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Using recent results on singularity analysis for Hadamard products of generating functions, we obtain the limiting
distributions for additive functionals onm-ary search trees onn keys with toll sequence (i)nα with α ≥ 0 (α = 0
andα = 1 correspond roughly to the space requirement and total path length, respectively); (ii)ln

`
n

m−1

´
, which

corresponds to the so-called shape functional; and (iii)1n=m−1, which corresponds to the number of leaves.
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1 Introduction
We begin by providing a brief overview ofm-ary search trees. For integerm ≥ 2, the m-ary search
tree, or multiway tree, generalizes the binary search tree. The quantitym is called thebranching factor.
According to [17], search trees with branching factors higher than 2 were first suggested by Muntz and
Uzgalis [20] “to solve internal memory problems with large quantities of data.” For further background
we refer the reader to [14, 15] and [17].

We consider the space ofm-ary search treesonn keys, and assume that the keys can be linearly ordered.
Since we shall be concerned only with the structure of the tree and not its specific contents, we can then
without loss of generality take the set of keys to be[n] := {1, 2, . . . , n}. An m-ary search tree can be
constructed from a sequences of n distinct keys in the following way:

(a) If n < m, then all the keys are stored in the root node in increasing order.

(b) If n ≥ m, then the firstm− 1 keys in the sequence are stored in the root in increasing order, and the
remainingn − (m − 1) keys are stored in them subtrees subject to the condition that ifκ1 < κ2 <
· · · < κm−1 denotes the ordered sequence of keys in the root, then the keys in thejth subtree are
those that lie betweenκj−1 andκj , whereκ0 := 0 andκm := n + 1, sequenced as ins.

(c) Recursively, all the subtrees arem-ary search trees that satisfy conditions (a), (b), and (c).

In this work we consider additive functionals onm-ary search trees, as we describe next.
Fix m ≥ 2. Given anm-ary search treeT , let L1(T ), . . . , Lm(T ) denote the subtrees rooted at the

children of the root ofT . Thesize|T | of a treeT is the number of keys in it. We will call a functionalf
onm-ary search treesadditiveif it satisfies the recurrence

f(T ) =
m∑

i=1

f(Li(T )) + b|T |, (1.1)
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for any treeT with |T | ≥ m−1. Here(bn)n≥m−1 is a given sequence, henceforth called thetoll sequence
or toll function. Note that the recurrence (1.1) does not make any reference tobn for 0 ≤ n ≤ m− 2 nor
specify the initial conditionsf(T ) for 0 ≤ |T | ≤ m− 2.

Several interesting examples can be cast as additive functionals.

Example1.1. If we specifyf(T ) arbitrarily for0 ≤ |T | ≤ m−2 and takebn ≡ c for n ≥ m−1, we obtain
the “additive functional” framework of [17,§3.1]. (Our definition of an additive functional substantially
generalizes this notion.) In particular if we definef(∅) := 0 andf(T ) := 1 for the uniquem-ary search
treeT onn keys for1 ≤ n ≤ m− 2 and letbn ≡ 1 for n ≥ m− 1, thenf(T ) counts the number of nodes
in T and thus gives thespace requirementfunctional discussed in [17,§3.4].

Example1.2. If we definef(T ) := 0 when |T | = 0, f(T ) := 1 when1 ≤ |T | ≤ m − 2, andbn :=
1n=m−1, thenf is thenumber of leavesin them-ary search tree.

Example1.3. If we definef(T ) := 0 when0 ≤ |T | ≤ m− 2 andbn := n− (m− 1) for n ≥ m− 1, then
f is theinternal path lengthfunctional discussed in [17,§3.5]:f(T ) is the sum of all root-to-key distances
in T .

In this work we choose to treat explicitly the tolln, rather thann − (m − 1). However our techniques
reveal that the lead-order asymptotics of moments and the limiting distributions of these two additive
functionals are the same.

Example1.4. As described above, each permutation of[n] gives rise to anm-ary search tree. Suppose
we place the uniform distribution on such permutations. This induces a distribution onm-ary search trees
called therandom permutation model. Denote its probability mass function byQ. Dobrow and Fill [2]
noted that

Q(T ) =
1∏

x

( |Tx|
m−1

) , (1.2)

where the product in (1.2) is over all nodes inT that containm − 1 keys. This functional is sometimes
called the “shape functional” as it serves as a crude measure of the “shape” of the tree, with “full” trees
(such as the complete tree) achieving the larger values ofQ. For further discussions along these lines,
consult [2] and [4]. If we definef(T ) := 0 for 0 ≤ |T | ≤ m− 2 andbn := ln

(
n

m−1

)
for n ≥ m− 1, then

f(T ) = − lnQ(T ). Henceforth throughout this extended abstract we will refer to− lnQ (rather thanQ)
as theshape functional.

Several authors [18, 16, 1, 9] have studied additive functionals under the random permutation model.
Clearly the random permutation model does not induce the uniform distribution onm-ary search trees with
n keys since different permutations can give rise to the same tree. In this extended abstract we consider
additive functionals under the uniform model, i.e., when each tree onn keys is considered equally likely.
The shape functional for the casem = 2 (uniformly distributed binary search trees) was considered by
Fill [4], who derived (limited) asymptotic information about its mean and variance. Limiting distributions
for the shape functional and other additive functionals treated in the present extended abstract were identi-
fied in [7] for m = 2. We now generalize these results to include all values ofm. What makes the analysis
for generalm significantly more intricate is that several key quantities (such as the numberρ discussed at
the beginning of Section 3) are for generalm known only implicitly.

One motivation for the present work can be understood in the context of the shape functional. The
probability mass functionQ corresponding to the random permutation model (a reasonably realistic model
in practice) is an object of natural interest. Dobrow and Fill [2] determined the smallest and largest values
of Q; but what are “typical” values? We can study this question probabilistically by placing a distribution
onT and considering the distribution ofQ(T ). Two rather natural choices for this distribution areQ itself
(as treated in [9]) and the uniform distribution on trees (as treated herein).

We follow the “repertoire” approach of Greene and Knuth [13], determining the effect of a family of
basic tolls (for example, those of the formnα). Then the effect of a new toll could be determined by
expressing it in terms of the basic tolls.

For tolls of the formnα with α ≥ 0 and the tollsln
(

n
m−1

)
and1n=m−1, we determine asymptotics of

moments of all orders and our main results (Theorems 4.1, 5.1, 5.3, and 5.4) use these to yield limiting
distributions. Here, in broad terms for the tollnα, is a summary of lead-order results under both the
random permutation model and the uniform model:
It is not surprising that the orders of magnitude under the uniform model are at least as large as under
the random permutation model. Indeed, it is well known that trees produced by the uniform model are
generally much “stringier” than trees produced by the random permutation model; for example, height is
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Model
Toll functionnα Random permutation Uniform

α smaller than 1/2 n n

α between 1/2 and 1 n nα+ 1
2

α bigger than 1 nα nα+ 1
2

Tab. 1: Order of magnitude of the additive functional corresponding to the tollnα.

of order
√

n under the uniform model and orderlog n under the random permutation model. Furthermore
“stringy” trees tend to give large values of the functional.

Qualitatively the uniform model differs significantly from the random permutation model, where, for
example, there is a “phase change” in the limiting behavior atm = 26 from asymptotic normality to
non-existence of a limiting distribution, for any toll whose order of growth does not exceedn1/2; see [9]
for precise results. On the other hand, for allm the uniform model leads to the normal distribution for the
shape functional, space requirement, and number of leaves, and to (apparently) non-normal distributions
for tolls of the formnα with α > 0.

We use methods from analytic combinatorics, in particular singularity analysis of generating func-
tions [11], to derive the asymptotics of moments of the functional under consideration and then the method
of moments to characterize the limiting distribution. A key singularity analysis tool is the newly-developed
“Zigzag algorithm” [6] to handle Hadamard products of generating functions.

The limiting distributions (and even local limit theorems) for the space requirement and the number
of leaves presumably can also be derived using Theorem 2 of [3] since the bivariate generating function
for these parameters satisfy suitable functional equations. (This isnot the case for the other tolls that we
consider.) We include our proofs of these results for completeness and uniformity of treatment of tolls.

This extended abstract is organized as follows. In Section 2 we set up the problem using generating
functions. In Section 3, a singular expansion for the generating function of the number ofm-ary search
trees onn keys is obtained. Sections 4 and 5 treat Examples 1.1–1.4.

Notation. Throughout, we will use[zn]f(z) to denote the coefficient ofzn in the Taylor series expansion
of f(z) aroundz = 0. We useL(Y ) to denote the law (or distribution) of a random variableY , the symbol
L= to denote equality in law, and

L−→ to denote convergence in law. We denote the (univariate) normal
distribution with meanµ and varianceσ2 by N(µ, σ2).

2 Preliminaries
Our starting point is the recursive construction ofm-ary search trees. LetXn ≡ Xn(T ) denote an additive
functional on a randomm-ary search treeT on n keys. LetJ ≡ (J1, . . . , Jm) be the (random) vector of
sizes of the subtrees rooted at the children of the root ofT . If T is a uniformly distributedm-ary search
tree onn keys, thenXn satisfies the distributional recurrence

Xn
L=

m∑
k=1

X
(k)
Jk

+ bn, n ≥ m− 1, (2.1)

with (X0, . . . , Xm−2) =: x denoting the vector of deterministic values of the functional for trees with
fewer thanm− 1 keys. The sequence(bn)n≥m−1 is called thetoll sequence. On the right in (2.1),

• for eachk = 1, . . . ,m, we haveX(k)
j

L= Xj ;

• the quantitiesJ; X
(1)
0 , . . . , X

(1)
n−(m−1); X

(2)
0 , . . . , X

(2)
n−(m−1); . . . ; X

(m)
0 , . . . , X

(m)
n−(m−1) are all

independent;

• the distribution ofJ if given by

P [J1 = j1, . . . , Jm = jm] =
τj1 · · · τjm

τn
, (2.2)

for (j1, . . . , jm) ≥ 0 with j1 + · · ·+ jm = n− (m− 1), whereτk ≡ τk(m) is the number ofm-ary
search trees onk keys.
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(Throughout we takem ≥ 2 to be fixed and so suppress the dependence of various parameters onm.)
Denote thesth moment ofXn by µ

[s]
n := EXs

n. Now taking thesth power of (2.1) and conditioning on
(J1, . . . , Jm) gives

µ[s]
n =

∑
s0+···+sm=s

(
s

s0, . . . , sm

)
bs0
n

∑∗ τj1 · · · τjm

τn
µ

[s1]
j1

· · ·µ[sm]
jm

,

where
∑∗

denotes the sum over allm-tuples(j1, . . . , jm) ≥ 0 such that
∑m

i=1 ji = n − (m − 1).
Isolating the terms in the sum wheresi = s for somei ∈ [m], we get (after some rearrangement)

τnµ[s]
n = m

n−(m−1)∑
j1=0

τj1µ
[s1]
j1

∑
j2+···+jm=n−(m−1)−j1

τj2 · · · τjm
+ r[s]

n , (2.3)

where

r[s]
n :=

∑
s0+···+sm=s
s1,...,sm<s

(
s

s0, . . . , sm

)
bs0
n

∑∗
τj1µ

[s1]
j1

· · · τjmµ
[sm]
jm

. (2.4)

Let µ[s](z), r[s](z), τ(z) denote the ordinary generating functions of(τnµ
[s]
n )n≥0, (r[s]

n )n≥0, (τn)n≥0

respectively. Multiplying (2.3) byzn and summing overn ≥ m − 1 yields (observe thatτ0 = · · · =
τm−2 = 1 andr

[s]
0 = · · · = r

[s]
m−2 = 0)

µ[s](z)−
m−2∑
j=0

xs
jz

j = mzm−1µ[s](z)τm−1(z) + r[s](z),

so that

µ[s](z) =
r[s](z) +

∑m−2
j=0 xs

jz
j

1−m[zτ(z)]m−1
. (2.5)

Furthermore

r[s](z) =
∑

s0+···+sm=s
s1,...,sm<s

(
s

s0, . . . , sm

)
b�s0(z)�

(
zm−1µ[s1](z) · · ·µ[sm](z)

)
, (2.6)

whereb(z) :=
∑∞

n=0 bnzn andf(z)� g(z) ≡ (f � g)(z) is the Hadamard product of the power seriesf
andg. Note that since[zn]

(
zm−1µ[s1](z) · · ·µ[sm](z)

)
= 0 for 0 ≤ n ≤ m − 2 we may instead use

b(z) :=
∑∞

n=m−1 bnzn when convenient.

3 Singular expansions
We will employ singularity analysis [11, 10, 6] to derive asymptotics ofµ

[s]
n using (2.5). In order to do

so we need a singular expansion forτ(z) around its dominant singularity. We will use the theory of
analytic continuation of algebraic functions (see, for example, [19,§III.45] or [12, §VII.4]) to derive such
an expansion. The terminology used is from [12,§VII.4].

Before we begin, we note that Fill and Dobrow [5] were able to use large-deviations techniques to
obtain lead-order asymptotics ofτn. However their techniques do not seem to be sufficient to derive the
higher-order results we will need.

We now proceed with our analytic approach. As observed by Fill and Dobrow [5], it follows from the
recursive definition ofm-ary search trees that

τ(z)−
m−2∑
j=0

zj = zm−1τm(z). (3.1)

Thusτ(z) is an algebraic series satisfyingP (z, τ(z)) = 0, where

P (z, w) := zm−1wm − w +
m−2∑
j=0

zj . (3.2)
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The exceptional set ofP [excludingz = 0, at whichτ(z) clearly has no singularity] is

⋃
w∈C

{
z : P (z, w) = 0 and

∂

∂w
P (z, w) = 0

}
=

⋃
w∈C

{
z : zm−1wm − w +

m−2∑
j=0

zj = 0 andm(zw)m−1 − 1 = 0
}

=
{

z : mm

(m−1∑
j=1

zj

)m−1

= (m− 1)m−1

}
.

The singularities ofτ(z) lie in the exceptional set. It is clear [5, Theorem 3.1] that there exists a unique
ρ ∈ (0, 1) contained in this set. Furthermore, since the Taylor coefficients ofτ(z) are nonnegative, by
Pringsheim’s theorem [19, Theorem I.17.13],ρ is a dominant singularity ofτ(z). It is straightforward to
check that the polynomial system given by writingP (z, w) = 0 in the formw = Φ(z, w) is a-proper,
a-positive, a-irreducible, and a-aperiodic (cf. [12,§VII.4.2]), so that by Theorem VII.7 of [12] we have
thatρ is the unique dominant singularity and asz → ρ a singular expansion of the form

τ(z) ∼
∑
l≥0

al(1− ρ−1z)l/2. (3.3)

Remark3.1. Singularity analysis immediately yields from (3.3) a complete asymptotic expansion forτn,
the number ofm-ary search trees onn keys:

τn ∼ ρ−n
∑
l≥0

a2l+1

Γ(−l − 1
2 )

n−l− 3
2 . (3.4)

In particular,

τn = [1 + O(n−1)]
−a1

2
√

π
n−3/2ρ−n.

3.1 Determination of the coefficients al

Definewρ := m
m−1

∑m−2
j=0 ρj , so that

P (ρ,wρ) = 0 and
∂

∂w
P (ρ,w)

∣∣∣∣
w=wρ

= 0.

Using the definition ofρ and the fact thatwρ > 0 by definition, we havewρ = m− 1
m−1 ρ−1. Now

∂
∂wP (ρ,w) is negative, zero, or positive asw > 0 is less than, equal to, or greater thanwρ. Hence, for
w > 0, P (ρ,w) = 0 if and only if w = wρ. But a0 > 0 and0 = P (ρ, τ(ρ)) = P (ρ, a0), so that

a0 = wρ = m− 1
m−1 ρ−1. (3.5)

To obtain values ofal for l ≥ 1, we rewrite (3.1) forz 6= 1 as

zm−1τm(z)− τ(z) +
1− zm−1

1− z
= 0

and, then definingZ := 1− ρ−1z, equivalently as

1 + ρm−1(1− Z)m−1
[
(1− ρ + ρZ)τm(z)− 1

]
− (1− ρ + ρZ)τ(z). (3.6)

By comparing the coefficients ofZ in this equation and observing thata1 < 0 we obtain

a1 = −
√

2mα∗m− m
m−1 ρ−1, (3.7)

where, matching the notation of [5], we define the key quantity

α∗ := m−
(
m

m
m−1 − 1

)
(ρ−1 − 1)−1. (3.8)

In the sequel we will also need the following relation, which follows from comparing coefficients ofZ3/2

in (3.6):
a0(a0 − a2)

a2
1

=
m− 2

6
. (3.9)
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LetA denote a generic (formal) power series inZ, possibly different at each appearance. Similarly, let
Pd denote a generic polynomial inZ of degree at mostd. In the sequel we will likewise useN to denote
a generic (formal) power series in powers ofn−1. Then, using (3.3) and (3.5), we have

(1−m[zτ(z)]m−1)−1 ∼ a0

−a1(m− 1)
Z−1/2 + c0 + Z1/2A+ ZA, (3.10)

where, using (3.9), we have

c0 :=
m− 2

3(m− 1)
; (3.11)

zm−1τm(z) ∼ a0m
−1 + a1Z

1/2 + ZA+ Z3/2A; (3.12)

and
m−2∑
j=0

xs
jz

j =
m−2∑
j=0

xs
jρ

j + ZPm−3. (3.13)

Thus, by singularity analysis,

[zn]
[
zm−1τm(z)

]
∼ n−3/2ρ−n

(
−a1

2
√

π
+ n−1N

)
. (3.14)

3.2 Zigzag algorithm
For the reader’s convenience we present the Zigzag algorithm, which is used extensively in the rest of
this paper to determine singular expansions of Hadamard products. The validity of the algorithm was
established recently in [6], to which the reader is referred for further background discussion.

“Zigzag” Algorithm . [Computes the singular expansion off � g up toO(|1− z|C). ]

1. Use singularity analysis to determine separately the asymptotic expansions offn = [zn]f(z)
andgn = [zn]g(z) into descending powers ofn.
2. Multiply the resulting expansions and reorganize to obtain an asymptotic expansion for the prod-
uctfngn.
3. Choose a basisB of singular functions, for instance, the standard basisB =

{
(1− z)β ln[(1− z)]k

}
.

Construct a functionH(z) expressed in terms ofB whose singular behavior is such that the asymp-
totic form of its coefficientshn is compatible with that offngn up to the needed error terms.
4. Output the singular expansion off � g as the quantityH(z) + P (z) + O(|1− z|C), whereP is
a polynomial in(1− z) of degree less thanC.

The reason for the addition of a polynomial in Step4 is that integral powers of(1 − z) do not leave
a trace in coefficient asymptotics since their contribution is asymptotically null. The Zigzag Algorithm
is principally useful for determining the divergent part of expansions. If needed, the coefficients in the
polynomialP can be expressed as values of the functionf � g and its derivatives at 1 once it has been
stripped of its nondifferentiable terms.

4 The toll nα

Here is the main theorem of this section. The caseα = 1/2 is treated by special means in [8].

Theorem 4.1. Let α 6= 1/2, and letXn denote the additive functional that satisfies the distributional
recurrence(2.1)with bn ≡ nα and initial conditions(x0, . . . , xm−2). Defineα′ := α+ 1

2 and recall(3.8).

(a) If α > 1/2, then

(m− 1)(mα∗)1/2 Xn

nα′
L−→ Yα;

(b) if α < 1/2, then

(m− 1)(mα∗)1/2

nα′

[
Xn −

ρm
m

m−1 Cα

(m− 1)α∗
(n + 1)

]
L−→ Yα, whereCα :=

∞∑
n=m−1

ρnnατn+
m−2∑
j=0

xjρ
j .



A repertoire for additive functionals of uniformly distributedm-ary search trees 111

In either case we have convergence of all moments, whereYα has the unique distribution whose moments
are given byEY s

α = Ms ≡ Ms(α). Here

M1 =
Γ(α− 1

2 )
√

2Γ(α)
,

and, fors ≥ 2,

Ms =
1

4
√

π

s−1∑
j=1

(
s

j

)
Γ(jα′ − 1

2 )Γ((s− j)α′ − 1
2 )

Γ(sα′ − 1
2 )

MjMs−j +
sΓ(sα′ − 1)√
2Γ(sα′ − 1

2 )
Ms−1.

Although the normalization required to produce a limiting distribution depends onm, Theorem 4.1
exhibits a strikinginvariance principle: the distributionsL(Yα) do not depend on the value ofm (and thus
in particular, have already arisen whenm = 2 in [7]).

We will present the proof of Theorem 4.1 only for the simplest caseα ∈ (1/2,∞) \ {3/2, 5/2, . . . };
consult [8] for the other cases.

4.1 Mean
Usings = 1 in (2.6) we have

r[1](z) = b(z)�
[
zm−1τm(z)

]
,

and consequently, by (2.4) and (3.4),

[zn]r[1](z) = r[1]
n = bnτn ∼ nα− 3

2 ρ−n

(
−a1

2
√

π
+ n−1N

)
. (4.1)

We employ the Zigzag Algorithm outlined in Section 3.2. A compatible singular expansion forr[1](z)
is

r[1](z) ∼ −a1

2
√

π
Γ(α− 1

2 )Z−α+ 1
2 + Z−α+ 3

2A+A. (4.2)

Using (3.10) and (4.2) in (2.5) we obtain

µ[1](z) ∼
a0Γ(α− 1

2 )
2
√

π(m− 1)
Z−α + Z−α+ 1

2A+ Z−α+1A+ Z−1/2A+A, (4.3)

whence, by singularity analysis,

ρnµ[1]
n τn ∼

a0Γ(α− 1
2 )

2
√

π(m− 1)Γ(α)
nα−1 + nα− 3

2N + nα−2N + n−1/2N .

The singular expansion forτn at (3.4) then gives

µ[1]
n ∼

a0Γ(α− 1
2 )

(−a1)(m− 1)Γ(α)
nα+ 1

2 + nαN + nα− 1
2N + nN .

4.2 Higher moments
We will use induction to obtain asymptotics for higher-order moments. Throughoutα′ := α + 1

2 .

Proposition 4.2. Letα ∈ (1/2,∞) \ {3/2, 5/2, . . . }. Then, fors ≥ 1, andε > 0 small enough,

µ[s](z) = DsZ
−sα′+ 1

2 + O(|Z|−sα′+ 1
2+q),

whereq := min{α− 1
2 , 1

2} − ε with

D1 :=
a0Γ(α− 1

2 )
2(m− 1)

√
π

,

and, fors ≥ 2,

Ds =
a0

(m− 1)(−a1)

m− 1
2a0

s−1∑
j=1

(
s

j

)
DjDs−j +

Γ(sα′ − 1)
Γ((s− 1)α′ − 1

2 )
sDs−1

 . (4.4)
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Proof. We proceed by induction ons. For s = 1 the claim was proved as (4.3). [Note thatµ[0](z) =
τ(z) ∼ a0.] Supposes ≥ 2. We will first obtain the asymptotics ofr[s](z) at (2.6) by analyzing each of
the terms in the sum there.

Suppose exactlyk ≥ 1 of s1, . . . , sm, says1, . . . , sk, are nonzero. Then, by induction,

zm−1µ[s1](z) · · ·µ[sm](z) = O(|Z|−(s−s0)α
′+ k

2 ).

Moreover, ifs0 = 0 then the contribution tor[s](z) is O(|Z|−sα′+ 3
2 ) unlessk = 1 or k = 2. (Observe,

however, that ifk = 1 thens0 cannot be zero as that would implys1 = s.) On the other hand, ifs0 6= 0,
then using singularity analysis for polylogarithms [10] and Hadamard products [6], we see that

b�s0(z)� [zm−1µ[s1](z) · · ·µ[sm](z)] = O(|Z|−sα′+
s0
2 + k

2 ),

which is O(|Z|−sα′+ 3
2−ε) unlessk = 1 ands0 = 1. (The ε term in the exponent avoids logarithmic

factors that arise when−sα′ + s0
2 + k

2 is a nonnegative integer.)

If all of s1, . . . , sm are zero, thens0 = s and, using (3.12), the contribution tor[s](z) isO(|Z|−sα′+ s
2+ 1

2 )
which isO(|Z|−sα′+ 3

2 ).
Hence unlesss0 = 0 and exactly two ofs1, . . . , sm are nonzero ors0 = 1 and exactly one ofs1, . . . , sm

iss−1 in (2.6), the contribution tor[s](z) isO(|Z|−sα′+ 3
2−ε). In the former case the contribution tor[s](z)

is gotten by using the induction hypothesis as(
m

2

)
ρm−1Z−sα′+1am−2

0

s−1∑
j=1

(
s

j

)
DjDs−j + O(|Z|−sα′+1+q).

In the latter case, again using the induction hypothesis and singularity analysis for Hadamard products we
get the contribution tor[s](z) as

mρm−1am−1
0 sDs−1

Γ(sα′ − 1)
Γ((s− 1)α′ − 1

2 )
Z−sα′+1 + O(|Z|−sα′+1+q).

Finally, noting that the contribution from
∑m−2

j=0 xs
jz

j to the numerator on the right side in (2.5) is
negligible, we complete the induction by using (3.5) and (3.10).

4.3 Limiting distributions

We can now use the method of moments to derive limiting distributions for the additive functional.

Proof of Theorem 4.1 whenα ∈ (1/2,∞) \ {3/2, 5/2, . . . }. By Proposition 4.2, singularity analysis, and
the asymptotics ofτn at (3.4), we have

EXs
n = µ[s]

n =
Ds2

√
π

(−a1)Γ(sα′ − 1
2 )

nsα′ + O(nsα′−q).

Defineσ ≡ σm := −a1(m− 1)/(
√

2a0) = (m− 1)(α∗/m)1/2, where the last equality uses (3.5), (3.7),
and (3.8). Then, for fixedm, asn →∞,

E
[
σm

Xn

nα′

]s

→ Ms,

where, fors ≥ 1,

Ms :=
σsDs2

√
π

(−a1)Γ(sα′ − 1
2 )

.

In particular,M1 = Γ(α− 1
2 )/[

√
2Γ(α)]. Furthermore, using (4.4), we obtain the recurrence forMs.

Convergence in distribution follows from the fact that(Ms) satisfies Carleman’s condition, as has been
established in [7].
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5 Three asymptotically normal additive functionals
Examples 1.1, 1.2, and 1.4 can be treated in much the same way as the tollnα; consult [8] for the details,
which vary substantially from one example to another. Here are the results.

Theorem 5.1. LetXn denote the shape functional for uniformly distributedm-ary search trees onn keys.
Then

Xn − d1(n + 1)√
n lnn

L−→ N(0, σ2) and
Xn −EXn√

VarXn

L−→ N(0, 1),

where d1 :=
2a0

(m− 1)a2
1

∞∑
n=m−1

ρn

[
ln

(
n

m− 1

)]
τn and σ2 := 8 (a0/a1)

2 (1− ln 2).

Remark5.2. It is known [1, 9] that under the random permutation model the shape functional normalized
by its mean and standard deviation is asymptotically normal for2 ≤ m ≤ 26 and does not have a limiting
distribution form > 26. In contrast, under the uniform model we have asymptotic normality for all
m ≥ 2.

Theorem 5.3. Let Xn denote the space requirement for uniformly distributedm-ary search trees on
n keys. Then

Xn − d1(n + 1)√
n

L−→ N(0, σ2) and
Xn −EXn√

VarXn

L−→ N(0, 1),

where d1 :=
m(1− ρm

1
m−1 )

(m− 1)α∗
and σ2 :=

2a0

a2
1(m− 1)

d2
1 +

m−2∑
j=1

[−(j + 1)d1 + 1]2ρj − a0

m(m− 1)

 .

Theorem 5.4. LetXn denote the number of leaves in a uniformly distributedm-ary search tree onn keys.
Then

Xn − ρ
α∗ (n + 1)
√

n

L−→ N(0, σ2) and
Xn −EXn√

VarXn

L−→ N(0, 1),

where σ2 :=
ρm

m
m−1 (ρm−1 + δ1)
α∗(m− 1)

, with δ1 := (ρ/α∗)2 +
m−2∑
j=1

[−(j + 1)(ρ/α∗) + 1]2 ρj .
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