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The distribution of ascents of size d or more in
samples of geometric random variables
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We consider words or strings of characterszas . . . a,, of lengthn, where the letterg; € N are independently generated
with a geometric probability

P{X =k} = pq" " wherep+ ¢ =1.
Let d be a fixed nonnegative integer. We say that we have an ascent efsizaore ifa;+1 > a; + d. We determine the
mean, variance and limiting distribution of the number of ascents ofds@emore in a random geometrically distributed
word.
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1 Introduction

Suppose we have words or strings of characters from a fixed alphabet;s . . . a,, of lengthn, where the
lettersa; € N. These letters are independently generated with a geometric probability such that

P{X =k} = pg"~! wherep + ¢ = 1.

Let d be a fixed nonnegative integer. We say that we have an ascent af sizeore (called al-ascent) if

a;+1 > a; + d. In Section 2 we find the average number of ascents ofdstaranore in a sample of geometric
random variables. In subsequent sections we determine the associated variance and distribution. Recently in
[6], weak and strict descents in samples of geometric random variables were studied, which is equivalent to the
special cased = 0 andd = 1 of our results. However, the approach used in [6] does not generalize to ascents
with d > 2.

Note that from a probabilistic perspective the central limit theoremdfascents holds also for samples
generated by more general distributions than just the geometric one. Any distribution with bounded second
moment could be used: Denote an ascent of diaemore froma; to a; 1 by the indicator variabl&’;. Then
the total number off-ascents is a sum @dependent random variables (i.E, andY,, are independent for
|n — m| > 2). General probability theory (see for example [2], Section 27) then implies a linear mean and
variance as well as the central limit law.

The purpose of this paper is to give an alternate approach in the particular case of geometric random vari-
ables in which it is possible to obtain much more precise results than in general, such as an explicit bivariate
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generating function and explicit mean and variance. In addition, with respect to the central limit theorem, our
explicit approach means that it would be possible in theory to compute a full asymptotic series expansion of
the error term.

2 Expected number of ascents of size d or more in samples of geo-
metric random variables

2.1 Using a probability generating function

We use the “adding the slice” technique which was originally used by P. Flajolet and H. Prodinger in [3] and
more recently by A. Knopfmacher and H. Prodinger in [5].

Let j be the value of the last component of the word, g.= j. We proceed from a sample withparts to a
sample withk + 1 parts. We denote by, (z, u, v) the generating function wherecounts the lengtk of the
word, u the value ofj andv counts the number of ascents of sizer more. That is[zFu/v!] fx (2, u, v) gives

the probability that a geometric word of lengdtthas last component equal @ndi ascents of siz€ or more,

and [z uw '] fi (2, u,v) = 0 for m # k.

In moving from a sample wittk parts to a sample of + 1 parts, wherg is coded byu?, we have an ascent

of sized or more, coded by, whenever the new last letter has any value fros d onwards. This gives the
following rule for adding a new part (“slice”) to the end of a word:

W zpu+ 2pqud 4 -+ 2pgd T2 AL gy {qu+d—1uj+d 1 opgitdydtatl 4 }
1 — (qu)i+d-1 ; . 1
— pzuL + vzpq3+d_1uj+d .
1—qu 1—qu
This implies that
d—1 d d—1
fera(0) = 22 e 1) = P o)+ 2 o)
pzu (1 —v)pg?—tzu?
= 1,v) - ————— . 21
1_qufk(27 ,’U) 1_qu fk(z7qu7v) ( )
Now define
F(z,u,v) := ka(z,u,v).
E>1
Summing (2.1) ovek > 1:
pzu (1 — v)pg?=—tzud
F - = F(z,1,v) - ~—+————F
(Z,’Z,L,’U) fl(Z,U7U) 1_qu (Z, ,’U) 1_qu (z,qu,v),
so that
1— d—1,,,d
Fleu,v) = 22 (e, 1,0) + 22 L0 2, ),
1—qu 1—qu 1—qu
where we have used
pzu

f1(z,u,0) = 2pu+ zpqu® + zpg*u® + - = e
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At this stage we iterate the recursion #(z, u, v).

1— d—1,,,d
F(z,u,v) pu F(z,1,v) + pzu (1 —v)pg” " zu

:l—qu 1—qu7 1—qu X
pgzu pgzu (1 —)pg?~'z(qu)? >
F(z,1 - F
8 {1—q2u = 7v)_|—1—c]2u 1-q%u (z ¢, v)
_ d-1,,.d N2 d—1.\2,.d d
_ [ pzu (1= 0)pg" zupgzu (F(2,1,0) +1] + (1 —v)*(pg™ =) u(qu)®
1 —qu (1 —qu)(1 - ¢*u) (1 —qu)(1 - ¢*u)
2 2 d—1 2,\d
pg°zu pgizu (1 —v)pg”  z(q u) 3
e R
1— d—1,,.d 1— 2 d—1_\2,,d doy 2
_ [ pzu_ (1 —v)pg®‘zu fqzu (1 —v)*(pg z)zu plqu) fq zu} (F(2,1,0) + 1]
l—qu  (1—qu)(l—q¢%u) (1= qu)(1 = ¢u)(1 - ¢*u)
N3(wd—1.3\3,.d d(.2,\d
(=) (pg? 2) u (qu) (g u) Fzqhu,v).
(1 —qu)(1 - ¢*u)(1 — ¢*u)
We keep iterating and put = 1 to obtain
B d—1 N2(d—1 N2 ,d, 2
F(o10) = [ pz _ (1=-v)pg P (1 —v)*(pg 22) 4'p
l—¢ (1-9)(1-¢*) (1-901-¢)1-¢
1 — 0)3(pat—12)3 %243
_ (=9 (pq2 z) TP (e, 4 1)
(1= -¢>)1-¢)(1-¢q%)
. . Codi(i—1) .
(1—v) "M (=1)"'p'q = 2
= — |F(z,1,v) + 1].
) T B e R
Therefore we find
Proposition 1
o(z,v)
F(z,1 = 2.2
(2,1,v) T —o(e,0)’ (2.2)

where

(1 oy )ty D)
; 1-q)(1—¢?)---(1—q") "~ (2.3)

The expected value [s"]% |v:1. For this we shall need

o(z,v):

pz
U(z>v>‘v:1 =1 "
and B
(i— 11 —v)2(=1)ip'q"2) 5 q42?
a’(z,u)|U:1:Z (1_ 1 =092 1 — gt :1

= Ol—=¢*)---(1=¢) | = 1+4

Hence
oF _ d(zw) q¢z?

v . (1—o(z0))?|
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So that

Thus we have shown

Theorem 1 The expected number of ascents of size d or more in a word consistingeximetric random
variables is
qd

1+q

For the special cases= 0 andd = 1, these results can be found in [6], which studies descents in a sample of
geometric random variables. The number of weak descents , wherea; 1, corresponds by reversing the
string of characters, to our ascents of size 0 or more. Ad fer1, it is the same by reversing words, as the
number of strict descents, whertg> a;1.

E(n)=(n—1)

2.2 Using discrete probability

In the case of the mean, a shorter approach is available. In a word of lentitere are» — 1 adjacent pairs

of characters. We can use the additive property of the means to calculate the average number of ascents of size
d or more per word of length, just by calculating the probability of having an ascent of giz& more in a

pair sayay to ax1 and then multiply byn — 1. We needs;; > a; + d. For each pair this will occur with
probability:

d
qul ! quj L= m

j=d+1i

2.3 Samples of geometric random variables having no ascents of size d or more

Let F,(2) be the generating function for samples of geometric random variables havasgents of sizé or
more. For convenience the generating function will include a tefar the empty word. Then using (2.2) and
(2.3),

1
where o )
._ (1) 'p'q
A e Y e e e e (29

For a few special choices dfwe can make use of partition identities to rewtdtg =) in the form of an infinite
product. By using Euler’s partition identities (see [1])

o0 2" 1
,;) (1—g)(1—¢?)-- (1—q")_gl—xqi

and
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we find that _
Fo(z) = [ [ (1 + pzq’)
i>0
and )
Fi(z) = -
1(2) g T

These formulas have a natural interpretation as the generating functions of strictly ascending geometric words
and of weakly ascending geometric words, respectively. There do not appear to be analogous product expres-
sions ford > 2. However, ford = 2 we can make use of the Rogers-Ramanujan identities ( [1])

e n%4n 1

q _
L iai-@-g L a=rma—r

n=0 i>0

and

oo

q B 1
2 Q-1 —¢*)-(1-qm) 11 (1= g> 1) (1 = ¢>*)

n=0 >0
to obtain for the values = —¢?/p andz = —q/p, the curious infinite product formulas
q2 Ba =94
B(-L) =TI -0 -+
p i>0

and

F2<— Q) - H (1— q5i+1)(1 _ q5i+4).

p i>0

3 Variance of the number of ascents of size d or more in samples of
geometric random variables

Recall the following results from Section 2:

o(z,v
Flz1,0) = 1—(a<)>
where R
(1= (=D 'pig")e
o(z,v) = —
o= T gr—@ a0
U(z’v)|v:1 =z,
d
q 'z
a’(z,v)‘vzl = T
In addition

" e =2 = 1)1 = 0) (1) i)
g (Z,’U)|U:1_izzl (1_q)(1_q2),,,(1_qi)

2pq3dz3

(1+q(1—-¢3)

v=1
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Therefore
0*F (- o)o" + 20"
. L
ov et (1 o') -
2pq>23 . 920 24
T -@) 2P 1P -2
which means that
2 3d 2
2% T+ =) =22 (T aR(i—2p
2pg>? g%
=(n—-2)7———= +(n—3)(n—2 ,
(0= =gt D= D

So finally, after adding the expectation and subtracting the square of the expectation we obtain the variance

2 3d 2d d , od
T =
— ¢'(1+4q-q") (1 —q) 7%
_(n—l)w + 2<n_2)<(1—q3)(1+q) - (1+q)2> )

Thus
Theorem 2 The variance of the number of ascents in samplesggéometric random variables is
23(11_ 32(1 d 43(11_ 52d d
V(n) = a*( q)g_ q2+q}n_ 7> ( q)3+ 4
I+9-¢) (1+9? 1+g I+9-¢) (A+9?% 1+g¢g

Remark It is also possible to find the variance by elementary statistical methods by computing the covariance
between different pairs of adjacent random variables.

4 Limiting distribution

We are interested in finding the limiting distribution of our random variable. We make use of Proposition IX.8
from Flajolet and Sedgewick [4], which we state below for the convenience of the reader. We introduce the

notation
_fﬂ).ﬂn_<fm)?

T rm

o(f)

Proposition 2 “Meromorphic schema”

Let F'(z,u) be a bivariate function that is bivariate analytic &,«) = (0,0) and has nonnegative coeffi-
cients there. Assume thaYz, 1) is meromorphic ir: < r with only a simple pole at = p for some positive
p<r.

Assume also the following conditions.

i) Meromorphic pertubation: there exists> 0 andr > p such that in the domaib = {|z| < r} x {Ju —
1| < €}, the functionF'(z, u) admits the representation
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where B(z,u), C(z,u) are analytic for(z,u) € D with B(p,1) # 0. (Thusp is a simple zero of
C(z,1)).

ii) Nondegeneracy: one has.C(p,1) - 0,C(p,1) # 0, ensuring the existence of a nonconstatit)
analytic atu = 1, such thatC'(p(u),u) = 0 andp(1) = p.

*(3a) 9

Then, the random variable with probability generating function

iii) Variability: one has

_ FFG
N PO TIPRY

converges in distribution to a Gaussian variable with a speed of convergence thatis/?). The mean and
the variance ofX,, are asymptotically linear im.

In addition the following results are also given in Flajolet and Sedgewick [4]:
We introduce the notation o
aH—J

i T i

C(z,u) , (4.1)
(p,1)

then if p(u) denotes the analytic solution of the implicit equat@(p(u),u) = 0,

2 2
€1 0C0,2 — 2€1,0¢1,1€0,1 + 2,065 1

Co,1
plu)=p— 2 (u—1) — 5 (w-12+0(u-17%. (42
€1,0 €10
Condition (ii) corresponds to
co,1¢1,0 # 0. (4.3)
The variability condition (iii) corresponds to
pc%,000,2 — pC1,0€1,1C0,1 + ,002,00(2),1 + 03’101,0 + Co}lciop # 0. (4.4)

For our specific problem
o(z,v) B(z,v)

F(z,l,v) = 1_0-(2’1}) CY(ZaU)7

so that (2)
o (1 — v)= (= 1) 1pigd 2) 5t
C(z,v)=1 ;(1—q)(1—q2)"'(1—qi)'

We havep(1) = p =1, sincel — £ =0whenz =1.

1—
We have according to (4.1) !
co,1 = 20(2’ v) - a’
0,1 - 6'() ) (1’1) 1 + q .
0
= —C = —1 .
oo 0z =0 (1,1)
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02 —2¢¢
- C —
C1,1 9200 (z,v) an 1+gq
82 _2q3d
Co2 = C(z,v =
T )<11> (1+q)(1+q+q?)
62
€2,0 C(z,v) =0.
022 (1.1

We are now in a position to check the conditions listed in the proposition.
. . d . .
For condition (ii), we need; gcp 1 = quq # 0, which is true for ally > 0.

Using (4.2),
o1 C%,000,2 — 2¢1,0¢1,1€0,1 + 02,06(2),1 9 3
p(w)=p— (1) - - (=1 + O((u~ 1)?)
C1,0 10
T 1 —q™ 20 1240 1)3 45
=1- — 1)+ + 1)+ ~1)%) . .
e (e e T rge) BV o) @

The variability condition (4.4) corresponds to computing

2 2 2 2
pCy pCo,2 — PC1,0C1,1C0,1 + PC2,0CH 1+ Cp1C1,0 T+ C0,1€1 oP

_ _2q3d N 2q2d B q2d B qd
AI+q)(1+q+q¢*>) (1+q?* (1+¢? 1+4¢q
_9g3d g2 ¢

+ —
I+q)(I+q+q¢*) (1+9? 1+¢q
B _qd (1 _|_2q+ 2q2 + q3 _ qd _ qd+1 _ qd+2 + 2q2d 4 2q2d+1)
(1+¢2(1+q+q?) '

For0 < ¢ < 1 andd > 0 the above numerator polynomial is always greater than zero. Hence condition (iii),
the variability condition is satisfied.
Thus we may deduce

Theorem 3 The distribution of the number of ascents in samples géometric random variables converges
to a Gaussian distribution with a speed of convergena® @f—'/2), where the mean,, and the variancer2
are as given in Theorems 1 and 2.

Remark In Flajolet and Sedgewick [4] it is also shown that under the conditions of the proposition, the mean
., and variancer? are of the form

un:m(zgig> n+ 0(1), aizb(%)n +0(1),

where
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= ()

which is in agreement with our exact result in Theorem 1.
In the case of the variance we must compute

().~ ()

This gives

d

q
1+qn+0(1).

n+0(1) =

u=1

qd q2d

+ —
4 l+q (1492

qd q2d

o 9,/ .
(= 2" )+ 20/ W)y + T~ T
2¢%4(1 — q) 3q2¢ q*

T U+9(-¢) (+q? 1+¢

u

So the variance is of the form

2q3d(1 _ q> 3q2d qd

2

pr— - Ol~
=T i) Gt 1rq) "TOW

which (fortunately!) again corresponds to the main term of the exact result found earlier in Theorem 2.
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