ %2—1/2 + Co + Z1/2A —+ ZA, (310)
—ay(m —
where, using (3.9), we have
o= m=-2 (3.11)
O 3(m—1) '
2 () ~ agm T 4 a1 ZM? 4+ ZA+ 732 A; (3.12)
and
m—2 . m—2 ]
S oaid = atp) + ZPps. (3.13)
= 5=0

Thus, by singularity analysis,

[2"] [zm_le(z)} ~n32pn

—a
3.2 Zigzag algorithm

For the reader’s convenience we present the Zigzag algorithm, which is used extensively in the rest of
this paper to determine singular expansions of Hadamard products. The validity of the algorithm was
established recently in [6], to which the reader is referred for further background discussion.

“Zigzag” Algorithm . [Computes the singular expansionfof g up toO(|1 — z|°). ]

1. Use singularity analysis to determine separately the asymptotic expansighs=of(z"]f(z)

andg,, = [2"]g(z) into descending powers af

2. Multiply the resulting expansions and reorganize to obtain an asymptotic expansion for the prod-
uct f,.gn.-

3. Choose a basis of singular functions, for instance, the standard béisis { (1 — z)? In[(1 — 2)]*}.
Construct a functiorf (z) expressed in terms & whose singular behavior is such that the asymp-
totic form of its coefficients.,, is compatible with that of,, g,, up to the needed error terms.

4. Output the singular expansion ¢fo g as the quantityd (z) + P(z) + O(|1 — 2|“), whereP is

a polynomial in(1 — z) of degree less thafi.

The reason for the addition of a polynomial in S#jis that integral powers ofl — z) do not leave

a trace in coefficient asymptotics since their contribution is asymptotically null. The Zigzag Algorithm
is principally useful for determining the divergent part of expansions. If needed, the coefficients in the
polynomial P can be expressed as values of the funcfian ¢ and its derivatives at 1 once it has been
stripped of its nondifferentiable terms.

4 The toll n®

Here is the main theorem of this section. The case 1/2 is treated by special means in [8].

Theorem 4.1. Leta # 1/2, and letX,, denote the additive functional that satisfies the distributional
recurrence(2.1)with b,, = n® and initial conditions(zo, . . . , €, —2). Definea’ := a—&—% and recall(3.8).

(@) Ifa>1/2,then

Xn
(m—1)(ma")/220 £y,
o

(b) ifa < 1/2, then

1 #\1/2 =N — ~ j
) Xy st )| S Yo, whereCy = 3 pintmt Y e
i=0

ne’
n=m-—1
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In either case we have convergence of all moments, whgheas the unique distribution whose moments
are given byEY? = M, = M;(a). Here
Lo~ 3)

1= —=

Var(a)’
and, fors > 2,
/ 1

1 (s\ DG P e —5) o sT(sal = 1)
M= 477 ; (y) (sa/ — 3) Moo = R s = 2)

M,_,.

Although the normalization required to produce a limiting distribution depends:oifheorem 4.1
exhibits a strikingnvariance principle the distributionsC (Y, ) do not depend on the value of (and thus
in particular, have already arisen when= 2 in [7]).

We will present the proof of Theorem 4.1 only for the simplest ease (1/2,00) \ {3/2,5/2,...};
consult [8] for the other cases.

4.1 Mean

Usings = 1in (2.6) we have

and consequently, by (2.4) and (3.4),

a
SN

We employ the Zigzag Algorithm outlined in Section 3.2. A compatible singular expansiofifor)
is

[ (2) = P = b7, ~ n‘x_%p_" ( + n_1N> . (4.2)

P (2) ~ %F(a —Lyzmets p 7ot A4 AL 4.2)
Using (3.10) and (4.2) in (2.5) we obtain
[1] aol'(a — %) —a —a+i —a+1 —1/2
L (Z)N2\/E(m—1)z + 7272 A+ Z A+Z7 7 A+ A, (4.3)

whence, by singularity analysis,

[1] aol(a — %)

n ~ a—1 a—2 a—2 —-1/2
P ust T, Qﬁ(m—l)F(a)n +n 2N +n* N +n” PN

The singular expansion fot, at (3.4) then gives

F(Oé — l) 1 1
(1) 0 2 n%tz 4+ nN +n® 2N + nN.
Hn ™ Can)(m — D(a)

4.2 Higher moments
We will use induction to obtain asymptotics for higher-order moments. Througtiast o + %
Proposition 4.2. Leta € (1/2,00) \ {3/2,5/2,...}. Then, fors > 1, ande > 0 small enough,

Hl(2) = Dzt 4 O(| 7|7 HE ),

whereq := min{a — 1,1} — e with

apl(a — %)

D= s m e

and, fors > 2,

a m—13%= (s I(sa’ —1)
Dg = 0 g D;Ds_j+ ————————sDs_1| . 4.4
Q%jA(J R (PRSI @D
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Proof. We proceed by induction on Fors = 1 the claim was proved as (4.3). [Note that!(z) =
7(2) ~ ag.] Supposes > 2. We will first obtain the asymptotics of*!(z) at (2.6) by analyzing each of
the terms in the sum there.

Suppose exactly > 1 of s1,..., s, Saysy, . .., Sk, are nonzero. Then, by induction,

) () = O( 2] T ),
Moreover, ifs, = 0 then the contribution tel!(z) is O(|Z|~**'*2) unlessk = 1 or k = 2. (Observe,
however, that ifc = 1 thensy cannot be zero as that would imply = s.) On the other hand, i, # 0,
then using singularity analysis for polylogarithms [10] and Hadamard products [6], we see that

—1,[s s —sa'+Q+k
b (2) @ [l (2) -l ()] = O(|zZ| TR,

which is O(|Z|—5’f"+%—€) unlessk = 1 andsg = 1. (Thee term in the exponent avoids logarithmic
factors that arise whersa’ + % + £ is a nonnegative integer.)

Ifallof sy, ..., s, are zero, ther, = s and, using (3.12), the contribution#&! (z) is O (| Z| =~ +5+2)
which isO(]Z|~5%'+3).
Hence unless, = 0 and exactly two o, .. ., s, are nonzero o, = 1 and exactly one ofy, .. ., s,

is s—11in (2.6), the contribution tel*! (z) is O(| Z| =+ ~¢). In the former case the contributiontt! ()
is gotten by using the induction hypothesis as

s—1
m ’ S ’
(2>pm1Zsa +1a6n—2 § : <]) DjDs—j + O(|Z|fsa +1+q).
=1

In the latter case, again using the induction hypothesis and singularity analysis for Hadamard products we
get the contribution te*!(z) as

I(sa’ — 1)

Zfsa'Jrl + O(|Z|7sal+l+q).
I((s— 1o/ — 1)

mpmflag%lst,l

Finally, noting that the contribution fro@ﬂ”;_(f a:j-zj to the numerator on the right side in (2.5) is
negligible, we complete the induction by using (3.5) and (3.10). O

4.3 Limiting distributions

We can now use the method of moments to derive limiting distributions for the additive functional.

Proof of Theorem 4.1 whem e (1/2,00) \ {3/2,5/2,...}. By Proposition 4.2, singularity analysis, and
the asymptotics of,, at (3.4), we have

| D2V W »
E XS — [s] — s sa O(n*® —9y.
P Carea g PO

Defineo = 0, := —a1(m — 1)/(v/2a0) = (m — 1)(a* /m)'/?, where the last equality uses (3.5), (3.7),
and (3.8). Then, for fixeeh, asn — oo,

X, 1°
E [Jm Ozl:| i MS?
n
where, fors > 1,
M, - o5D2/7

(—a)l(sa’ — 3)

In particular,M; = I'(oe — 3)/[V2I'(a)]. Furthermore, using (4.4), we obtain the recurrence\gr
Convergence in distribution follows from the fact ti{af ;) satisfies Carleman’s condition, as has been
established in [7]. O
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5 Three asymptotically normal additive functionals

Examples 1.1, 1.2, and 1.4 can be treated in much the same way as & whsult [8] for the details,
which vary substantially from one example to another. Here are the results.

Theorem 5.1. Let X, denote the shape functional for uniformly distributeeary search trees on keys.
Then

X, —di(n+1) ¢ 9 X,.—-EX,
AnZ @Y £ N0,02) and 2 2n £ N0, 1
vnlnn ( ) v/ Var X, (0.1),
where d; := (mQ—#M% Z p" {ln (mn_ 1)] 7, and o%:=8(ap/a1)’ (1 —In2).

n=m-—1

Remarks.2 Itis known [1, 9] that under the random permutation model the shape functional normalized
by its mean and standard deviation is asymptotically norma? form < 26 and does not have a limiting
distribution form > 26. In contrast, under the uniform model we have asymptotic normality for all
m > 2.

Theorem 5.3. Let X,, denote the space requirement for uniformly distributeehry search trees on
n keys. Then

Knmdint D) £y 42 and 22=EBXe £ g q),
vn v/ Var X,
1
~ m(1— pm=-T) s 2ag 9 ap
where d; := Do and o = 2D d1+z (4 Ddy + 120 — =)

Theorem 5.4. Let X,, denote the number of leaves in a uniformly distribute@ry search tree om keys.
Then

Xn—Ln+1 X,—-EX,
Xo—ar+ D) £ N2 and X EXn £y 1),
vn VVar X,

m—1(pm—1 + 4 ) . m—2 .
where o2 .= " (p ! with &, := )2 1)( 2.
7 a*(m—1) ’ 1:=(p/a”) +; (J+D(p/a")+1]"p
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