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We study in graphs a property related to fault-tolerance in case a node fails. A@iaphself-repairing wherek is

a non-negative integer, if after the removal of any vertex no distance in the surviving graph increase by mire than
We give upper and lower bounds on the minimum number of edgek-skH-repairing graph for prescribédandn,
wheren is the order of the graph. We also prove that the problem of findingkiself-repairing graph, a spanning
k-self-repairing subgraph of the minimum sizeNB-Hard
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1 Introduction

We consider communication networks modeled by graphs in which the vertices represent the nodes and
the edges represent the direct communication links. This model allows to measure performances of the
network by different graph theoretic parameters. For instance, the delay of communication in the network
can be measured by the diameter of the underlying graph that is the maximum distance over all pairs of
nodes.

When designing reliable communication networks, the least that we must guarantee is that, after failure
of some nodes or links, the surviving network still allows communication between all no-faulty nodes.
This implies constraints on the connectivity of the corresponding graphk-Ebanectivity (respk-edge-
connectivity) is associated to the capability of a network to resist to the failure of any suliket &j
nodes (resp. links). If in addition, the surviving network must allow communication with a reasonably
increased delay, constraints of bounded length for disjoint paths must be involved-didmeter of a
k-connected graph and other variants of this parameter give means to study such properties (see [Hsu94]).

In a network, every communication link has a cost. The cost of a network is the sum of the costs of
all its communication links. When all costs are the same, their value can be considered equal to 1 and,
in this case, the cost of the network is simply the number of its communication links. In the rest of this
paper, communication links are all considered of cost 1. Networks with small cost are desirable because
they are "easy” to maintain. In particular, they do not require large capacity storage in a computer. The
problem of designing communication networks which satisfy certain requirement with small cost has been
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extensively studied. One can see [Cac89] for an account on such work and [CHHO1] if the requirement is
a given diameter and a small cost.

One approach consists in finding spanning subgraphs of a graph with the same good properties as the
original graph and fewer edges. When the property dealing with is 2-connectivity, the problem is known as
the 2-connected Steiner subgraph problem. This problem has been extensively studied in series of papers
from the early one by Steiglitz et al._[SWK69] to the more recent ones [BMB5], [CRRW93], [GM90],
[GMS91], [GMS924], [GMS92b]. Applications of this problem can be found_in [BBM90], [CW81],
[EMV87], [MMP90], [Win85], [Wingg].

Fortz et al. in[[ELMQO] consider an additive condition to the 2-connected Steiner problem. The condi-
tion is that in the spanning subgraph every edge must be on a cycle whose length is bounded by a given
constank. The authors called this probletme two-connected network with bounded meshes (rings) prob-
lem Note that in such a spanning subgraph the failure of any edge does not yield any distance increase
by more than(k — 2) in the surviving network. This property is a desirable feature because in case a link
is broken, the traffic is rerouted with a limited alteration of the communication delay. Constraints involv-
ing distance conditions are also considered by M. Elkin and D. Peleg who introduced what they called
an (a,B)-spannerof a graph[[EPQO1]. Given a grapgh = (V,E) and a subset H of E5' = (V,H) is an
(a,B)-spanner ofs if dy(u,v) < a.dg(u,v) + B for every pair of vertices, v.

Farley and ProskurowskKi [FP97] consider a related problem concerning node failure. The requirement
is that no penalty occur on any distance after the removal of a node. That is no distance increase in the
surviving graph. The authors called such grapeE-repairingand calledminimum self-repairingself-
repairing graphs with the minimum number of edges given an orddre number of vertices). In their
paper, they give the exact number of edges in a minimum self-repairing graph (given am)oaaher
characterize the class of such minimum graphs.

In this paper, we consider graphs in which the removal of any node makes no distance in the surviving
graph increase by more th&n

Let G = (V,E) be a connected graph with edges i is the size of the graph) andvertices € is
the order of the graph). For a vertexG — {x} denotes the subgraph & induced by — {x}. Forx
andy in V, we denote bydg(x,y) the length of a shortest path betweeandy in G. We say thats is
k-self-repairing wherek is a non-negative integer, if after the removal of any vertex the distances in the
surviving graph increase by at mdstThat is :

vxeV,V{y,z} CV —{x},ds_(x(¥,2) <dc(y.2) +k.

Note that such a graph is 2-connected and every pair of adjacent edges (a pair of distinct edges sharing
a common extremity) is on a cycle of length boundedkhby4. Every pairu,v], [u,w], v # w of adjacent
edges is called mansition

Letn >4 and 0< k < n—4. We defingg(n,k) as the minimum size of leself-repairing graph of order
n. Biconnectivity implies thag(n, k) > n. For a fixedn, we have :

g(n,0) >g(n,1) >g(n,2) >... >g(n,n—4).
It is easy to see th&,, n > 4, is a(n— 4)-self-repairing graph of size. Henceg(n,n—4) = n.

Self-repairing graphs studied in [FR97] are those satisfying the definition aboke=fér The authors
proved thag(n,0) = 2n— 4 and characterized such minimum graphs.
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Fig. 1: e=[xy]. Edges shown in bold aebackedgesDotted edges are not necessarilyfin

2 Bounds on the size of k-self-repairing graphs

Proposition 2.1 : Forn > 6 and k> 1,

n—-3 n—2
(n—-1)+ K1 <g(nk) <(n+4)+2 {k+2J :

Proof : The lower bound needs to be proved only keself-repairing graphs having at least one vertex
of degree 2 since otherwise the size of the graph is at leg® ®hich is better than the lower bound
given in the proposition above.

Since the graph ik-self-repairing , we fix for each transition (recall that a transition is a pair of adjacent
edges), a cycle of length at mdst- 4 containing this transition. This induces a mafrom the set of
transitions to the set of cycles. Lef be a vertex of degree 2. Consider a BFS {femoted atxy. For
an edgdu, v] of G definelmax([u,Vv]) asmax{L(u),L(v)}, whereL(u) is thelevelof vertexu in T, that is
its distance fromxp. Lete= [x,y] be an edge of such thaimax(e) > 2. We assume thdt(x) > L(y).

Let z be the parent of. The transition defined by edgész], [y, x| is denoted byr(e). Starting fromy,
the cycleh(tr (e)) goes down through at moptk+ 1) /2] levels using edges df before using an edge of
E — E(T). The first such edge, s&), is called are-backedgdsee FigurE]l).

Conversely, each edge &fc E —E(T) is a backedge for at mogt+ 1) edges (Imax(e) > 2) of E(T).
Indeed, le = [a,b]. If L(a) < L(b),then,€ is the backedge of at mogtk+ 1)/2] edges contained in
the subpattP|xo, b] and at mosk/2 edges contained in the subp&t,a] of T. If L(a) = L(b), € is the
backedge of at most twigd+ 1) /2 edges off . In all cases¢ is the backedge of at most (k+1) edges of
T. Sincedg(Xo) = 2, the lower bound follows.

To prove the upper bound, we give constructions of familiek-seélf-repairing graphs with a given
number of vertices.
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The first construction :

Two verticesu andv are said to beelatedif the following conditions are satisfied :
1. dg(u,v) = [(k+4)/2].

2. For every edge incident tou, there exists a path of length at mdgék+ 4) /2], containinge and
connectingu andv.

3. For every edge incident tov, there exists a path of length at mdgk + 4)/2], containinge and
connectingus andv.

Let g andr be the two integers such that- (k+4) = q(|(k+4)/2] — 1) +r, where 0<r < |(k+
4)/2| —1. Start with a cyclé&g of length(k+4). Iterateq times the following step. Choose two related
vertices inG;. Connect them by a new path @fik+4)/2] — 1) new vertices. This gives a grafdi1. If
r is non-zero, then, after thepiterations, choose again two related vertiosendv in Gg. Connect them
by a new path of new vertices. LeG be the resulting graph.

Thek-self-repairing grapks so obtained is of orderand has a size of at mast-q+ 1. More precisely,

e {(n1)+2';+§ if kis even
<

(n—1)+25=3 otherwise

The second construction :

We give a second construction which is more complicated than the previous one but provides a better
upper bound whek is odd and bounded b®(,/n).
Fork>1, andn> (k+4), lett andr be the non-negative integers such thg2| — 1 =t(k+2) +r, with
0<r < (k+1). Setl =t(k+2) anda = [(k+2)/2]. Consider the following family ok-self-repairing
graphs of orden denotedg (n, k) constructed as follows (FiguEd; 2):
First take two vertex-disjoint pathB, and P, each of length. SetP; = [xo,X1,...,X] and P, =
[Yo,V1,- - -,¥i]- Connectxy andyp by an edge.

Case kis at least 2 :

e Foralli,1<i<t, connec(. 2 10 Yik+2) andX;2)—1 t0 Yi(k+2)—1-

e If kis even, connect;;2)+a t0 Yi(k+2)+a @NAXik12)+a—1 10 Yikt2)+a—1, foralli,0 <i <t —1. If
kis odd conneck;2)+a t0 Yik+2)+a—1 aNdXik2)1a—1 10 Yiks2)+a—2, foralli,0 <i <t -—1.

e Setn’ =n—|V(P) UV (P)|. We have’ =n—2[n/2] 4+ 2r and then, X n’ < 2k+ 2 if nis even
and 1< n’ < 2k+ 3 otherwise. Now, we add new vertices and finish the construction by adding
necessary edges in order to obtaikself-repairing graph.

o If W <k+1, placen’ new vertices along a new path, s&yand connect one of its extremities to
X1, the other one tg;. If ¥ <k, no more edge is needed. Tkaelf-repairing grapl@ so obtained
satisfies E(G)| = n+4t. If " =k+1, add a chord i as shown in Figurg|2c. This suffices to
obtain ak-self-repairing grapl and we haveE(G)| = n+1+4t. If n = k+ 2, placek vertices
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along a path as done fé&. Connect the two remaining vertices, sayandwg by an edge and,
connectyp to Xp andwy to yo (Figure[2d). No more edge is needed andkiself-repairing grapit

so obtained satisfig& (G)| = n+2+4t. If k+3 < n' < 2k+ 2, start with a construction as in the
previous case (Figufé 2d). This plades 2 vertices from the'. Then, place the remaining vertices
along a new patR’ and connect its extremities onevg the other tong (Figure@e). No more edge

is needed and tHeself-repairing graplG so obtained satisfig& (G)| = n+ 3+ 4t. If n =2k + 3,
start with a construction as in the previous case (Figlre 2e). This plage8 2ertices from the'.
Then, place the remaining vertex &or P’ and add a new chord in the path where the remaining
vertex has just been placed, as done in case c). We obtageh-repairing graplt that satisfies
[E(G)|=n—+4+4t.

Casek=1:

Connectx; to yo, X2 to y1, x toy; and, for alli,1 <i < (t —1), connecixg; to y3 andxsit1 to ys_1 and
Vair2 andxzi 2 to ygiig (Figure[ff) . IfnY =n—|V(P1) UV (P,)| is non-zero, place’ new vertices along
a new path, connected as done aboveMolf " = 1 no more edge is needed. nf> 2, letz be the
extremity of P connected toq andzy, be the one connected yp. Add the chordz,y —1]. If ¥ <3, no
more edge is needed.f = 4, add the chordiz;, z3] and then, no more edge is needed = 5, add the
chord[z,zs] and then, no more edge is needed. The resulting grapke#-repairing and has a size of at
mostn+-24-4t.

A graph inG(n,k) is k-self-repairing and has a size of at most :

n

n_1
Nt+a4+4t=n+444|2 <(n+4)+2
k+2

n-2
k+2

a

3 Complexity of the problem of finding a minimum k-self-repairing
spanning subgraph

In this section, we consider minimukaself-repairing spanning subgraphs of a given graph. We denote
by Ng(x) the open neighborhood @fin G, that is, the set of vertices @ adjacent tocin G.

First note that checking whether a graptkiself-repairing can be done in polynomial time using the
simple following algorithm :

Algorithm 3.1 :
Input : A graph G, a positive integer k.
Output : Yesif G is k-self-repairing, Noif it is not.

begin
For each vertex of G do
begin

H—G-x;

S+— Ng(X) ;
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&<

/)O
O
OO

BYAY,
BYAY

N
N

@
(€

kel
<

a) b)

Fig.3: a)n =0. b)n’ =5.
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For each pair of verticefu,v} C Sdo
begin
computedy (U, V) ;
if dy(u,v) > k+2, returnNo ;
end;
end ;
returnyYes;
end ;

Computing the distance between two vertices is done in polynomial time. For eachyeveegerform
at mostdg(x)(dg(x) — 1)/2 such computations. Therefore, the time of Algorithn] 3.1 is bounded by a
polynomial of the size ofs.

Problem 3.2 : The minimum spanning subgraph problem with distance increase constfsiSSPDis-
tIC).

Instance :A positive integer K> 2, a K-self-repairing graphg, a positive integer bound B.
Question : Does there exist a K-self-repairing spanning subgraply aff size no more than B ?

We shall prove that MSSPDistIC is NP-complete by proving a polynomial reduction from the following
NP-completeminimum spanning subgraph problem with diameter constrgM&SPDC) (ICHHOL]).

Problem 3.3 : MSSPDC
Instance :A positive integer k> 2, a graph G of diameter k, a positive integer bound b.

Question : Does there exist a spanning subgraph of G of diameter k and of size no more than b ?

Theorem 3.4 : MSSPDistIC is NP-complete.

Proof : MSSPDistIC is in NP since, given a spanning subgraplky obne can verify, in polynomial
time, whether it i-self-repairing (using Algorithrp 3] 1, for example) and then compare its siBe to

Let I be an instance of MSSPDC that is positive intedesdb and a graptG of diameterk. Let
V = {x1,X2,...,%X} be the set of vertices @. Consider the following instancg of MSSPDistIC :

1. The graphg of 7 is obtained by taking a copy @ and adding, from each vertexa pathR joining
x; andt = k— 1 new vertices. Ley; be the second extremity &. Add a new vertex connected to

ally; (see Figurg}4).
2. K=3k—4 andB = b+ kn, wheren is the order ofG.

Thg size ofI is O(nlog?n). Sincek < n andb < n?, the size of7 is bounded by a polynomial in
n?logn.

Now, we have to prove that is ayes-instanceof MSSPDC if and only if7 is a yes-instanceof
MSSPDistIC.

Suppose there exists a spanning subgtati G of diameterk and of size bounded Hy. Consider the
spanning subgrapf of G induced by all edges df and all edges external @. It is easy to see that’
is K-self-repairing and of size at moBt Therefore,J is ayes-instancef MSSPDistIC.
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Fig. 4:

Now, let 7 be an instance of MSSPDistIC constructed from an instancEMSSPDC as described
above. IfJ is ayes-instancef MSSPDistIC, there exists a spannigself-repairing grapt# of G of
size no more thaB. The minimum degree it is at least 2. This means that all edges externd tve
in #. LetH be the spanning subgraph @finduced by all the edges B(#)NE(G). Let{x,X;} be a
pair of vertices oH. The transition of#f defined by edgef,yi|, [z)y;] is in a cycle of length at most
K +4. Every cycle containing; andy; must include all the vertices of the patRsandP;. Therefore,
the distance iH betweerx andx; is at mostk + 4 — 2k = k and thenH is a spanning subgraph &f
of diameterk. The size oH is [E(H)| = |E(H)| —kn< B—kn= b and, thereford is ayes-instancef
MSSPDC.

The previous reduction shows that MSSPDistIC is NP-complet&fer3p+ 2, p > 0. In fact, if we
consider the same reduction from intances of MSSPDC, With3, by settingt =k—2, K =3k—6
andB = b+ n(k— 1), we show that MSSPDistIC is NP-complete #r= 3p,p > 1. In the same way,
considering instances of MSSPDC wikbr 4, setting = k— 3,K = 3k—8 andB = b+ n(k—2), we show
that MSSPDistIC is also NP-complete fidr= 3p+ 1, p > 1. Therefore MSSPDistIC is NP-complete for
allK > 2. O
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