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We build upon previous work of Fayolle (2004) and Park and Szpankowski (2005) to study asymptotically the average
internal profile of tries and of suffix-trees. The binary keys and the strings are built from a Bernoulli $puyte

We consider the average numbers () of internal nodes at depth of a trie whose number of input keys follows

a Poisson law of parameter The Mellin transform of the corresponding bivariate generating function has a major
singularity at the origin, which implies a phase reversal for the saturatiorpgatér)/2* ask reaches the value
2log(v)/(log(1/p) + log(1/q)). We prove that the asymptotic average profiles of random tries and suffix-trees are
mostly similar, up to second order terms, a fact that has been experimentally observed enNed@003); the proof
follows from comparisons to the profile of tries in the Poisson model.

Keywords: tries, suffix-trees, profile, asymptotics, Mellin transform, saddle-point method.

1 Introduction

We consider tries and suffix-trees built upon binary keys and strings generated by a Bernoull{sogrce

with p > 1/2 > ¢. Park and Szpankowski (2005) recently studied the external profile (or sequence
with index % of number of external nodes at degthof random tries. We use the same approach, Mellin
transform and inverse Mellin transform by saddle-point method, in the Poisson model, to study the average
internal profile (that counts internal nodes) of tries. The position of the saddle-point is function of the value
of k/log(v) wherev is the (Poisson) number of keys; this implies that, depending upon this position, the
inverse integral counts, up to the sign, the number of present or missing nodes at.deptbwing from

this analysis, and using an approach similar to Fayolle (2004), we bound the distance between the average
number of nodes at depthin tries in the Poisson model and in suffix-trees in the fixed (number of keys)
model; we relate this to the case of tries in the fixed model. Since we only consider in this article internal
nodes, we generally do not further specify that the nodes that we consider are internal nodes.

2 Average internal profile of tries

We consider the average number of noﬂgs) (n) at depthk in a random trie built on exactly binary

keys (called furthen-fixed model). This is equivalent to counting the average number of urns containing
at least two balls in an urn model witf urns, where ur is indexed by a word of sizek, and such

that the probability that a ball falls in umis 7, = P(w).

Poissonization. We use the classical poissonization method, where the number of balls thrown in the
system is not a fixed numberbut follows a Poisson law of parameter We notep,(CAT%(u) T the average
number of nodes at depthin this model. We have.

Lemma 1. When the number of keys of a random trie follows a Poisson model of parantbteexpec-
tation p;, »(v) of number of nodes at depthof the trie verifies

pp) = 3 1= (Lt man)e ™ (we{0,1)). )
|w|=k

Proof. As shown by elementary algebra, the number of balls falling inwifollows a Poisson law of
parametetr,, v, which implies that the urns behave independently of each other. The random vatjable

T We omit in the rest of this section the notati¢h).
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counting 1 if there are more than two balls in the urrand O elsewhere, has generating function

2 3

Ya(u) = e (1 v tu (W) (mo)

2! 3! +)> =u+ (1 —u)(l+mr)e ™"

Let Z be the random variable counting the number of urns with at least two ball¥'atd) be its
generating function. Since the urns are independent of each other, we have

. OFz(u) .
Fz(u) = l]‘L ut(1—u) (1+m,v)e = B(Z) =pp(v) = — = 2|—:k 1—(1+myv)e ™",
2)
O
By algebraic depoissonization, we also obtain
Corollary 1. The expected number of nodggn) in then-fixed model verifies
pr(n) = Z 1—(1—7,)" —nm,(1 —7m,)" L. 3)

|w|=k

2.1 Mellin transform of p; »(v)

The quantityp; »(v) is given in Equation 1 as a sum 2f terms. By use of direct and inverse Mellin
transform it is possible to obtain asymptotically an expressian, @f(v) that is equivalent to /\/log v
fora¢ < 1 that depends upoh, for a wide range of values @ This will further allow comparisons with
the profile of tries in the fixed model and with the profile of suffix-trees.

The Mellin transformM [g(v); s] of a functiong(v) is defined by

Migv)ss] = [ g v, @)

=0
We refer to Flajolet et al. (1995) for an overview about Mellin transform and its applications.
We obtain the following fundamental result (see also Park and Szpankowski (2005)).

Theorem 1. The Mellin transformM [p;, »(v); s] of the number of nodes at depifof a trie in the Poisson
model verifies

Mlpep(v)is] = —(L+8)0(s) (07 +a77)". (5)
The inverse Mellin transform of this function is defined in the Siip) €] — 2, 0].

Proof. We consider the functiop(v) = 1 — (1 + v)e™”. We haveg(v) = O(1Y) asv — oo and
g(v) = O(v?) asv — 0. Let|w|; and|w|o count respectively the number of 1 and 0 of the wordJsing
the basic properties of the Mellin transform, singe= P(w) = pl“l1¢l~lo, we find that

)
Mipip(); 8] = —(1+ 5)T(5) 3 (?)p-ﬁqw—ﬂs - (1T ()

=0
O

2.2 Inverse Mellin transform and saddle point integration

From Equation 5 we obtain by inverse Mellin transform

1 r+100 . . & . 1 r+100 )
pep(V) = — —(148)(s) (p°+ ¢ °) v ®ds = — F(s)ds with z€]-2,0].
7 2im —100 2im T —100

(6)

We remark tha# (s) is analytic onC — {0, —2,—3, —4, ... }. We use a saddle-point method (see Flajolet
and Sedgewick (2005) or De Bruijn (1981) for an introduction) to compute the inverse Mellin integral.
We write F'(s) = /(%) in the following. The saddle-point, verifies by definitionf’(so) = 0. We have

F(s) = L () — P "logp+ 7" logg

—logv, 7
1+s PS4+ q8 2 ()
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where(s) is the logarithmic derivatives df (s). In a first step, we consider the moduli of the terms
1/(1 + s) andy(s) asO(1). The variables: andv tend both to infinity. We therefore consider

o P losUp gl <p) _logv—klogl/p g,
P tqe q klog1/q —logv
of, B(H k=axlogv.
8] “~* " From bottom to top, the plain curves are.
1 ayoo(p,q) = log 1/q
2) ao(p,q) = m
2 2
3)a—2p,q) = p?log 15)]7 i 32 log1/q
Ba—olp,a) = o7
2
p DEH) = i T )

055 06 065 07 075 08 085 08

Fig. 1: Range of values df and corresponding saddle-poinfindex of«). The top curve represents the expectation
of the heightH of the trie. The dotted curve plots the values of the lower bauriHat is defined in Definition 4
and used in Theorem 5 and 6. It is well known that, wper ¢ = 1/2, almost all leaves are at depth close to the
fill-up (saturation) level which is well approximated by, ... This explains the shape of the region for which the
saddle-point is real (v € o400, @—o[)-

2.2.1 Parametrization of the problem and geometry of the saddle-point

Considering the right member of the last equation of Formula 8, it appears naturally that the saddle-point
will be a function of the ratid:/ log v. This is not surprising, since parameters such as the average depth
of insertion or the height of random triesokeys areO(log n).

More precisely, we have.

1 1
Lemma 2. Asv tends to infinity and = alogv with ——— < o < —————, the functionF'(s) =
Y 8N g1 < < Tog(1/p) )
—(14+s)T'(s)(p~* + q*S)k v~—* has a real saddle-point that verifies
B B 1—alogl/p
o =o(a) = log (alogl/q - 1>/log(p/q)~ 9)

Proof. We adopt here a parametrization of the problem inverse to this used in Park and Szpankowski
(2005) and sek = o x logv. We consider the solution = s’ of the right equation of Formula 8 . By
taking an expansion of (s) in the neighborhood of, we find thatr = s’ 4+ o(1) where the development

is easily made more precise. We neglect in the followingitig term and consider that = s'. O

We remark thatr(«) is real and decreases monotonically fremo to —oo as « increases from
1/1og(1/q) to 1/log(1/p). We considerx(c) = a, = k/logv with o € R, wherea(o) follows
from Equation 8 and is the inverse function @of«) of Equation 9. The set of poles @ (s) is L =
{0, -2, -3, —4, ...} and these poles correspond to values of k/log(v) given by

o= P+
' pilogl/p+gilogl/q
Restrictingo to the positive axis gives
1 k 2
= < <
logl/q logv ~logl/p+logl/q

See the plots ofi; ., g, @—2 anda_, on Figure 1 and the plots of(«) for p = 0.6 andp = 0.9 on
Figure 2.

(=jel), (10)

a+oo(p7q) :ao(paQ)'
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Fig. 3: The inverse Mellin integral givesy, » () when
Fig. 2: The saddle-point as a function of3, wheres o €] — 2,0[ (number of nodes present at depth and
is a barycentric weight varying from 0 to 1. The curves —my, »(v) = —2* + py,» () wheno €]0, +-00] (num-
correspond tp = 0.6 andp = 0.9 ber of nodes missing at depkf).

2.2.2 Probabilistic consequences of the position of the saddle-point

We consider now the meaning of the inverse Mellin integral outside of the fundamentéal-sgijp [. We

notefm the value of the inverse Mellin integral of Equation 6 fore R — L. We consider the Cauchy
contour shown in Figure 3, and let the ordinates of the horizontal segments of integration tend respectively
to —oo and+oo. Since the residue df(s) ats = 0 is —2* and the winding number is 1, we have

/ f/ — ok — 7/ =2k / =2 —prp(v) = mip(v),
z€]—2,0[ o€]0,00] 0€]0,00] z€]—2,0[
(11)

wheremy, p(v) is the number of missing nodes at depthThe validity of Equation 11 follows from the
exponential decrease of the functib(s) for large imaginary values af By integrating in the strif0, oo|
we therefore obtain the number of missing nodes at lev@b to the sign). Using a similar contour with
winding number+1 wheno € | ]—j—1,—j[ with an integerj > 2, we have

/me]z,o[_/ge]jl,j[: > RegF(s);j) = pk,P(V):/ + > ReqdF(s):j),

jeLnlo,—2[ o€l=i-1=il  jernjo,—2[
which provides a way to computg, »(v) wheno €] — oo, —2[.

2.2.3 Detailed analysis of the saddle-point integral
We compute in this section the inverse Mellin integral of Equation 6

I(V) B L /:v-‘rioo _(1 N S)]_"(s) ( s + 7s)k S ds — i 4100 F(S)ds (12)
B 24w r—100 P 4 o T T—ico :

We consider the behavior d@(s) on the vertical linéRs = 0. We writet = logr andA(s) = (p~* +
q~*)* wherea = k/t = k/logv; this gives

F(s) = —(1+)0(s)(p~° + 4 *)*v ™" = 6(s)0(s)" with O(s) = e~* x (p~° +¢*)* = ¢ *A(s)

(13)
The function©(s) is periodic on the vertical lin&s = o, and its first derivative is null at the saddle-point.
On the other side the functiaf(s) mostly behaves like the function Gamma, which implies exponential
decrease for large imaginary values. The dominant part of the integral is concentrated upon a small
neighborhood of the saddle-point, where it is approximated by a gaussian integral. This gives in first
F(o)

—————, with ¢/(®) = F(s). This is the result of Park and Szpankowski
2m| (o)

approximation/ (v) ~
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(2005). We consider also here the perturbation term corresponding to the other maxima of the function
©(s) and we bound this perturbation.
We have

O(o+ir)=e " ""Alo+ir)=e 7" (p7TT" + qﬂ’*”)a (r e R).

The functionS(F' (o + ir)) is an odd function of; therefore all imaginary terms cancel in the integral,
which corresponds to the combinatorial origin of the problem. We consider the local maxima of the
function|©(c + ir)| = e~ 7| A(o + ir)|.

On the vertical linéRs = o, with o € R — {0}, the functionA(s) is periodic,|A(o + ir)| is an even

function ofr, we have
« 1 1 (6%
o max|(pt g ) = (o + ) ’
q p

1 1

min‘(p_s+q_s)a‘ = e

and|A(s)| attains its maximum each time * andq—* are in phase. This corresponds for a giveio

Irllogl/p =6 +2j,m and |r|logl/q=0+2j,m with 0<6<2m, jpjs €N, 7, <Jg
= |r| > p =27 x v(p) (14)

whereuv(p) is defined as follows.

Definition 2. Letwv(p) = 1/log(p/q) whenp €]1/2,ps[, anduv(p) = j/log(1/q) whenp € [p;,pj41l,
wherep; is the real positive root of the equatigd + p — 1 = 0 for any integerj > 2. We define by
p(p) = 2w x v(p) the minimum ordinate of perturbation of the inverse Mellin integral.

Forr =1 x pwith[ € Z — {0} we havel©(c + ri)| = |O(o)| but the corresponding contributions to
the integral are small, sind€(o + ir)| decreases exponentially g$ increases. Figure 4 plots the value
of p as function ofp.

We remark thail'(c + ir)| = O(e~I"l) as|r| — oo ando = O(1). (See Andrews et al. (1999),
Corollary 1.4.4, for a more precise result). As results from the preceding analysis, on the vertical line
R(s) = o, the continuous functiofd(s)/O(o)| attains its maximum value 1 at the saddle-peirdand
approach it at secondary maxiraat- p;i wherep; = jp andp is defined in Equation 14. We consider
now a smalb and the interval¥’; =|p; — 9, p; + 4.

By the preceding considerations, foc Rs = R — UjeZ V;, there exists: < 1 such that

'@(0 +ir)
6(0)

Since|(1 + s)I'(s)| decreases exponentially B¥(s)| — oo, the function—(1 + s)I'(s) is integrable on
the linefs = o. This gives

Hs = = 0(0)fo(k)  (k<1), (15)

/ (14 o+ir)(o +ir)O(c +ir)'dr
reR;s

wherex will be later defined as a function 6f We consider now

§
BOZ/ (140 +ir)T(o +ir)O(o + ir)'dr

=

and B; = / (140 +ir)[(o +ir)O(o +ir)'dr|.
reV,

J

Whenq is bounded away from/ log(1/¢) and1/log(1/p), we find as approximation faB; and  B;
B;j =By x O(e71?), with |pj|=|j|xp = > B;j=Byx0(ec?).
je€zZ—{0}

We consider now the dominant terBy of the integral. By a Taylor expansion in the neighborhood of
we have
F(o)

0
B, =19 / et @22t O HAOD/ with ()] < 1. (16)
™ r=—>4¢
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Fig. 4: Minimum ordinate of perturbatiop. See Def-

inition 2 and Theorem 2. The perturbation is at mostFig. 5: Saddle-pointr, exponent andr of v respec-
O(e™") times the dominant part of the integral. Remark tively in I(v) andI(v)/2* (see Equation 18) as a func-
thate ' < 2 x 1075, tion of 3 (defined as in Figure 2). We have here- 0.9.

We use the classical analysis described in Flajolet and Sedgewick (2005) and &sools¢hats? is large
andts? is small; by completing the tails of the Gaussian integral and using the asymptotic approximation
Erf(z) < 7 'n(x), wheren(z) is the density of the Gaussian distribution, we have

é
t1?P <<t = By = %f) </ e‘”zf”(”)“) (1+0(t6%)) = %(lJrO(té?’)).
r=—4¢ s o

In Equation 15 we now have = O(e~%"); we obtain thereforél; = By x O(t*/2¢ =) since| f" (c)| =
O(t). We obtain

_ L e $)ds — F(o) 3 P 1/2675%
M) = 5 /5:(,700 Flopds = s (1+0t5°) + 0(e) + Ot ). an

The following theorem summarizes the results obtained in the Poisson model. It is expressed in a different
manner and without perturbation term in Park and Szpankowski (2005).

Theorem 2. Considering the functiop(p) of Definition 2 and: = «log v, wherea €]1/1log(1/q),1/1og(1/p)],
let o (saddle-point) verifies = log <im)/ log(p/q).
We have asymptotically, astends to infinity, for a random trie in the Poisson model of parameter

e The dominant part of the inverse Mellin integral verifies

o alog(p™7+q~7)—0
J() = F(o) _ (I1+ o)l (o) (18)
\2m|f!(o)] V2malog(v) x U(o)
—o 2 —o 2 —o —o 2
where [(p) = L1087 pFa"logTg <p logp +q 10gq> .
p—O' + q—O' p—O' + q—O'
o myp(v) = —J(v)(1+ O0(e "®)) whena € } ! , 2 {
log(1/q) log(1/p) +log(1/q)
wheremy, »(v) is the average number of missing nodes at dépth
_ 2 p*log(1/p) + ¢*log(1/q)
= J()(1 + O(e~®)) when e} ) '

L4 pkﬂ’(l/) (V)( (6 )) o4 10g(1/p)+10g(1/q) p2+q2

wherep;, »(v) is the average number of present nodes at dépth
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We obtain as corollary.

Corollary 3. Let us consider the rate of saturation= «(v, o) = pp(v)/2F = prp(v)/v*1°82. We
have

_ 1
a—ay =L—1—-—— and a—af =1

Ver

( )

Proof. This follows from the following equations,

T
f(’(’j() ) =1+0(1) and a(o)log(p™ +q7) — o =&+ O(c?) as v — oo,
(o2
where we have = o(1/logv), the constan{ depends only op andg, anda(o) is the inverse function
of o = o(a). -

We observe therefore a phase reversalwhena goes fromag to o .

Shape of the exponents. Considering Figure 5 we observe that the expongaf v in min(1 — ¢,¢)
attains its maximum 0 a¥ = 0, which is the point of phase reversal. We also observe, in the range
o €] — 2,0[ that the exponeng of v in p; »(v) attains its maximum 1 at = —1, which corresponds
to k = log(v)/h(p, q) whereh(p, q) is the entropy of the alphabet. This has been previously observed
by Park and Szpankowski (2005).

Similarly, it is possible to make a detailed study of the valug;0f (v) whena < a_s by taking in
account the residues @f(s) at the negative integers smaller thaB. These points correspond to minor
discontinuities of the functiop (v, a).

2.3 Average profile of tries, exact model versus Poisson model
We use here a simplify version of entry 10 of Ramanujan’s notebook, Part | (see Berndt (1985) page 57).

Theorem 3. Let h(x) denote a function of at most polynomial growthaageal) tends toco. Suppose
that there exists a constart > 1 and a functioru(z) of at most polynomial growth astends taco such
that for each nonnegative integer and all sufficiently larger, the derivatives("™ () exist and satisfy

(m) T m 0 zk
‘h m!() < a(2) (i) PUtha(s) = ey Z!(k).Then,

k=2

hoo(z) = h(z) + zh" (z) + O(a(z)z™?),

asx tends toxo.
Applying this theorem withh(z) = 2¢//logx anda(z) = A = 1 for large integerr = n and then
reasoning by contradiction gives the following depoissonization result.

Theorem 4. Asn — oo we have, for any small > 0, m\")(n) = m,(j;),(n)(l + 0(n=179)) when

a € 11/log(1/q), ap | andp,(cT) (n) = pg;),(n) (140 (n=179)) whena € Jag, s

3 Average internal profile of suffix-trees

We consider now languages C {0, 1}* and the corresponding weighted generating functibfs) =
Zweﬁ mpzl¢l = > om0 ln2™, Wherer,, is the probability of the wordy and/,, is the probability that a
random word of sizex belongs to the language.

We also consider the autocorrelation get of a wordw, defined as

A, = {h; wh=uw and |h|<|w|}.

We define in the following b)@ﬁ,”) (resp.OS,rJr)) the language of words with exactly (resp. at least)
(possibly overlapping) occurrenceswénd remark tha0?™ = £+ — 0¥ — o,

We consider the suffix-tree built on thefirst suffixes of an infinite string/, further referred to as
suffix-tree withn keys. The number of nodeés)(n) at depthk in the suffix-tree is equal to the number
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of wordsw of sizek that occur at least twice in the prefixof lengthn + & — 1 of U. We notep(s)( ) the
average number of nodes at depthNVe have
5 s o
sln) = 1y, occurs at least twice iy~ @nd pP(n) = 3 P(woccurs at least twice in).
|w|=k |w|=k

Multiplying by z™ and summing overn gives

)= p )" = Y 0 (z) =

n>0 |w|=k |w|=k

2)+0W (2 )). (20)

It follows from an extension of Guibas and Odlyzko analysi@éff) (see Sedgewick and Flajolet (1996)
p. 374) or from the Bernoulli case inégnier and Szpankowski (1998) that

(S) (2) w2l . I 1
R _Z< ) Kw(z)2> With ) T mee (= A ()

|w|=F
(21)
We follow Fayolle (2004) and consider the dominant paleof 1/ K, (z); for |w| large we have,, close
to 1. Considering a suitabl® €]1, 1/p[ we perform a Cauchy integration along a circle of radiusf

P,gs )(2)/2"*1 and use a bootstrapping method (see Fayolle (2004)); this provides asymptotically

PP ) = [P () = 31— <1+ "”“’)) /A1) 3 O(mr e~/ Au(D) )+Z O(knr2):

|w|=k |w|=F lwl=k

Let S, and S3 represent the second and third sums of the right member of this equation. We have
7, < pl¢l = pF = n=108(1/P) for all w and therefores, = p,”))( )O(n=los(1/p)),

Let¢ = ¢(a) = alog(p~?®) 4 ¢=()) — o(a) wherent is the dominant asymptotic term pﬁ;’Tf) (n)
in Equation 18. We have

S5/p D) (n) = O (kn(p? + ¢)* /n¢) = O (nl—alog(l/(p2+q2))—<) log .
This leads to the following definition.
Definition 4. Letv(a) = —(1 — alog(1/(p* + ¢*)) — ¢(a)) and « be the solution of the equation
v(a) = 0.

We haven > a = v(a) > 0, which implies

Lemma 3. Consideringx defined in Definition 4 and € | max(a, o), a—2[, @asn — oo, the number of
nodes at depthk = « logn of a suffix-tree of, keys verifies for a positive

= a¥ (n)+p{ (1) (O(n_“) + O(n_alog(l/p)» wherea(™ (n) =Y " 1- <1+ Ny ) o=/ Au(l)

n (n) 0
Jw|=k

See Figure 1 for a plot ofy(p). A result similar to Lemma 3 holds for the missing nodes when
a €la, ag[ andp € [0.5,0.83(.

4 Comparison of the suffix-tree and the trie

We compare now the internal profiles of a random suffix-tree witkeys and of a trie in the Poisson
model of parameter. We consider again the case of the present nodes,owith— 2, 0[, but a similar
proof applies to the case of missing nodes.

We have.

Theorem 5. Letk = alogn wherea € | max(a, ag), a—2[ anda is defined in Definition 4. As — oo
the numbers of nodes at depgth

e p\%(n) of a suffix-tree of. keys

. andp,(f?,(n) of a trie whose number of keys is Poisson of parameter
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verify
P () = B )| = R (m) x O )

for a positivel.

Proof. Building upon Lemma 3 we analyze the differer‘aég)( p,(CT%( )‘, where

a,(cs)(n) = Z 1— (1 —+ j:"i)) e*”ﬂ'w/-Aw(l) and p(T) Z 1— 1—|—n7rw) —nTe (22)
|w|=F v |w|=k

We follow the spirit of Fayolle (2004), improving upon the worst case by use of Mellin transforms.
The basic period of a wordw is the size of the smallest woidsuch thatv = u"v wherev is a prefix
of w andh is a positive integer.
We have as previously(z) = 1—(1+x)e~". Let Dy, (resp.Dy,) be the set operiodic (resp.aperiodic)
words of sizek such thatl < k/2 (resp.d > k/2); we split the sums of Equation 22 with respect to these
sets, and consider bounds fdr, (1) in these sets;

(S) ( Z+Z ) <n7‘rw ) = Sp,+ Sp¢ and pép ( Z—FZ ) nm,) =Tp, + Tpe,

weDg weDy, weDy weDy,
1 pk/2
1§Aw(1)§ﬂ (w € Dy) and 1<A,(1)<1+ 1_pzck(p) (w € Dy).

We also consider in the followingp, =" p, 9(n7./ck(p)).

We use repetitively the fact thatl [g(z7., /x); s] = (1/x)*M]g(z~,); s] and remark that the function
g(xz) =1—(1+x)e®isincreasing of0, ool.

We consider first the periodic words and write= (ab)"a whered = |ab|, r = |k/d] > 1, and
la| = k — rd. The Mellin transform/\/l[p,c 7,( n); s] of the expectation of the number of nodes at dépth
labeled by a word of period, in a trie and within the Poisson model of parametgis

al M[p\p (n);
M[p,(j;;(n); s] = —(1+s)(s) <p—(r+1)s + q—(r+1)s) (p—rs n q_rs)lb\ — /\W = O(w’f),
T (23)

where we have); < 1 ando verifies Equation 9. The last equation follows by separately handling the
cases where = O(1), in which casga + b| is of the order olog(n), and where- tends to infinity.

We perform now the inverse Mellin integral mﬂ[p;d;)( ); s] on the vertical linéRks = o; the point
s = o is no more a saddle-point, but the analysis follows the same lines as in Section 2.2 and uses

Equation 23 to upper bound the dominant part of the integral. Summinglama using the inequalities
1/A,(1) <1landl/cg(p) < 1 provide fory; < 12 < 1 andk large enough

Tp, = pyp(n) x O(WE),  Sp, =pihn) x OWE)  and  Bp, =ph(n) x O(wh). (24)

We consider now the non-periodic words. By expandihgcx(p))~?, whereo is the saddle-point of
Equation 9, we have, up to second order termskflarge enough,

2|o|pk/?
(1 - |1 |—p péTy):(n) < Sp¢ + Bp, < p;(fT%(n) (L+0()) .
This gives, witht = alogn anda > «

S —
2 () = A m)| = TR () x O )

where\ = min(v, alog(1/12), alog(1/p)/2) andv satisfies Definition 4. O

From there and Section 2.3 where we compared the Poisson model and the “fixed” model follows the
theorem.
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Theorem 6. Asn — oo andk = alogn with o € | max(a, ag), a—2[, wherea anda_, are defined as

previously, the number of present nodes at dépth a suffix-treepés) (n) and a tl’iep,(gT)(n) of n keys

veri y fora pOSitiV@\
P 5 — — — min(A,
’ l(c )(n) P;i )(n) pé, )(n) x O (n (A,l)) .

A similar result holds for the missing nodes when< 0.83 and« belongs to the rangky, ay[ (see
Figure 1). We conjecture that these results extend to a larger range of values of
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