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The aim of this paper is threefold: firstly, to explain a certain segment of ordinals in terms which are familiar to the
analytic combinatorics community, secondly to state a great many of associated problems on resulting count functions
and thirdly, to provide some weak asymptotic for the resulting count functions. We employ for simplicity Tauberian
methods. The analytic combinatorics community is encouraged to provide (maybe in joint work) sharper results in
future investigations.
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1 Introduction
It is usually difficult to attract the attention of mathematicians without background in logic to questions
about ordinals. We hope to change this situation a bit by explaining a certain quite far reaching initial
segment of these in terms of Hardy’s 1910 [6] orders of infinity.

Ordinals reflect the process of counting, thus they start like0, 1, 2, 3, . . . , n, . . . . Then the first limit
elementω appears and counting continues withω, ω + 1, ω + 2, ω + 3, . . . , ω + n, . . . , and the longer the
process lasts the more obscure the ordinals become.

Let us now switch the scene to the following subclassE of Hardy’s order of infinity. LetE be the least
set of functionsf : N → N such that the constant zero functionx 7→ 0 is contained inE and such that
with f andg also the functionx 7→ xf(x) + g(x) belongs toE .

Definef ≺ g via eventual domination, i.e.f ≺ g holds if there exists ann0 such that for alln ≥ n0

we havef(n) < g(n). Let kd denote the constant function with valuen and then noticek0 ≺ k1 ≺ k2 ≺
. . . ≺ kn ≺ . . .. The first limit element with respect to≺ is then obviously given by the identity function
id, i.e. x 7→ x. Moreoverid ≺ id + k1 ≺ id + k2 ≺ . . . ≺ id + id ≺ id · id ≺ idid ≺ ididid

. . .. As long
as we stay withinE all mysteriosity of the counting into the infinite disappears and we can consider the
initial segment of ordinals provided byE as a natural mathematical structure for which no background in
logic is necessary. To understand howE works one may verify that every polynomial function with non
negative integer coefficients represents a function inE . (Note that e.g.k1 = idk0 + k0.)

Hardy proved already in 1910 thatE is linearly ordered with respect to≺, hence every non zero function
f in E has a unique ‘term’ representationf = idf1 + · · ·+ idfm wheref1 � . . . � fm. If further the non
zero functiong has a corresponding representationg = idg1 + · · · + idgn whereg1 � . . . � gn then we
can decidef ≺ g using the corresponding exponents as follows;f ≺ g iff either m < n and for alli ≤ m
we havefi = gi or there exists ank ≤ min{m,n} such thatfk ≺ gk and for alll < k we havefl = gl.

Usually it is assumed that proving the well-foundedness ofE with respect to≺ is difficult to see. As
a sidestep let us show how to resolve this. We show that every nonempty subset ofE has a≺-minimal
element, or equivalently, there does not exist a strictly descending chain of elements inE , or equivalently
for every functionF : N → E there exists ann such thatF (n) � F (n + 1). A non logical argument uses
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either an appeal to Kruskal’s tree theorem or a compactness argument which is familiar from the proof of
the Bolzano Weierstraß theorem.

Indeed, letid1 := id andidn+1 be defined recursively asx 7→ xidn(x). Let En := {f ∈ E : f ≺ idn}.
ThenE =

⋃
n∈N En. We show by induction onm that for every functionF : N → Em there exists ann

such thatF (n) � F (n + 1). Indeed this is clear form = 1 since the natural numbers are well ordered.
Now assume that there exists an infinitely descending chainF (0) � F (1) � F (2) � . . . etc. inEm+1

Then the corresponding lists of exponents ofF (0), F (1), F (2) can be arranged in an infinite but finitely
branching tree such that along any branch we obtain a strict descent of corresponding exponent functions.
By compactness we would obtain an infinite strictly descending chain of functions appearing as exponents
but this would give a strictly descending chain inEm which is excluded by induction hypothesis.

Thus we can use the structureE for all sorts of transfinite recursion but in this paper we will not continue
in exploring this further.

2 Some basic results
The elements ofE come along with various natural norm functions. The most canonical choice is given
as follows: N(c0) := 0 andN(idf + g) := 1 + N(f) + N(g). (This is well defined as a moment
reflection shows.) Then for everyf in E and every natural numbern there are finitely manyg ≺ f such
thatN(g) ≤ n. We may thus consider

cf (n) := #{g ≺ f : N(g) = n}.

For specific choices off one re-obtains classical count functions, e.g. iff = idid thencf (n) is the number
of partitions ofn which has a well known and intriguing asymptotic.

For a proof of this correspondence simply observe that every functionidki1 + · · · idkim ≺ idid with
ki1 � . . . � kim

corresponds uniquely to the partition〈i1 − 1, . . . im − 1〉.
The author has learned that there has been recently a lot of progress in classifyingcf (in the context of

Lie algebras) and thus we will not pursue this issue further. We just quote (besides the standard ones) the
results of Petrogradsky [9]. Letid0(f) := f andidm+1(f) := ididm(f). Moreover letln(0)(n) := n and
ln(m+1)(n) := ln(ln(m)(n)).
Theorem 1 1. cidcd (n) ∼ 1

d!(d−1)!n
d−1.

2. cidid(n) ∼ exp(π·
√

2
3 n)

4
√

3n
.

3. Letσ := (1 + 1
d )

(
1

(d−1)!ζ(d + 1)
) 1

d+1 . Thenln(cididd (n)) ∼ σ · n
d

d+1 .

4. There is an explicitly calculable constantC such thatln(cidm+2(kd)(n)) ∼ C n
d
√

ln(m)(n)
.

Moreover it is known from [10] thatlim cf (n+1)
cf (n) = 1 for all f ∈ E .

There is a multiplicative norm which is canonically associated withN . It is inferred by the indices of
the enumeration function for the primes(pi)i≥1. Let I(k0) := 1 andI(idf + g) := pI(f) · I(g). The
corresponding count function is

cI
f (n) := #{g ≺ f : I(g) ≤ n}.

This norm is natural in a far as it provides a bijection betweenE and the positive integers using the
theorem on unique prime factor decomposition for positive integers. (The commutativity of addition is
reflected by the commutativity of multiplication.) By elementary calculations with Dirichlet functions
following the advice provided in Burris one can prove the following Theorem.

Theorem 2 1. There exists an explicitly calculable constantC such thatcI
idcd (n) ∼ C(ln(n))d.

2. ln(cI
idid(n)) ∼ π ·

√
2

3 ln(2) ln(n).

3. ln(cI

ididkd
(n)) = Θ((ln(n))

d
d+1 ).

4. ln(cI
idm+2(kd)(n) = Θ( ln(n)

d
√

ln(m)(ln(n))
).

Moreover it is known thatcI
f is slowly varying at infinity for eachf ∈ E . We conjecture that theΘ results

can be sharpened to weak asymptotic similarly to Theorem 1 usingσ := (1+ 1
d )

(
1

(d−1)! ln(2)ζ(d+1)
) 1

d+1 .
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3 Exponential norms
The main emphasis of this paper is put on a norm which arises naturally in the context of logic, in almost
every book on recursion theory. This exponential coding normE is defined byE(k0) := 1 andE(idf1 +
· · ·+ idfn) := p

E(f1)
1 · · · pE(fn)

n if f1 � . . . � fn. Let

cE
f (n) := #{g ≺ f : E(g) ≤ n}.

An additive version of the exponential coding norm which leads to generalized Mahler partitions is as
follows. Let the Mahler norm be defined byM(0) := 0 andM(idf + g) := 2M(f) +M(g). Moreover let

cM
f (n) := #{g ≺ f : M(g) ≤ n}.

Note that forf = idid the numbercM
f (n) is the number of sequences〈i0, . . . il〉 such thati0 ≥ . . . ≥ il

and2i0 + · · · + 2il ≤ n, hence a version of the Mahler partition function. For other values off one gets
suitably generalized Mahler partitions. In particular we obtain the following standard partition identity for
M which can be used to obtain the asymptotic for the resulting count functions:

∑∞
n=0 cM

idf (n) · zn =∏∞
i=1

1

(1−z2i )
cM
f

(i)
. The treatment of weak asymptotic forcM

f is very analogous tocE
f and we therefore

stick to the functionscE
f from now on. (For better results the techniques of Dumas and Flajolet [5] seem

appropriate here.)
Following Hardy and Ramanujan letli := p1 · . . . ·pi wherel0 := 1. As a warm up exercise we indicate

how the asymptotic forcE
idcd can be obtained by Karamata’s Tauberian theorem which seems to be tailer

made for asymptotic on bounded partitions. (The proof is very similar to one found in [11].)

Lemma 1 Lethrd(x) := cE
idcd (x). Then

hrd(x) =
d∑

e=1

∑
j1<...je<d

∑
i1>...>ie

#{llj1i1
· llj2−lj1

i2
· . . . · l

lje−lje−1
ie

≤ x}.

Proof. It suffices to show

#{f ≺ idd : E(f) ≤ x} = #
d⋃

e=1

⋃
j1<...je<d

⋃
i1>...>ie

{llj1i1
· llj2−lj1

i2
· . . . · l

lje−lje−1
ie

≤ x}.

This is more or less obvious by grouping the factors appropriately together. (In some sense this is
similar when one counts partitions and their conjugates. In terms of block diagrams this simply means
that we are counting blocks at one time via columns and at the other time via rows.) 2

Let L(s) :=
∑∞

n=1 l−s
n .

Theorem 3 (Hardy and Ramanujan [7]) L(s) ∼ 1
s ln( 1

s )
for s → 0+.

Recall that a (measurable) functionf : R → [0,∞[ is called slowly varying iflimt→∞
f(tx)
f(t) = 1 for

x > 0.

Theorem 4 (Karamata’s Tauberian Theorem [2]) LetU be a non decreasing right continuous function
on the real numbers withU(x) = 0 for all x < 0. LetLU(s) =

∫∞
0

exp(−sx)dU(x). If f : R → [0,∞[
varies slowly andc ≥ 0, ρ ≥ 0 the following are equivalent

1. U(x) ∼ cxρf(x)
Γ(1+ρ) for x →∞,

2. LU(s) ∼ cs−ρf( 1
s ) ass → 0+.

As a nice application we obtain the following result.

Theorem 5 hrd(x) ∼ 1

(d!)2
Qd−1

e=1 (pe−1)
Qd−2

e=1 le
( ln(x)
ln(ln(x)) )

d for x →∞.

Proof. Define natural numbersan by the equation

∞∑
n=1

ann−s =
d∑

e=1

∑
j1<...je<d

∑
i1>...>ie

(llj1i1
· llj2−lj1

i2
· . . . · l

lje−lje−1
ie

)−s.
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Then
∑

n≤x an = hrd(x). Let U(x) =
∑

ln(n)≤x an. Then, ass → 0+,

1

d!
∏d−1

e=1(pe − 1)
∏d−2

e=1 le
(

1
s ln( 1

s )
)d

∼
d∑

e=1

∑
j1<...je<d

1
e!

1
lj1s ln(lj1s)

· . . . · 1
(lje − lje−1)s ln((lje − lje−1)s)

∼
d∑

e=1

∑
j1<...je<d

1
e!

∑
(llj1i1

)−s · . . . · (l
lje−lje−1
ie

)−s

∼
d∑

e=1

∑
j1<...je<d

∑
i1>...>ie

((llj1i1
) · . . . · l

lje−lje−1
ie

)−s(llj1i1
)−s · . . . · (l

lje−lje−1
ie

)−s

=
∞∑

n=1

ann−s

=
∫ ∞

0

exp(−sx)dU(x) = LU(s).

The functions 7→ 1
(ln( 1

s ))d is slowly varying. Theorem 4 yields

U(x) ∼ 1

(d!)2
∏d−1

e=1(pe − 1)
∏d−2

e=1 le
(

x

ln(x)
)d

for x →∞. Now
∑

n≤x an = U(ln(x)) and the result follows. 2

Now we consider count functions for functionsidf wheref growth at least linearly. It turns out that
tailor made Tauberian theorems are provided by Parameswaran [8].

Theorem 6 (de Bruijn [3]) If M is slowly varying, then there is a (asymptotically uniquely determined)
slowly varying functionM∗ such thatM∗(x·M(x))·M(x) → 1 asx →∞ andM(x·M∗(x))·M∗(x) →
1 asx →∞.

Theorem 7 (Parameswaran [8])Suppose that the following conditions hold.

1. L(u) andP (u) are functions on the non negative reals such that
∫ R

0
L(u)du and

∫ R

0
P (u)du exist

in the Lebesgue sense for every positiveR.

2. exp(s
∫∞
0

e−su

1−e−su L(u)du) = s
∫∞
0

P (u)e−sudu for all positives,

3. 〈M,M∗〉 form a pair of conjugate slowly varying functions,

4. M is non decreasing,

5.
∫ u

0
L(t)

t dt ∼ M(u) asu →∞, and

6. P (u) is non decreasing.

Thenlog P (u) ∼ 1
M∗(u) asu →∞.

Theorem 8 We havecE
idid(n) = #{(li1 , . . . , lim

) : i1 ≥ . . . ≥ im & p
li1
1 · . . . plim

m ≤ n}. Moreover,

ln(cE
idid(n)) = Θ( (ln(ln(n)))2

ln(ln(ln(n))) ).

Proof. We have

cE
idid(n)

≤ #{(li1 , . . . , lim
) : i1 ≥ . . . ≥ im & 2li1 · . . . · 2lim ≤ n}

= #{(li1 , . . . , lim) : i1 ≥ . . . ≥ im & li1 + . . . + lim ≤ ln(n)
ln(2)

}.

Let
Q(n) = #{(li1 , . . . , lim

) : i1 ≥ . . . ≥ im & li1 + . . . + lim
≤ n}
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and
q(n) = #{li : li ≤ n}.

Thenq(n) ∼ ln(n)
ln(ln(n)) . This follows from li = exp(ϑ(pi)) and the well know facts (resulting from the

prime number theorem) thatϑ(x) ∼ x andpi ∼ i ln(i). Parameswaran’s theorem now yieldsln(Q(n)) ∼
1
2

ln(n)2

ln(2)(n)
. This yieldsln(p(n) ≤ 1

2
ln(ln(n))2

ln(3)(n)
. Moreover the prime number theorem gives aK such that

pi ≤ Ki ln(i) for all i. HencecE
idid(n) ≥ #{(li1 , . . . , lim

) : i1 ≥ . . . ≥ im & (Km ln(m)li1 · . . . ·
(Km ln(m)lim )}. We claim thatp(n) ≥ Q(

√
ln(n)) for largen. Indeed(li1 + . . .+ lim)2 ≤ ln(n( yields

(li1 + . . .+ lim) · ln(m ln(m)K) ≤ ln(n) for sufficiently largem and thenp
li1
1 · . . . · plim

m ≤ n. Therefore

ln(cE
idid(n)) ≥ ln(Q(n)) ∼ 1

2

(ln(
√

ln(n)))2

ln(2)(ln(n))
. 2

Recall thatln(m) denotes them-th iteration of theln-function.

Theorem 9 Letod(n) := cE
ididcd (n). Thenln(od(n)) = Θ(ln(2)(n)( ln(2)(n)

ln(3)(n)
)d+1).

Proof. We haveod(n)
≤ #{(Ef1, . . . , Efm) : cd � f1 � . . . � fm & 2Ef1 · . . . · 2Efm ≤ n}
= #{(Ef1, . . . , Efm) : cd � f1 � . . . � fm & Ef1 + . . . + Efm ≤ n

ln(2)}. Now

#{(Ef1, . . . , Efm) : cd � f1 � . . . � fm & Ef1 + . . . + Efm ≤ n} ∼ C(
ln(n)

ln(ln(n))
)d+1.

Thus Parameswaran [8] yieldsln(od(n)) ≤ C ln(2)(n)·( ln(2)(n)

ln(3)(n)
)d+1. Similarly as in the proof of Theorem

4 we see thatod(n) ≥ C · ln(
√

ln(n)) · ( ln(
√

ln(n)

ln(3)(n)
)d+1.

2

Recall thatid0(f) := f andidm+1(f) := ididm(f). Moreover letidm := idm(k1).

Theorem 10 Let c(n) := cE
idm+1

(n). Thenln(m)(c(n)) = Θ( (ln(m+1)(n))2

ln(m+2)(n)
).

Proof. By induction onm. Theorem 9 covers the casem = 1. Assumem ≥ 2 and

ln(m−1)(#{g ∈ E : g ≺ idm & Eg ≤ n}) ∼ Θ(
(ln(m)(n))2

ln(m+1)(n)
).

Then

ln(m−1)(#{g ∈ E : g ≺ idm & ln(2Eg) ≤ n}) ∼ Θ(
(ln(m)(n))2

ln(m+1)(n)
).

By thinning out we can find a subsetS ⊂ E such that

#{g ∈ S : g ≺ idm & ln(2Eg) ≤ n} = expm−1(C · ( (ln(m)(n))2

ln(m+1)(n)
))

for a suitable constantC. Let L(u) = expm−1(C · ( (ln(m)(u))2

ln(m+1)(u)
)). Let M(u) =

∫ u

a
L(u)

u du. Then

M(u) ∼ L(u) · d

du
(expm−1(C · ( (ln(m)(u))2

ln(m+1)(u)
)))

and 1
M∗(u) ∼ M(u). Thus

ln(#{〈g1, . . . , gm〉 : g ∈ S & 2Eg1 · . . . · 2Eg1 ≤ n}) ∼ M(ln(n))

and

ln(#{〈g1, . . . , gk〉 : g ∈ E & g1, . . . , gk ≺ idm & pEg1
1 ·. . .·pEgk

k ≤ ln(n)}) = expm−1(O(
(ln(m+1)(n))2

ln(m+2)(n)
)).
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The lower bound is obtained similarly. Indeed, we have

#{〈g1, . . . , gk〉 : idm � g1 � . . . � gk & pEg1
1 · . . . · pEgk

k ≤ n}
≥ #{〈g1, . . . , gk〉 : idm � g1 � . . . � gk & (Kk ln(k))Eg1+...+Egk ≤ n}
= #{〈g1, . . . , gk〉 : idm � g1 � . . . � gk & Eg1 + . . . + Egk ≤

√
ln(n)}

= #{〈g1, . . . , gm〉 : idm � g1 � . . . � gk & ln(2Eg1+...+Egk) ≤
√

ln(n)}

≥ expm−1(C · (ln(m+1)(n))2

ln(m+2)(n)
)

sincem ≥ 2. 2

The same proof yields the following refinement.

Theorem 11 Thenln(m)(cE
idm+1(cd)(n)) = Θ(ln(m+2)(n)( (ln(m+1)(n)

ln(m+2)(n)
)d+1).

Investigations on count functions have applications in logic. Let us state one application to the phase
transition for the Ackermann function. LetF be a number-theoretic function and letcountEf (F )(m) be
the maximal possible number ofg1, . . . , gk ∈ E such thatf � g1 � . . . � gk and(∀i ≤ k)[E(gi) ≤
m + F (i)]. This is well defined by a compactness argument for every functionF . Then forf = idm+2, d

fixed, and functionsF with F (i) ≥ 2
d
√

ln(m) (i) for i large enough the functioncountEf (F ) will eventually

dominate every primitive recursive function. But forf = idm+2 and functionsF with F (i) ≤ ln(m)(i)
(for i large enough) the functioncountEf (F ) will be bounded by a double exponential function.

We close with some conjectures.

Conjecture 1 1. ln(m)(cM
idm+1

(n)) = Θ(ln(m)(n)2).

2. cE
f is slowly varying for eachf in E .

3. n 7→ ln(cM
f (n)) is slowly varying for eachf in E .

Following Burris’s philosophy on logical limit laws we conjecture that for the norm functionsE andM
there will be associated zero one laws for first order logic.
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