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We study in graphs a property related to fault-tolerance in case a node fails. A graphG is k-self-repairing, wherek is
a non-negative integer, if after the removal of any vertex no distance in the surviving graph increase by more thank.
We give upper and lower bounds on the minimum number of edges of ak-self-repairing graph for prescribedk andn,
wheren is the order of the graph. We also prove that the problem of finding, in ak-self-repairing graph, a spanning
k-self-repairing subgraph of the minimum size isNP-Hard.
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1 Introduction
We consider communication networks modeled by graphs in which the vertices represent the nodes and
the edges represent the direct communication links. This model allows to measure performances of the
network by different graph theoretic parameters. For instance, the delay of communication in the network
can be measured by the diameter of the underlying graph that is the maximum distance over all pairs of
nodes.

When designing reliable communication networks, the least that we must guarantee is that, after failure
of some nodes or links, the surviving network still allows communication between all no-faulty nodes.
This implies constraints on the connectivity of the corresponding graph. Thek-connectivity (resp.k-edge-
connectivity) is associated to the capability of a network to resist to the failure of any subset of(k−1)
nodes (resp. links). If in addition, the surviving network must allow communication with a reasonably
increased delay, constraints of bounded length for disjoint paths must be involved. Thek-diameter of a
k-connected graph and other variants of this parameter give means to study such properties (see [Hsu94]).

In a network, every communication link has a cost. The cost of a network is the sum of the costs of
all its communication links. When all costs are the same, their value can be considered equal to 1 and,
in this case, the cost of the network is simply the number of its communication links. In the rest of this
paper, communication links are all considered of cost 1. Networks with small cost are desirable because
they are ”easy” to maintain. In particular, they do not require large capacity storage in a computer. The
problem of designing communication networks which satisfy certain requirement with small cost has been
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extensively studied. One can see [Cac89] for an account on such work and [CHH01] if the requirement is
a given diameter and a small cost.

One approach consists in finding spanning subgraphs of a graph with the same good properties as the
original graph and fewer edges. When the property dealing with is 2-connectivity, the problem is known as
the 2-connected Steiner subgraph problem. This problem has been extensively studied in series of papers
from the early one by Steiglitz et al. [SWK69] to the more recent ones [BM95], [CRRW93], [GM90],
[GMS91], [GMS92a], [GMS92b]. Applications of this problem can be found in [BBM90], [CW81],
[EMV87], [MMP90], [Win85], [Win86].

Fortz et al. in [FLM00] consider an additive condition to the 2-connected Steiner problem. The condi-
tion is that in the spanning subgraph every edge must be on a cycle whose length is bounded by a given
constantk. The authors called this problemthe two-connected network with bounded meshes (rings) prob-
lem. Note that in such a spanning subgraph the failure of any edge does not yield any distance increase
by more than(k−2) in the surviving network. This property is a desirable feature because in case a link
is broken, the traffic is rerouted with a limited alteration of the communication delay. Constraints involv-
ing distance conditions are also considered by M. Elkin and D. Peleg who introduced what they called
an (α,β)-spannerof a graph [EP01]. Given a graphG = (V,E) and a subset H of E,G′ = (V,H) is an
(α,β)-spanner ofG if dH(u,v)≤ α.dG(u,v)+β for every pair of verticesu, v.

Farley and Proskurowski [FP97] consider a related problem concerning node failure. The requirement
is that no penalty occur on any distance after the removal of a node. That is no distance increase in the
surviving graph. The authors called such graphsself-repairingand calledminimum self-repairingself-
repairing graphs with the minimum number of edges given an ordern (the number of vertices). In their
paper, they give the exact number of edges in a minimum self-repairing graph (given an ordern) and
characterize the class of such minimum graphs.

In this paper, we consider graphs in which the removal of any node makes no distance in the surviving
graph increase by more thank.

Let G = (V,E) be a connected graph withm edges (m is the size of the graph) andn vertices (n is
the order of the graph). For a vertexx, G−{x} denotes the subgraph ofG induced byV −{x}. For x
andy in V, we denote bydG(x,y) the length of a shortest path betweenx andy in G. We say thatG is
k-self-repairing, wherek is a non-negative integer, if after the removal of any vertex the distances in the
surviving graph increase by at mostk. That is :

∀x∈V,∀{y,z} ⊂V−{x},dG−{x}(y,z)≤ dG(y,z)+k.

Note that such a graph is 2-connected and every pair of adjacent edges (a pair of distinct edges sharing
a common extremity) is on a cycle of length bounded byk+4. Every pair[u,v], [u,w], v 6= w of adjacent
edges is called atransition.

Let n≥ 4 and 0≤ k≤ n−4. We defineg(n,k) as the minimum size of ak-self-repairing graph of order
n. Biconnectivity implies thatg(n,k)≥ n. For a fixedn, we have :

g(n,0)≥ g(n,1)≥ g(n,2)≥ . . .≥ g(n,n−4).

It is easy to see thatCn, n≥ 4, is a(n−4)-self-repairing graph of sizen. Hence,g(n,n−4) = n.
Self-repairing graphs studied in [FP97] are those satisfying the definition above fork = 0. The authors

proved thatg(n,0) = 2n−4 and characterized such minimum graphs.
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Fig. 1: e= [x,y]. Edges shown in bold aree-backedges. Dotted edges are not necessarily inT.

2 Bounds on the size of k-self-repairing graphs
Proposition 2.1 : For n≥ 6 and k≥ 1,

(n−1)+
n−3
k+1

≤ g(n,k)≤ (n+4)+2

⌊

n−2
k+2

⌋

.

Proof : The lower bound needs to be proved only fork-self-repairing graphs having at least one vertex
of degree 2 since otherwise the size of the graph is at least 3n/2 which is better than the lower bound
given in the proposition above.

Since the graph isk-self-repairing , we fix for each transition (recall that a transition is a pair of adjacent
edges), a cycle of length at mostk+ 4 containing this transition. This induces a maph from the set of
transitions to the set of cycles. Letx0 be a vertex of degree 2. Consider a BFS treeT rooted atx0. For
an edge[u,v] of G definelmax([u,v]) asmax{L(u),L(v)}, whereL(u) is thelevelof vertexu in T, that is
its distance fromx0. Let e= [x,y] be an edge ofT such thatlmax(e) ≥ 2. We assume thatL(x) > L(y).
Let z be the parent ofy. The transition defined by edges[y,z], [y,x] is denoted bytr(e). Starting fromy,
the cycleh(tr(e)) goes down through at most⌈(k+1)/2⌉ levels using edges ofT before using an edge of
E−E(T). The first such edge, saye′, is called ane-backedge(see Figure 1).

Conversely, each edge ofe′ ∈E−E(T) is a backedge for at most(k+1) edgese(lmax(e)≥ 2) of E(T).
Indeed, lete′ = [a,b]. If L(a) < L(b),then,e′ is the backedge of at most⌈(k+ 1)/2⌉ edges contained in
the subpathP[x0,b] and at mostk/2 edges contained in the subpathP[x0,a] of T. If L(a) = L(b), e′ is the
backedge of at most twice(k+1)/2 edges ofT. In all cases,e′ is the backedge of at most (k+1) edges of
T. SincedG(x0) = 2, the lower bound follows.

To prove the upper bound, we give constructions of families ofk-self-repairing graphs with a given
number of verticesn.
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The first construction :
Two verticesu andv are said to berelatedif the following conditions are satisfied :

1. dG(u,v) = ⌊(k+4)/2⌋.

2. For every edgee incident tou, there exists a path of length at most⌈(k+ 4)/2⌉, containinge and
connectingu andv.

3. For every edgee incident tov, there exists a path of length at most⌈(k+ 4)/2⌉, containinge and
connectingu andv.

Let q andr be the two integers such thatn− (k+ 4) = q(⌊(k+ 4)/2⌋−1)+ r, where 0≤ r < ⌊(k+
4)/2⌋−1. Start with a cycleG0 of length(k+4). Iterateq times the following step. Choose two related
vertices inGi . Connect them by a new path of(⌊(k+4)/2⌋−1) new vertices. This gives a graphGi+1. If
r is non-zero, then, after theq iterations, choose again two related verticesu andv in Gq. Connect them
by a new path ofr new vertices. LetG be the resulting graph.

Thek-self-repairing graphG so obtained is of ordern and has a size of at mostn+q+1. More precisely,

|E(G)| ≤







(n−1)+2n−2
k+2 if k is even

(n−1)+2n−3
k+1 otherwise

The second construction :
We give a second construction which is more complicated than the previous one but provides a better
upper bound whenk is odd and bounded byO(

√
n).

Fork≥ 1, andn> (k+4), let t andr be the non-negative integers such that⌊n/2⌋−1= t(k+2)+r, with
0≤ r ≤ (k+1). Setl = t(k+2) andα = ⌈(k+2)/2⌉. Consider the following family ofk-self-repairing
graphs of ordern denotedG(n,k) constructed as follows (Figure 2) :

First take two vertex-disjoint pathsP1 and P2 each of lengthl . Set P1 = [x0,x1, . . . ,xl ] and P2 =
[y0,y1, . . . ,yl ]. Connectx0 andy0 by an edge.

Case k is at least 2 :
• For all i,1≤ i ≤ t, connectxi(k+2) to yi(k+2) andxi(k+2)−1 to yi(k+2)−1.

• If k is even, connectxi(k+2)+α to yi(k+2)+α andxi(k+2)+α−1 to yi(k+2)+α−1, for all i,0≤ i ≤ t−1. If
k is odd connectxi(k+2)+α to yi(k+2)+α−1 andxi(k+2)+α−1 to yi(k+2)+α−2, for all i,0≤ i ≤ t−1.

• Setn′ = n−|V(P1)∪V(P2)|. We haven′ = n−2⌊n/2⌋+2r and then, 0≤ n′ ≤ 2k+2 if n is even
and 1≤ n′ ≤ 2k+3 otherwise. Now, we addn′ new vertices and finish the construction by adding
necessary edges in order to obtain ak-self-repairing graph.

• If n′ ≤ k+ 1, placen′ new vertices along a new path, sayP and connect one of its extremities to
xl , the other one toyl . If n′ ≤ k, no more edge is needed. Thek-self-repairing graphG so obtained
satisfies|E(G)| = n+ 4t. If n′ = k+ 1 , add a chord inP as shown in Figure 2c. This suffices to
obtain ak-self-repairing graphG and we have|E(G)| = n+ 1+ 4t. If n′ = k+ 2, placek vertices
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along a path as done forP. Connect the two remaining vertices, sayv0 andw0 by an edge and,
connectv0 to x0 andw0 to y0 (Figure 2d). No more edge is needed and thek-self-repairing graphG
so obtained satisfies|E(G)|= n+2+4t. If k+3≤ n′ ≤ 2k+2, start with a construction as in the
previous case (Figure 2d). This placesk+2 vertices from then′. Then, place the remaining vertices
along a new pathP′ and connect its extremities one tov0, the other tow0 (Figure 2e). No more edge
is needed and thek-self-repairing graphG so obtained satisfies|E(G)|= n+3+4t. If n′ = 2k+3,
start with a construction as in the previous case (Figure 2e). This places 2k+2 vertices from then′.
Then, place the remaining vertex onP or P′ and add a new chord in the path where the remaining
vertex has just been placed, as done in case c). We obtain ak-self-repairing graphG that satisfies
|E(G)|= n+4+4t.

Case k = 1 :
Connectx1 to y2, x2 to y1, xl to yl and, for alli,1≤ i ≤ (t−1), connectx3i to y3i andx3i+1 to y3i−1 and
y3i+2 andx3i+2 to y3i+1 (Figure 3) . Ifn′ = n−|V(P1)∪V(P2)| is non-zero, placen′ new vertices along
a new path, connected as done above forP. If n′ = 1 no more edge is needed. Ifn′ ≥ 2, let z1 be the
extremity ofP connected toxl andzn′ be the one connected toyl . Add the chord[z1,yl−1]. If n′ ≤ 3, no
more edge is needed. Ifn′ = 4, add the chord[z1,z3] and then, no more edge is needed. Ifn′ = 5, add the
chord[z2,z5] and then, no more edge is needed. The resulting graph isk-self-repairing and has a size of at
mostn+2+4t.

A graph inG(n,k) is k-self-repairing and has a size of at most :

n+4+4t = n+4+4

⌊ n
2−1

k+2

⌋

≤ (n+4)+2
n−2
k+2

.

✷

3 Complexity of the problem of finding a minimum k-self-repairing
spanning subgraph

In this section, we consider minimumk-self-repairing spanning subgraphs of a given graph. We denote
by NG(x) the open neighborhood ofx in G, that is, the set of vertices ofG adjacent tox in G.

First note that checking whether a graph isk-self-repairing can be done in polynomial time using the
simple following algorithm :

Algorithm 3.1 :

Input : A graph G, a positive integer k.

Output : Yesif G is k-self-repairing, No if it is not.

begin
For each vertexx of G do
begin

H←G−x ;
S← NG(x) ;
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For each pair of vertices{u,v} ⊆ Sdo
begin

computedH(u,v) ;
if dH(u,v) > k+2, returnNo ;

end ;
end ;
returnYes ;
end ;

Computing the distance between two vertices is done in polynomial time. For each vertexx, we perform
at mostdG(x)(dG(x)− 1)/2 such computations. Therefore, the time of Algorithm 3.1 is bounded by a
polynomial of the size ofG.

Problem 3.2 : The minimum spanning subgraph problem with distance increase constraints(MSSPDis-
tIC).

Instance :A positive integer K≥ 2, a K-self-repairing graphG , a positive integer bound B.

Question :Does there exist a K-self-repairing spanning subgraph ofG of size no more than B ?

We shall prove that MSSPDistIC is NP-complete by proving a polynomial reduction from the following
NP-completeminimum spanning subgraph problem with diameter constraints(MSSPDC) ([CHH01]).

Problem 3.3 : MSSPDC.

Instance :A positive integer k≥ 2, a graph G of diameter k, a positive integer bound b.

Question :Does there exist a spanning subgraph of G of diameter k and of size no more than b ?

Theorem 3.4 : MSSPDistIC is NP-complete.

Proof : MSSPDistIC is in NP since, given a spanning subgraph ofG , one can verify, in polynomial
time, whether it isK-self-repairing (using Algorithm 3.1, for example) and then compare its size toB.

Let I be an instance of MSSPDC that is positive integersk andb and a graphG of diameterk. Let
V = {x1,x2, . . . ,xn} be the set of vertices ofG. Consider the following instanceJ of MSSPDistIC :

1. The graphG of J is obtained by taking a copy ofG and adding, from each vertexxi a pathPi joining
xi andt = k−1 new vertices. Letyi be the second extremity ofPi . Add a new vertexzconnected to
all yi (see Figure 4).

2. K = 3k−4 andB = b+kn, wheren is the order ofG.

The size ofI is O(n2 log2n). Sincek≤ n andb≤ n2, the size ofJ is bounded by a polynomial in
n2 log2n.

Now, we have to prove thatI is a yes-instanceof MSSPDC if and only ifJ is a yes-instanceof
MSSPDistIC.

Suppose there exists a spanning subgraphH of G of diameterk and of size bounded byb. Consider the
spanning subgraphH of G induced by all edges ofH and all edges external toG. It is easy to see thatH
is K-self-repairing and of size at mostB. Therefore,J is ayes-instanceof MSSPDistIC.
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Now, let J be an instance of MSSPDistIC constructed from an instanceI of MSSPDC as described
above. IfJ is ayes-instanceof MSSPDistIC, there exists a spanningK-self-repairing graphH of G of
size no more thanB. The minimum degree inH is at least 2. This means that all edges external toG are
in H . Let H be the spanning subgraph ofG induced by all the edges inE(H )∩E(G). Let {xi ,x j} be a
pair of vertices ofH. The transition ofH defined by edges[z,yi ], [z,y j ] is in a cycle of length at most
K + 4. Every cycle containingyi andy j must include all the vertices of the pathsPi andPj . Therefore,
the distance inH betweenxi andx j is at mostK + 4−2k = k and then,H is a spanning subgraph ofG
of diameterk. The size ofH is |E(H)|= |E(H )|−kn≤ B−kn= b and, thereforeI is ayes-instanceof
MSSPDC.

The previous reduction shows that MSSPDistIC is NP-complete forK = 3p+2, p≥ 0. In fact, if we
consider the same reduction from intances of MSSPDC, withk ≥ 3, by settingt = k− 2, K = 3k− 6
andB = b+ n(k−1), we show that MSSPDistIC is NP-complete forK = 3p, p≥ 1. In the same way,
considering instances of MSSPDC withk≥ 4, settingt = k−3, K = 3k−8 andB= b+n(k−2), we show
that MSSPDistIC is also NP-complete forK = 3p+1, p≥ 1. Therefore MSSPDistIC is NP-complete for
all K ≥ 2. ✷
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