
2005 International Conference on Analysis of Algorithms DMTCS proc.AD, 2005, 393–398

A tight upper bound on the size of the
antidictionary of a binary string

Hiroyoshi Morita1† and Takahiro Ota2

1Graduate School of Information Systems, University of Electro-Communications, Chofugaoka 1–5–1, Chofu, Tokyo,
182–8585 Japan.2Dept. of Electronic Engineering, Nagano Prefectural Institute of Technology, Shimonogo 813–8,
Ueda, Nagano, 386–1211 Japan.

A tight upper bound of the size of the antidictionary of a binary string is presented. And it is shown that the size of
the antidictionary of a binary sting is always smaller than or equal to that of its dictionary. Moreover, an algorithm to
reconstruct its dictionary from its antidictionary is given.

Keywords: antidictionary, minimum forbidden words, suffix trees, data compression, ECG

1 Introduction
An antidictionary is a set of words that never appear in a binary string. In 2000, Crochemore et al. (2000)
presented a compression algorithm of binary text using antidictionary called DCA. Their coding algorithm
has been tested on the Calgary Corpus, and their experimental results show that we get compression ratios
equivalent to those of most common compressors such as pkzip. Recently, an online source coding scheme
based on DCA is presented to apply for compressing losslessly ECG (ElectroCardioGram) in Ota and
Morita (2004). Experimental results show that their algorithm achieved 10% smaller compression ratio
than LZ ones.

In this article, we present au upper bound of the size of the antidictionary of a binary string. The upper
bound we obtained is stronger than that in Crochemore et al. (1998). And it is tight in the sense there exists
a string to attain the bound. We also proved that the antidictionary of a binary string is always smaller
than or equal to that of the dictionary of the same string. Moreover, we give an algorithm to reconstruct
the dictionary from the antidictionary.

This article is organized as follows. Section 2 gives definitions on antidictionary with some examples.
In Sections 3 and 4, we investigate the size of the antidictionary of a given string and derive a tight upper
bound on its size. Section 5 presents an algorithm to reconstruct the dictionary from the antidictionary of
a given string and Section 6 summarizes our results.

2 Definitions on Antidictionary
LetA be the binary alphabet{0, 1} andA∗ be the set of all finite-length strings overA including the null
string of length zero, denoted byλ. The dictionaryD(x) of a binary stringx = x1x2 . . . xn ∈ A∗ is
defined as the set of all the substrings ofx :

D(x) = {x`x`+1 · · ·xm|1 ≤ ` ≤ m ≤ n} ∪ {λ}.

For example, ifx = 01011, thenD(x) is given by

D(01011) = {λ, 0, 1, 01, 10, 11, 010, 011, 101, 0101, 1011, 01011}.

LettingDc(x) = A∗\D(x), a stringv = v1v2 · · · vm ∈ Dc(x) such that

v1v2 · · · vm−1 ∈ D(x) andv2v3 . . . vm ∈ D(x)

1365–8050c© 2005 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

394 Hiroyoshi Morita and Takahiro Ota

Tab. 1: L IST OF ANTIDICTIONARY OF SEVERALx ’ S.

x AD(x) x AD(x)
0 {00} 000 {0000}
1 {11} 001 {000, 10, 11}
00 {000} 010 {00, 101, 11}
01 {00, 10, 11} 011 {00, 111, 10}

T(01011)

0 1

Fig. 1: Suffix trie ofx = 01011.

is called a minimal forbidden word (MFW) ofx . The antidictionary ofx , denoted byAD(x), is defined
as the set of all the MFW’s ofx . In case ofx = 01011, AD(x) = {00, 110, 111, 1010}. Table 1 shows
the antidictionaries of several binary strings.

Let S(x) be the set of suffices ofx :

S(x) = {λ} ∪ {xixi+1 . . . xn|1 ≤ i ≤ n}.

The suffix trieT (x) is a tree structure (Gusfield, 1997) such that every suffix ofx is stored as a path from
the root to a node inT (x) where every edge is labeled with a symbol inA. Figure 1 shows the suffix trie
of x = 01011. Note that some suffices are implicitly represented as paths from the root to internal nodes
in T (x). In fact, every string inD(x) can be represented as a path from the root to a node. Reversely, for
every nodep in T (x), a string represented by a path from the root top is inD(x). Hence, we obtain the
following statement.

Proposition 1 (Suffix Trie representing Dictionary). A node inT (x) corresponds uniquely to an ele-
ment inD(x) and vice versa.

3 A Necessary Condition on MFW’s
A necessary condition that a string inA∗ is an MFW ofx can be derived by adding new nodes toT (x) as
follows: If p is a leaf inT (x), then create two nodes connected top. Otherwise, and ifp has only a child
node, create a new node connected top. The obtained tree, denoted byTex(x), is a binary tree such that
every internal node has two child nodes (See Fig. 2). Moreover, letw(r) be the string associated with the
path from the root to a noder in Tex(x).

It is shown that every MFW ofx is represented by a path from the root to a leafp in Tex(x) since for its
parent nodeq, w(q) ∈ D(x) butw(p) /∈ D(x) and there existsa ∈ A such thatw(p) = w(q)a. Hence,
we obtain the following proposition.

Proposition 2. If v ∈ A∗ is an MFW ofx , then there exists a leafp in Tex(x) such thatv = w(p).

From Propositions 1 and 2, we can derive a rough estimation on the size ofAD(x). Throughout this
article, the size, or the cardinality of a setS is denoted by#S.

Theorem 1. For x ∈ A∗, we have

#AD(x) ≤ #D(x) + 1.

†This work was supported by Grant-in-Aid for Scientific Research no.173601782332 of Japan Society for the Promotion of
Science.

A tight upper bound on the size of the antidictionary of a binary string 395

Tex(01011)

0 1

p1

p2

p3 p4

Fig. 2: Tex(x) corresponding to the suffix trie in Figure 1.

Proof. Let mk be the number of nodes havingk child nodes inT (x) where0 ≤ k ≤ 2. From Proposition
1, we have

#D(x) = m0 + m1 + m2.

Sincem0 = m2 + 1, we can rewrite it as

#D(x) = 2 m0 + m1 − 1.

On the other hand, the number of leaves inTex(x) is upper bounded by2 m0 + m1. Hence Proposition 2
gives

#AD(x) ≤ 2 m0 + m1.

Therefore, we have#AD(x) ≤ #D(x) + 1.

Recently, Janson et al. (2004) investigated the average size of a dicitionary of a random binary string
generated by a mixing model. It is asymptotically equal ton2/2. In the same paper, they did more
precise analysis on the average behavior of the number of distinct substrings in a string of lengthn over
an alphabet of sizeA. The size of an antidictionary, however, is much smaller than that of the dictionary
on average as we will discuss below.

4 A Tight Upper Bound on Size of Antidictionary
Hereafter, for any noder in Tex(x), let σ(r) be a node such thatw(σ(r)) is equal to the string

obtained by removing the first symbol ofw(r). The following theorem gives a necessary and sufficient
condition thatw(p) for a leafp in Tex(x) is an MFW ofx .

Theorem 2 (A necessary and sufficient condition on MFW).For a leaf nodep in Tex(x), w(p) is an
MFW ofx if and only ifσ(p) is an internal node inTex(x).

Proof. Suppose thatp is a leaf inTex(x) andq is its parent node. Then there existsa ∈ A such that
w(p) = w(q)a. From the definition ofTex(x), w(p) /∈ D(x) while w(q) ∈ D(x). If σ(p) is an internal
node inTex(x), thenw(σ(p)) ∈ D(x) from Proposition 1. Moreover, there existsb ∈ A such that
w(p) = bw(σ(p)). Hencew(p) is an MFW ofx .

Conversely, assume thatw(p) is an MFW ofx for a leafp in Tex(x). Rewritingw(p) ascu with a
certain symbolc ∈ A, stringu corresponds to nodeσ(p), that is,u = w(σ(p)). Sincew(p) is an MFW,
w(σ(p)) ∈ D(x). Therefore,σ(p) is an internal node inTex(x).

Corollary 1. Suppose thatp is a leaf inTex(x) and its parent nodeq is an internal node inT (x). Then,
w(p) is an MFW ofx if and only if nodeσ(q) has two child nodes inT (x).

Proof. If nodeσ(q) has two child nodes, one of them isσ(p). Henceσ(p) is a node inT (x). Thus, it is
also an internal node inTex(x). Conversely, assume thatσ(p) is an internal node inTex(x). Sincep is a
leaf inTex(x), its parent nodeq has two child nodes includingp. Hence,σ(q) does so too.

396 Hiroyoshi Morita and Takahiro Ota

Corollary 1 shows that the size ofAD(x) is at leastm2 wherem2 is the number of nodes having two
child nodes inT (x) as defined in Theorem 1. In Figure 2, strings00, 1010, 110 and111 are corresponding
to leavesp1 to p4, respectively. Since their parents satisfy the conditions of Corollary 1, these strings are
MFW’s of x = 01011. And there are no other leaves whose parents do so.

Theorem 3 (MFW sprouting from leaves inT (x)). For a leafq in T (x), stringw(p) associated withp
that is one ofq’s child nodes inTex(x) is an MFW if and only if the path from the root toq is the shortest
one among all the leaves inT (x).

Proof. First, we assume thatq is the leafq∗ with the shortest path inT (x). Thenσ(q∗) is an internal node
in T (x). Thus,σ(q∗) has at least one child noder in T (x). Since there exists a child nodep∗ of q∗ such
thatr = σ(p∗), w(p∗) is an MFW ofx .

Conversely, ifq 6= q∗, thenw(q∗) is a suffix ofw(q) sincew(q) is strictly longer thanw(q∗) and both
of them are suffices ofx . Let g be a child node ofq in Tex(x) such thatw(p∗) is a suffix ofw(g) where
w(p∗) is an MFW defined above. Thus neitherw(g) is inD(x). Therefore any suffices ofw(g) that are
longer than or equal tow(p∗) are not inD(x). Hence,w(g) is not an MFW. Taking the contraposition
completes the proof of Theorem 3.

For example, two leaves associated with strings110 and111 in Tex(01011) of Figure 2 are MFW’s that
satisfy the condition of Theorem 3. Finally, we have thatAD(01011) = {00, 110, 1010, 111}.

Theorem 4 (An improved bound of Theorem 1).Given a binary stringx of lengthn, we have

#AD(x) ≤ n + 1.

And ifx is the all-one string1 · · · 1 or the all-zero string0 · · · 0, then

#AD(x) = 1.

Proof. Combining the results of Corollary 1 and Theorem 3, we have

#AD(x) ≤ m2 + 2.

Sincem0 ≤ n andm0 = m2 + 1, the above inequality is evaluated further from above as follows:

#AD(x) ≤ m0 + 1 ≤ n + 1.

If x is the all-one string1 · · · 1 of lengthn, the all-one string of lengthn+1 is an MFW ofx and any other
strings are not. Therefore,#AD(x) = 1. In casex is the all-zero string of lengthn, the same argument
derives the equality.

Since the equality holds forx = 01 (see Table 1), the upper bound obtained in Theorem 4 is tight. In
case of the binary alphabet, Corollary 9 in Crochemore et al. (1998) is translated into

#AD(x) ≤


3 if |x | ≤ 2,

2 else ifx is the all-one string1 · · · 1 or the all-zero string0 · · · 0,

2n− 2 else

where|x | is the length ofx . Forn ≥ 4, the results in Theorem 4 is stronger than the above one.
Moreover, since all the suffices ofx including the null string are contained inD(x), we have#D(x) ≥

n + 1. Therefore, we obtain the following corollary.

Corollary 2. For x ∈ An,

#AD(x) ≤ #D(x).

A tight upper bound on the size of the antidictionary of a binary string 397

8 Hiroyoshi Morita and Takahiro Ota

TAD(010110)

σ(1) σ(2)

σ(3) σ(4) σ(5)

1 2

3 4
5

10
11

12

13 14

6 7 8 9

Fig. 4: T (010110) is reproduced from TAD(010110) by AD2D.

Fig. 3: An example of digital trieTAD(010110).

5 From Antidictionary to Dictionary
The antidictionaryAD(x) of a given stringx ∈ A∗ can be represented as a digital trie denoted by
TAD(x). As an example, Figure 3 shows a digital trie representing the antidictionary ofx = 010110
whereAD(010110) = {00, 1010, 1101, 111}. An MFW in AD(x) is corresponding to a path from the
root to a leaf inTAD(x).

In Algorithm AD2D described below, starting withTAD(x), nodes inT (x) will be reproduced step by
step. However, it will be determined on each process of the algorithm whether those nodes are internal
or external nodes inT (x). Hence, nodes created by the algorithm are tentatively called ‘neutral’ nodes
until we know their connectivity, that is, the number of their child nodes and their directions. Besides, at
the initial state of the algorithm, internal nodes inTAD(x) should be treated as neutral nodes since their
connectivity are not known at the initial state.

(Algorithm AD2D)

0. LetT beTAD(x).

1. For each neutral nodep in T in the breadth-first order:

1-1. If σ(p) has two internal nodes as child nodes, create one or two new nodes
connecting top so thatp has two child nodes.

1-2. If σ(p) has only one internal nodeq as a child node, create a new node connect-
ing top so thatp has a child node with the same direction asq.

1-3. If σ(p) has no child nodes, letp be an external node.

2. Remove all the external nodes inTAD from T .

3. OutputT asT (x). Then stop.

Figure 4 depicts the process of reconstructing the dictionary ofx = 010110 from its antidictionary.

Theorem 5. The suffix trieT (x) is reproduced fromTAD(x) by means of AlgorithmAD2D.

Proof. Let p be an internal node inTAD(x). From the definition of MFW,w(p) is in D(x). Suppose
thatp has only a child node. Then, AlgorithmAD2D sprouts a new child nodeq from p if σ(q) is not an
external node inT . The new nodeq becomes neutral andw(q) ∈ D(x).

The connectivity of a neutral noder is determined by that ofσ(r). That is, ifσ(r) hask child nodes in
T (x) wherek = 0, 1, 2, thenr does so. Since the algorithm processes neutral nodes in the breadth-first
order, the connectively ofσ(r) is known whenr is processed. Thus, all the suffices ofx will be reproduced
in Step 1 of the algorithm. Removing all the external nodes inTAD from T , we obtainT (x).

Sincex is equal tow(p) for a certain leafp that has the longest path among leaves inT (x), Algorithm
AD2D can reproducex fromAD(x). Hence we have the following corollary.

Corollary 3. The original stringx can be reproduced fromAD(x).

398 Hiroyoshi Morita and Takahiro Ota

TAD(010110)

σ(1) σ(2)

σ(3) σ(4) σ(5)

1 2

3 4
5

10
11

12

13 14

6 7 8 9

15

Fig. 4: T (010110) is reproduced fromTAD(010110) by AlgorithmAD2D where non-external nodes are indexed by
numbers.

6 Conclusions
In this article, we derived an upper bound on the size of the antidictionary of a given binary stringx . And
we proved that the antidictionary ofx is always smaller than or equal to the dictionary ofx . Moreover,
we gave an algorithm to reconstruct the dictionary ofx from the antidictionary ofx .

Acknowledgements
The authors express their thanks to Philippe Flajolet of INRIA, Rocquencourt, France to call their attention
to Janson et al. (2004).

References
M. Crochemore, F. Mignosi, and A. Restivo. Automata and forbidden words.Information Processing

Letters, 67(3):111–117, 1998.

M. Crochemore, F. Mignosi, A. Restivo, and S. Salemi. ata compression using antidictionaries.Proc.
IEEE, 88(11):1756–1768, 2000.

D. Gusfield.Algorithms on strings, trees, and sequences: Computer Science and Computational Biology.
Cambridge Univ. Press, 1997.

S. Janson, S. Lonardi, and W. Szpankowski. On average sequence complexity.Theoretical Computer
Science, 326:213–227, 2004.

T. Ota and H. Morita. One-path ecg lossless compression using antidictionaries.IEICE Trans. Funda-
mentals (Japanese Edition), J87-A(9):1187–1195, 2004.

