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The distribution of ascents of size d or more in
samples of geometric random variables
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We consider words or strings of charactersa1a2a3 . . . an of lengthn, where the lettersai ∈ N are independently generated
with a geometric probability

P{X = k} = pqk−1 wherep + q = 1.

Let d be a fixed nonnegative integer. We say that we have an ascent of sized or more ifai+1 ≥ ai + d. We determine the
mean, variance and limiting distribution of the number of ascents of sized or more in a random geometrically distributed
word.
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1 Introduction
Suppose we have words or strings of characters from a fixed alphabet,a1a2a3 . . . an of lengthn, where the
lettersai ∈ N. These letters are independently generated with a geometric probability such that

P{X = k} = pqk−1 wherep + q = 1.

Let d be a fixed nonnegative integer. We say that we have an ascent of sized or more (called ad-ascent) if
ai+1 ≥ ai + d. In Section 2 we find the average number of ascents of sized or more in a sample of geometric
random variables. In subsequent sections we determine the associated variance and distribution. Recently in
[6], weak and strict descents in samples of geometric random variables were studied, which is equivalent to the
special casesd = 0 andd = 1 of our results. However, the approach used in [6] does not generalize to ascents
with d ≥ 2.

Note that from a probabilistic perspective the central limit theorem ford-ascents holds also for samples
generated by more general distributions than just the geometric one. Any distribution with bounded second
moment could be used: Denote an ascent of sized or more fromai to ai+1 by the indicator variableYi. Then
the total number ofd-ascents is a sum of2-dependent random variables (i.e.Yn andYm are independent for
|n − m| ≥ 2). General probability theory (see for example [2], Section 27) then implies a linear mean and
variance as well as the central limit law.

The purpose of this paper is to give an alternate approach in the particular case of geometric random vari-
ables in which it is possible to obtain much more precise results than in general, such as an explicit bivariate
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generating function and explicit mean and variance. In addition, with respect to the central limit theorem, our
explicit approach means that it would be possible in theory to compute a full asymptotic series expansion of
the error term.

2 Expected number of ascents of size d or more in samples of geo-
metric random variables

2.1 Using a probability generating function

We use the “adding the slice” technique which was originally used by P. Flajolet and H. Prodinger in [3] and
more recently by A. Knopfmacher and H. Prodinger in [5].
Let j be the value of the last component of the word, i.e.,ak = j. We proceed from a sample withk parts to a
sample withk + 1 parts. We denote byfk(z, u, v) the generating function wherez counts the lengthk of the
word,u the value ofj andv counts the number of ascents of sized or more. That is,[zkujvl]fk(z, u, v) gives
the probability that a geometric word of lengthk has last component equal toj andl ascents of sized or more,
and[zmujvl]fk(z, u, v) = 0 for m 6= k.
In moving from a sample withk parts to a sample ofk + 1 parts, wherej is coded byuj , we have an ascent
of sized or more, coded byv, whenever the new last letter has any value fromj + d onwards. This gives the
following rule for adding a new part (“slice”) to the end of a word:

uj −→ zpu + zpqu2 + · · ·+ zpqj+d−2uj+d−1 + vz
{
pqj+d−1uj+d + pqj+duj+d+1 + · · ·

}
= pzu

1− (qu)j+d−1

1− qu
+ vzpqj+d−1uj+d 1

1− qu
.

This implies that

fk+1(z, u, v) =
pzu

1− qu
fk(z, 1, v)− pzu(qu)d−1

1− qu
fk(z, qu, v) +

vpzudqd−1

1− qu
fk(z, qu, v)

=
pzu

1− qu
fk(z, 1, v)− (1− v)pqd−1zud

1− qu
fk(z, qu, v) . (2.1)

Now define
F (z, u, v) :=

∑
k≥1

fk(z, u, v).

Summing (2.1) overk ≥ 1:

F (z, u, v)− f1(z, u, v) =
pzu

1− qu
F (z, 1, v)− (1− v)pqd−1zud

1− qu
F (z, qu, v) ,

so that

F (z, u, v) =
pzu

1− qu
F (z, 1, v) +

pzu

1− qu
− (1− v)pqd−1zud

1− qu
F (z, qu, v) ,

where we have used
f1(z, u, v) = zpu + zpqu2 + zpq2u3 + · · · = pzu

1− qu
.
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At this stage we iterate the recursion forF (z, u, v).

F (z, u, v) =
pzu

1− qu
F (z, 1, v) +

pzu

1− qu
− (1− v)pqd−1zud

1− qu
×

×
{

pqzu

1− q2u
F (z, 1, v) +

pqzu

1− q2u
− (1− v)pqd−1z(qu)d

1− q2u
F (z, q2u, v)

}
=

[
pzu

1− qu
− (1− v)pqd−1zudpqzu

(1− qu)(1− q2u)

]
[F (z, 1, v) + 1] +

(1− v)2(pqd−1z)2ud(qu)d

(1− qu)(1− q2u)
×

×
{

pq2zu

1− q3u
F (z, 1, v) +

pq2zu

1− q3u
− (1− v)pqd−1z(q2u)d

1− q3u
F (z, q3u, v)

}
=

[
pzu

1− qu
− (1− v)pqd−1zudpqzu

(1− qu)(1− q2u)
+

(1− v)2(pqd−1z)2udp(qu)dpq2zu

(1− qu)(1− q2u)(1− q3u)

]
[F (z, 1, v) + 1]

− (1− v)3(pqd−1z)3ud(qu)d(q2u)d

(1− qu)(1− q2u)(1− q3u)
F (z, q3u, v) .

We keep iterating and putu = 1 to obtain

F (z, 1, v) =
[

pz

1− q
− (1− v)pqd−1zpqz

(1− q)(1− q2)
+

(1− v)2(pqd−1z)2qdpq2z

(1− q)(1− q2)(1− q3)

− (1− v)3(pqd−1z)3qdq2dpq3z

(1− q)(1− q2)(1− q3)(1− q4)
+ · · ·

]
[F (z, 1, v) + 1]

=
∑
i≥1

(1− v)i−1(−1)i−1piq
di(i−1)

2 zi

(1− q)(1− q2) · · · (1− qi)
[F (z, 1, v) + 1] .

Therefore we find

Proposition 1

F (z, 1, v) =
σ(z, v)

1− σ(z, v)
, (2.2)

where

σ(z, v) :=
∑
i≥1

(1− v)i−1(−1)i−1piqd(i
2)zi

(1− q)(1− q2) · · · (1− qi)
. (2.3)

The expected value is[zn]∂F
∂v

∣∣
v=1

. For this we shall need

σ(z, v)
∣∣
v=1

=
pz

1− q
= z

and

σ′(z, v)
∣∣
v=1

=
∑
i≥1

(i− 1)(1− v)i−2(−1)ipiqd(i
2)zi

(1− q)(1− q2) · · · (1− qi)

∣∣∣∣∣
v=1

=
qdz2

1 + q
.

Hence
∂F

∂v

∣∣∣∣∣
v=1

=
σ′(z, v)

(1− σ(z, v))2

∣∣∣∣∣
v=1

=
qdz2

(1 + q)(1− z)2
.
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So that

E(n) = [zn]
∂F

∂v

∣∣∣∣∣
v=1

= [zn−2]
qd

(1 + q)(1− z)2
= (n− 1)

qd

1 + q
.

Thus we have shown

Theorem 1 The expected number of ascents of size d or more in a word consisting ofn geometric random
variables is

E(n) = (n− 1)
qd

1 + q
.

For the special casesd = 0 andd = 1, these results can be found in [6], which studies descents in a sample of
geometric random variables. The number of weak descents , whereai ≥ ai+1, corresponds by reversing the
string of characters, to our ascents of size 0 or more. As ford = 1, it is the same by reversing words, as the
number of strict descents, whereai > ai+1.

2.2 Using discrete probability

In the case of the mean, a shorter approach is available. In a word of lengthn, there aren − 1 adjacent pairs
of characters. We can use the additive property of the means to calculate the average number of ascents of size
d or more per word of lengthn, just by calculating the probability of having an ascent of sized or more in a
pair sayak to ak+1 and then multiply byn − 1. We needai+1 ≥ ai + d. For each pair this will occur with
probability:

∞∑
i=1

pqi−1
∞∑

j=d+i

pqj−1 =
qd

1 + q
.

2.3 Samples of geometric random variables having no ascents of size d or more

Let Fd(z) be the generating function for samples of geometric random variables havingnoascents of sized or
more. For convenience the generating function will include a term1 for the empty word. Then using (2.2) and
(2.3),

Fd(z) = 1 + F (z, 1, 0) =
1

1− σd(z, 1)
, (2.4)

where

σd(z, 1) :=
∑
i≥1

(−1)i−1piqd(i
2)zi

(1− q)(1− q2) · · · (1− qi)
. (2.5)

For a few special choices ofd we can make use of partition identities to rewriteFd(z) in the form of an infinite
product. By using Euler’s partition identities (see [1])

∞∑
n=0

xn

(1− q)(1− q2) · · · (1− qn)
=

∏
i≥0

1
1− xqi

and
∞∑

n=0

(−1)nxnq(
n
2)

(1− q)(1− q2) · · · (1− qn)
=

∏
i≥0

(1− xqi)
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we find that
F0(z) =

∏
i≥0

(1 + pzqi)

and

F1(z) =
∏
i≥0

1
1− pzqi

.

These formulas have a natural interpretation as the generating functions of strictly ascending geometric words
and of weakly ascending geometric words, respectively. There do not appear to be analogous product expres-
sions ford ≥ 2. However, ford = 2 we can make use of the Rogers-Ramanujan identities ( [1])

∞∑
n=0

qn2+n

(1− q)(1− q2) · · · (1− qn)
=

∏
i≥0

1
(1− q5i+2)(1− q5i+3)

and
∞∑

n=0

qn2

(1− q)(1− q2) · · · (1− qn)
=

∏
i≥0

1
(1− q5i+1)(1− q5i+4)

to obtain for the valuesz = −q2/p andz = −q/p, the curious infinite product formulas

F2

(
− q2

p

)
=

∏
i≥0

(1− q5i+2)(1− q5i+3)

and
F2

(
− q

p

)
=

∏
i≥0

(1− q5i+1)(1− q5i+4).

3 Variance of the number of ascents of size d or more in samples of
geometric random variables

Recall the following results from Section 2:

F (z, 1, v) =
σ(z, v)

1− σ(z, v)
,

where

σ(z, v) =
∑
i≥1

(1− v)i−1(−1)i−1piqd(i
2)zi

(1− q)(1− q2) · · · (1− qi)
,

σ(z, v)
∣∣
v=1

= z ,

σ′(z, v)
∣∣
v=1

=
qdz2

1 + q
.

In addition

σ′′(z, v)
∣∣
v=1

=
∑
i≥1

(i− 2)(i− 1)(1− v)i−3(−1)i−1piqd(i
2)zi

(1− q)(1− q2) · · · (1− qi)

∣∣∣∣∣
v=1

=
2pq3dz3

(1 + q)(1− q3)
.
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Therefore

∂2F

∂v2

∣∣∣∣∣
v=1

=
(1− σ)σ′′ + 2σ′2

(1− σ)3

∣∣∣∣∣
v=1

=
2pq3dz3

(1 + q)(1− q3)(1− z)2
+

2q2dz4

(1 + q)2(1− z)3
,

which means that

[zn]
∂2F

∂v2

∣∣∣∣∣
v=1

= [zn−3]
2pq3d

(1 + q)(1− q3)(1− z)2
+ [zn−4]

2q2d

(1 + q)2(1− z)3

= (n− 2)
2pq3d

(1 + q)(1− q3)
+ (n− 3)(n− 2)

q2d

(1 + q)2
.

So finally, after adding the expectation and subtracting the square of the expectation we obtain the variance

V(n) = (n− 2)
2pq3d

(1 + q)(1− q3)
+ (n− 3)(n− 2)

q2d

(1 + q)2
+ (n− 1)

qd

1 + q
− (n− 1)2

q2d

(1 + q)2

= (n− 1)
qd(1 + q − qd)

(1 + q)2
+ 2(n− 2)

(
q3d(1− q)

(1− q3)(1 + q)
− q2d

(1 + q)2

)
.

Thus

Theorem 2 The variance of the number of ascents in samples ofn geometric random variables is

V(n) =
[

2q3d(1− q)
(1 + q)(1− q3)

− 3q2d

(1 + q)2
+

qd

1 + q

]
n− 4q3d(1− q)

(1 + q)(1− q3)
+

5q2d

(1 + q)2
− qd

1 + q
.

Remark It is also possible to find the variance by elementary statistical methods by computing the covariance
between different pairs of adjacent random variables.

4 Limiting distribution
We are interested in finding the limiting distribution of our random variable. We make use of Proposition IX.8
from Flajolet and Sedgewick [4], which we state below for the convenience of the reader. We introduce the
notation

v(f) =
f ′′(1)
f(1)

+
f ′(1)
f(1)

−
(

f ′(1)
f(1)

)2

.

Proposition 2 “Meromorphic schema”
Let F (z, u) be a bivariate function that is bivariate analytic at(z, u) = (0, 0) and has nonnegative coeffi-

cients there. Assume thatF (z, 1) is meromorphic inz ≤ r with only a simple pole atz = ρ for some positive
ρ < r.

Assume also the following conditions.

i) Meromorphic pertubation: there existsε > 0 andr > ρ such that in the domainD = {|z| ≤ r} × {|u−
1| < ε}, the functionF (z, u) admits the representation

F (z, u) =
B(z, u)
C(z, u)

,
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whereB(z, u), C(z, u) are analytic for(z, u) ∈ D with B(ρ, 1) 6= 0. (Thusρ is a simple zero of
C(z, 1)).

ii) Nondegeneracy: one has∂zC(ρ, 1) · ∂uC(ρ, 1) 6= 0, ensuring the existence of a nonconstantρ(u)
analytic atu = 1, such thatC(ρ(u), u) = 0 andρ(1) = ρ.

iii) Variability: one has

v

(
ρ

ρ(u)

)
6= 0.

Then, the random variable with probability generating function

pn(u) =
[zn]F (z, u)
[zn]F (z, 1)

converges in distribution to a Gaussian variable with a speed of convergence that isO(n−1/2). The mean and
the variance ofXn are asymptotically linear inn.

In addition the following results are also given in Flajolet and Sedgewick [4]:
We introduce the notation

ci,j :=
∂i+j

∂zi∂uj
C(z, u)

∣∣∣∣
(ρ,1)

, (4.1)

then ifρ(u) denotes the analytic solution of the implicit equationC(ρ(u), u) = 0,

ρ(u) = ρ− c0,1

c1,0
(u− 1)−

c2
1,0c0,2 − 2c1,0c1,1c0,1 + c2,0c

2
0,1

2c3
1,0

(u− 1)2 + O((u− 1)3). (4.2)

Condition (ii) corresponds to
c0,1c1,0 6= 0. (4.3)

The variability condition (iii) corresponds to

ρc2
1,0c0,2 − ρc1,0c1,1c0,1 + ρc2,0c

2
0,1 + c2

0,1c1,0 + c0,1c
2
1,0ρ 6= 0. (4.4)

For our specific problem

F (z, 1, v) =
σ(z, v)

1− σ(z, v)
≡ B(z, v)

C(z, v)
,

so that

C(z, v) = 1−
∑
i≥1

(1− v)i−1(−1)i−1piqd(i
2)zi

(1− q)(1− q2) · · · (1− qi)
.

We haveρ(1) = ρ = 1, since1− p z
1−q = 0 whenz = 1 .

We have according to (4.1)

c0,1 =
∂

∂v
C(z, v)

∣∣∣∣
(1,1)

= − qd

1 + q
.

c1,0 =
∂

∂z
C(z, v)

∣∣∣∣
(1,1)

= −1 .
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c1,1 =
∂2

∂z∂v
C(z, v)

∣∣∣∣
(1,1)

=
−2qd

1 + q
.

c0,2 =
∂2

∂v2
C(z, v)

∣∣∣∣
(1,1)

=
−2q3d

(1 + q)(1 + q + q2)
.

c2,0 =
∂2

∂z2
C(z, v)

∣∣∣∣
(1,1)

= 0 .

We are now in a position to check the conditions listed in the proposition.

For condition (ii), we needc1,0c0,1 = qd

1+q 6= 0, which is true for allq > 0.
Using (4.2),

ρ(u) = ρ− c0,1

c1,0
(u− 1)−

c2
1,0c0,2 − 2c1,0c1,1c0,1 + c2,0c

2
0,1

2c3
1,0

(u− 1)2 + O((u− 1)3)

= 1− qd

1 + q
(u− 1) +

(
−q3d

(1 + q)(1 + q + q2)
+

2q2d

(1 + q)2

)
(u− 1)2 + O

(
(u− 1)3

)
. (4.5)

The variability condition (4.4) corresponds to computing

ρc2
1,0c0,2 − ρc1,0c1,1c0,1 + ρc2,0c

2
0,1 + c2

0,1c1,0 + c0,1c
2
1,0ρ

=
−2q3d

(1 + q)(1 + q + q2)
+

2q2d

(1 + q)2
− q2d

(1 + q)2
− qd

1 + q

=
−2q3d

(1 + q)(1 + q + q2)
+

q2d

(1 + q)2
− qd

1 + q

= −qd (1 + 2q + 2q2 + q3 − qd − qd+1 − qd+2 + 2q2d + 2q2d+1)
(1 + q)2 (1 + q + q2)

.

For 0 < q ≤ 1 andd ≥ 0 the above numerator polynomial is always greater than zero. Hence condition (iii),
the variability condition is satisfied.
Thus we may deduce

Theorem 3 The distribution of the number of ascents in samples ofn geometric random variables converges
to a Gaussian distribution with a speed of convergence ofO(n−1/2), where the meanµn and the varianceσ2

n

are as given in Theorems 1 and 2.

Remark In Flajolet and Sedgewick [4] it is also shown that under the conditions of the proposition, the mean
µn and varianceσ2

n are of the form

µn = m

(
ρ(1)
ρ(u)

)
n + O(1), σ2

n = v

(
ρ(1)
ρ(u)

)
n + O(1),

where

m(f) =
f ′(1)
f(1)

and v(f) =
f ′′(1)
f(1)

+
f ′(1)
f(1)

−
(

f ′(1)
f(1)

)2

.
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This gives

µn =
(

1
ρ(u)

)′ ∣∣∣∣
u=1

n + O(1) =
qd

1 + q
n + O(1).

which is in agreement with our exact result in Theorem 1.
In the case of the variance we must compute

v

(
ρ(1)
ρ(u)

) ∣∣∣∣
u=1

=
(

1
ρ(u)

)′′ ∣∣∣∣
u=1

+
qd

1 + q
− q2d

(1 + q)2

=
(
− ρ′′(u) + 2ρ′(u)

)∣∣
u=1

+
qd

1 + q
− q2d

(1 + q)2

=
2q3d(1− q)

(1 + q)(1− q3)
− 3q2d

(1 + q)2
+

qd

1 + q
.

So the variance is of the form

σ2
n =

[
2q3d(1− q)

(1 + q)(1− q3)
− 3q2d

(1 + q)2
+

qd

1 + q

]
n + O(1).

which (fortunately!) again corresponds to the main term of the exact result found earlier in Theorem 2.
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