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Infinite limits of the duplication model and
graph folding

Anthony Bonato1† and Jeannette Janssen2‡

1Department of Mathematics, Wilfrid Laurier University, Waterloo, ON, Canada, N2L 3C5
2Department of Mathematics and Statistics, Dalhousie University, Halifax, NS, Canada, B3H 3J5

We study infinite limits of graphs generated by the duplication model for biological networks. We prove that with
probability 1, the sole nontrivial connected component of the limits is unique up to isomorphism. We describe certain
infinite deterministic graphs which arise naturally from the model. We characterize the isomorphism type and induced
subgraph structure of these infinite graphs using the notion of dismantlability from the theory of vertex pursuit games,
and graph homomorphisms.
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Much recent attention has focused on stochastic models of real-world massive self-organizing networks.
The reader is directed to the two recent surveys [1, 2]. In self-organizing networks, each node acts as an
independent agent, which will base its decision on how to link to the existing network on local knowledge.
As a result, the neighbourhood of a new node will often be similar to that of an existing node. An important
example of such a network consists of the protein-protein interactions in a living cell. The duplication
model of [7] was designed to model such biological networks. The two parameters of the model are a real
number p ∈ (0, 1), and a finite undirected graph H . New nodes are introduced over a countable sequence
of discrete time-steps, with the graph at G0 at time t = 0 equalling H . At time t + 1, a node u is chosen
uniformly at random from the existing nodes in Gt. To form Gt+1, a new node vt+1 is added. For each
of the neighbours z of u, we add the edge zvt+1 to the edges of Gt+1 with probability p.

In this paper, we study the infinite graphs that result when time is allowed to go to infinity. The study of
infinite limits of random graph models can give new insight into the properties of the model. If p ∈ (0, 1),
then the classical results of Erdős, Rényi [8] imply that with probability 1, an infinite limit of G(n, p)
graphs is isomorphic to a unique isomorphism type of graph written R. This well-known result may
appear contradictory at first, since it suggests an infinite random process with a deterministic conclusion.
The deterministic graph R is often called the infinite random graph, and is the unique isomorphism type
of countable graph satisfying the existentially closed or e.c. adjacency property: for all finite disjoint sets
of nodes X and Y , there is a node not in X ∪ Y that is joined to all of X and none of Y. A logically
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weaker adjacency property is locally e.c., introduced by the authors in [3]. (In [3], locally e.c. is referred
to as property (B).) If y is a node of G, then NG(y) = {z ∈ V (G) : yz ∈ E(G)} is the neighbour set
of y in G. A graph G is locally e.c. if for each node y of G, for each finite X ⊆ N(y), and each finite
Y ⊆ V (G) \ X , there exists a node z not in {y} ∪ X ∪ Y that is joined to X and not to Y. The locally
e.c. property is therefore a variant of the e.c. property that applies only to sets contained in the neighbour
set of a node.

A preliminary connection between the locally e.c. property and the duplication model was made ex-
plicit by the following theorem, first proven in [3]. If (Gt : t ∈ N) is a sequence of graphs with Gt

an induced subgraph of Gt+1, then define the limit of the Gt, written G = limt→∞Gt, by V (G) =⋃
t∈N V (Gt), E(G) =

⋃
t∈N E(Gt).

Theorem 1 Fix p ∈ (0, 1), and G0 = H a finite graph. With probability 1, a limit G = limt→∞Gt of
graphs generated by the duplication model is locally e.c.

As was proved in [3], in stark contrast to the e.c. property, there are uncountably many non-isomorphic
locally e.c. graphs. The main goal of the present article is to introduce countably infinite graphs, which
are, with high probability, the unique limits of the duplication model, up to the presence of isolated nodes.
These graphs are therefore analogues of the infinite random graph for the duplication model.

Fix H a finite graph. Let R0
∼= H. Assume that Rt is defined and is finite. For each node y ∈ V (Rt),

and each subset X ⊆ N(y), add a new node zy,X joined only to X. This gives the graph Rt+1 which
contains Rt as an induced subgraph. Define RH = limt→∞Rt. Observe that the (deterministic) graph
RH is locally e.c.

Suppose that H,J are finite graphs, with v ∈ V (J). Define H 4v J if there is a node u in J − v
such that N(v) ⊆ N(u), and H = J − v. We say that the graph J folds onto H. Note that, for loop-free
graphs, the definition implies that u and v are non-joined. We write H 4 J if there is a nonnegative
integer m, graphs H0 = H, H1, . . . , Hm = J , and nodes v0, . . . , vm−1 ∈ V (J) so that Hi 4vi

Hi+1

for all 0 ≤ i ≤ m − 1. Note that the relation 4 is an order relation on the class of all finite graphs.
We name this the folding order. For example, K2 4 T where T is a tree, while two cliques of different
orders are incomparable in the folding order. The relation 4 is a form of dismantling used to characterize
certain vertex pursuit games. The graphs above K2 in the folding order are sometimes called dismantlable
graphs; see [4].

We extend the folding order to countable graphs as follows. Let H and J be countable graphs. The
relation H 4v J is defined exactly as in the finite case. Fix I as either N or one of the sets {0, 1, . . . n},
where n ∈ N. We write H 4 J if there exists a sequence of countable graphs (Ht : t ∈ I) so that
H0 = H, Ht 4v Ht+1 for all t ∈ I, and J = limt→∞Ht if I = N, or J = Hn if I is of the form
{0, 1, . . . n}. For example, K2 4 G, where G is the infinite one-way path. Note that for all t > 0,
H 4 Rt, and Rt 4 Rt+1. Hence, H 4 RH .

Assume that H is connected and nontrivial. It is straightforward to see that the graph RH consists of
a unique infinite connected component, along with infinitely many isolated nodes. We use the notation
CH for this infinite component. We use the notation Ct for the unique nontrivial connected component
of Rt in RH . Hence, CH = limt→∞ Ct, where C0

∼= H, and Ct 4v Ct+1 for all t ∈ N. Note that each
v ∈ V (Ct+1)\V (Ct) is joined to some node in Ct. The following theorem ties together the relation 4,
the graph CH , and the locally e.c. property.

Theorem 2 Let H be a fixed finite nontrivial connected graph. If G is a countable connected locally e.c.
graph such that H 4 G, then G ∼= CH .
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Proof: Suppose, without loss of generality, that G = limt→∞Gt, where G0
∼= H, and Gt 4v Gt+1 for

all t ∈ N. Since G is connected, each v ∈ V (Gt+1)\V (Gt) is joined to some node in Gt.
We define an isomorphism f : CH → G inductively as follows. Let f0 : C0 → G0 be any fixed

isomorphism. As the induction hypothesis, suppose that for a fixed integer t ≥ 0, there is a finite induced
subgraph Jt of G containing Gt along with an isomorphism ft : Ct → Jt extending f0. (Note that we do
not claim here that Jt is of the form Gs for some s ≥ 0.)

Enumerate all pairs (y, S) where y is a node of Jt and S ⊆ NJt
(y) is nonempty as {(yi, Si) : 1 ≤

i ≤ kt}. By the locally e.c. property for G, there is a node xy1,S1 ∈ V (G)\V (Jt) that is joined to S1 and
to no other nodes of Jt. A straightforward (and therefore, omitted) inductive argument supplies, for all
j ∈ {1 . . . kt}, a node xyj ,Sj

in

V (G)\(V (Jt) ∪ {y1, . . . , yj})

that is joined to Sj and to no other node of V (Jt) ∪ {y1, . . . , yj}. Let

T = {xyi,Si
: 1 ≤ i ≤ kt} ⊆ V (G).

Define Jt+1 to be the subgraph of G induced by V (Jt) ∪ T. Note that T is an independent set of nodes.
By the definition of Ct+1, Jt+1 is isomorphic to Ct+1 by an isomorphism extending ft. The unique node
v ∈ V (Gt+1)\V (Gt) is of the form xy,S for some y and S in Gt. As Gt is an induced subgraph of Jt,
we have that v ∈ V (Jt+1). Hence, Gt+1 is contained in Jt+1, and the induction step is complete.

Define f : CH → G by f =
⋃

t∈N
ft. The map f is an embedding as each map ft is an isomorphism,

and it is onto by construction. Hence, f is an isomorphism. 2

If p ∈ (0, 1), then the classic results of Erdős, Rényi [8] imply that with probability 1, an infinite limit
of G(n, p) graphs is isomorphic to R. Perhaps surprisingly, for the duplication model there is a similar
result, replacing R by CH . The next corollary follows directly by Theorems 1 and 2.

Corollary 3 Fix p ∈ (0, 1) and H a finite nontrivial connected graph. With probability 1 a limit graph
G = limt→∞Gt generated by the duplication model is isomorphic to the disjoint union of CH and a set
I of isolated nodes, where |I| is countable.

Following Brightwell and Winkler in [4], we say that a graph J is stiff if there is no proper induced
subgraph H with the property that H 4 J . By Theorem 4.4 of [4], each finite graph H contains a unique
(up to isomorphism graph) stiff induced subgraph, written c(H), so that c(H) 4 H . We refer to c(H) as
the stiff-core of H. The stiff-core determine the isomorphism types of our limit graphs as follows.

Corollary 4 Fix finite connected nontrivial graphs H and J . If H 4 J , then RH
∼= RJ . In particular,

RH
∼= Rc(H).

Our next result demonstrates how the graphs RH play the role of “minimal” graphs for the locally e.c.
property.

Theorem 5 Fix H a finite graph, and let G be a locally e.c. graph. Then RH ≤ G if and only if H ≤ G.

A vertex mapping f : G → H is a homomorphism if xy ∈ E(G), implies that f(x)f(y) ∈ E(H).
We write G → H to denote that G admits a homomorphism to H without reference to a specific map-
ping. See the excellent book [9] for more background on graph homomorphisms. Folding gives rise to
homomorphisms as follows.
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Lemma 6 Let G and H be countable graphs. If H 4 G, then G → H .

The converse of Lemma 6 does not follow (consider H as K2 and G as C6). However, the following
theorem establishes an interesting connection between graph homomorphisms and the induced subgraphs
of RH .

Theorem 7 Fix n a positive integer, and let G and H be finite graphs. Then G ≤ RH if and only if
G → H.

Proof: For the forward direction, suppose that G ≤ RH . Then G ≤ Rt for some t ≥ 0, and so G →
Rt. Since H 4 Rt, by Lemma 6, we have that Rt → H. Hence, G → H by the transitivity of the
homomorphism relation.

For the converse, we introduce an auxiliary graph construction. Fix f : G → H a homomorphism.
Assume V (G) and V (H) are disjoint, and define a graph H(G, f) to have nodes V (G) ∪ V (H), and
edges

E(G) ∪ E(H) ∪ {xy : x ∈ V (G), y ∈ V (H), and f(x)y ∈ E(H)}.

We refer to the induced copy of H in H(G, f) as H ′. We proceed by induction on |V (G)| to show that
H(G, f) ≤ RH . Since G ≤ H(G, f), the proof of the converse will follow. Note that, if |V (G)| = 1,
then H(G, f) is isomorphic to the disjoint union of H and K1. The base case follows. The induction
hypothesis is that if |V (G)| = n, where n ≥ 1 is fixed, then H(G, f) is an induced subgraph of RH with
H ′ the copy of H at t = 0.

Let |V (G)| = n+1, and fix x ∈ V (G). By induction hypothesis, H(G−x, f � (G−x)) is a subgraph
S of RH with H ′ the copy of H at t = 0. By the definition of H(G, f), all the neighbours of x in H(G, f)
are also neighbours of the node f(x) in H ′. Note that N(x) ⊆ V (S). By the locally e.c. property of RH ,
there is a node z of RH joined to the nodes of N(x) in S and to no other nodes of S. Adding z to S in
RH will give an induced subgraph of RH which is isomorphic to H(G, f), while H ′ is unchanged. This
completes the induction. 2

Theorem 7 characterizes the age of RH (that is, the class of isomorphism types of finite induced sub-
graphs of RH ). In addition, it supplies us with structural information about RH .

Corollary 8 1. For a fixed finite graph H, all countable H-colourable graphs embed in RH .

2. The clique and chromatic numbers of RH equal the clique and chromatic numbers of H , respec-
tively.

As one consequence, RK2 ≤ RC6 and RC6 ≤ RR2 . Observe however, that RK2 � RC6 as RC6 does
not fold onto K2.

In the duplication model, the neighbourhood of a new node will always be a subset in the neighbourhood
of an existing node. While this is sufficient for the modelling of protein-protein interaction networks,
for other applications it is desirable to extend the model to allow for a number of random edges. Let
ρ : N → N be a monotone increasing function. The duplication model can be generalized by adding a
second step, where at each time t a set of ρ(t) nodes is selected u.a.r., and edges from each node in this
set to the new node are added. There is no unique limit in this case, but it can be shown that there is a
unique minimal infinite graph which, with probability 1, is contained in any infinite limit. These minimal
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graphs are graphs that extend the idea behind the creation of RH , and are called R
(n)
H . They are defined

as follows.
Fix a finite graph H . Let R0

∼= H. Assume that Rt is defined and is finite. For each node y ∈ V (Rt),
and each subset X ⊆ N(y), add a new node zy,X joined only to X. For each subset of Y of nodes with
cardinality at most n add a new node zY joined only to Y. This gives the graph Rt+1 which contains Rt

as an induced subgraph. Define R
(n)
H = limt→∞Rt.

Results similar to those described above hold for R
(n)
H for an appropriate adjacency property (namely,

the n-e.c. property). These results will be described more fully in the journal version of this extended
abstract.
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