Infinite families of accelerated series for some classical constants by the Markov-WZ Method

Mohamud Mohammed

Department of Mathematics, Rutgers University (New Brunswick), Hill Center-Busch Campus, 110 Frelinghuysen Rd., Piscataway, NJ 08854-8019, USA.
e-mail: mohamudm@math.rutgers.edu. WWW: http://www.math.rutgers.edu/~mohamudm/.
received Aug 12, 2004, revised Nov 13, Nov 29, Jan 29, Feb 25, 2004, accepted Mar 17, 2005.

In this article we show the Markov-WZ Method in action as it finds rapidly converging series representations for a given hypergeometric series. We demonstrate the method by finding new representations for $\log (2), \zeta(2)$ and $\zeta(3)$.

Keywords: WZ theory, series convergence, hypergeometric series.

A function $H(x, z)$, in the integer variables x and z, is called hypergeometric if $H(x+1, z) / H(x, z)$ and $H(x, z+1) / H(x, z)$ are rational functions of x and z. In this article we consider only those hypergeometric functions which are a ratio of products of factorials (we call such hypergeometric functions purehypergeometric). A P-recursive function is a function that satisfies a linear recurrence relation with polynomial coefficients. A pair (H, G) is called a Markov-WZ pair (MWZ-pair for short) if there exists a polynomial $P(x, z)$ in z of the form

$$
\begin{equation*}
P(x, z)=a_{0}(x)+a_{1}(x) z+\cdots+a_{L}(x) z^{L} \tag{POLY}
\end{equation*}
$$

for some non-negative integer L, and P-recursive functions $a_{0}(x), \ldots, a_{L}(x)$ such that

$$
H(x+1, z) P(x+1, z)-H(x, z) P(x, z)=G(x, z+1)-G(x, z)
$$

(Markow-WZ)

We call $G(x, z)$ an MWZ mate of $H(x, z)$. We also require that the $a_{i}(x)^{\prime} s$ satisfy the initial conditions

$$
a_{0}(0)=1, a_{i}(0)=0, \text { for } 1 \leq i \leq L
$$

First we will show that given a hypergeometric function $H(x, z)$, there always exists a polynomial with minimum degree that satisfies Markow-WZ.

1 Existence of MWZ-pair

In this section, $\operatorname{deg}(a)$ stands for the degree of a as a polynomial in z.
Theorem 1. Given a hypergeometric term $H(x, z)$, there exist a non-negative integer L and a polynomial $P(x, z)$ of the form POLY associated with $H(x, z)$ such that $H(x, z)$ has an MWZ mate.

Proof. We need to show that there exist $L \geq 0, a_{i}(x)$'s, $G(x, z)$, and $P(x, z)$ of the form POLY) such that $H(x, z) P(x, z)$ and $G(x, z)$ satisfy Markow-WZ). Moreover $G(x, z)$ has the form $G(x, z)=R(x, z) F(x, z)$, where $R(x, z)$ is a ratio of two P -recursive functions in (x, z).

Write

$$
H(x+1, z) P(x+1, z)-H(x, z) P(x, z)=P O L(z) \cdot \bar{H}(x, z)
$$

where

$$
\begin{gathered}
P O L(z):=A(z) \sum_{i=0}^{L} a_{i}(x+1) z^{i}-B(z) \sum_{i=0}^{L} a_{i}(x) z^{i} \\
\frac{H(x+1, z)}{H(x, z)}=\frac{A(z)}{B(z)}, \text { and } \bar{H}(x, z)=\frac{H(x, z)}{B(z)}
\end{gathered}
$$

Since $\bar{H}(x, z)$ is a hypergeometric function divided by a polynomial, we can write the above expression as

$$
H(x+1, z) P(x+1, z)-H(x, z) P(x, z)=\frac{a(z)}{b(z)} \cdot \frac{P O L(z+1)}{P O L(z)}
$$

where

$$
\frac{\bar{H}(x+1, z)}{\bar{H}(x, z)}=\frac{a(z)}{b(z)} .
$$

Without loss of generality, we may assume that $\operatorname{gcd}(a(z), b(z+h))=1$ for $h \geq 0$, otherwise we regroup and incorporate additional factors into the polynomial part, $P O L(z)$. Then with $a(z), b(z)$ and $c(z):=P O L(z)$ in parametric Gosper's algorithm [MZ] , look for a polynomial $X(z)$ that satisfies

$$
a(z) X(z+1)-b(z-1) X(z)=c(z)
$$

(Gosper)
We may consider only those X with

$$
\operatorname{deg}(X)=\operatorname{deg}(c)-\max \{\operatorname{deg}(a), \operatorname{deg}(b)\},
$$

and the degree of $c(z)$ is easily seen to be

$$
\operatorname{deg}(c)=L+\max \{\operatorname{deg}(A), \operatorname{deg}(B)\}
$$

The unknowns are the $\operatorname{deg}(c)-\max \{\operatorname{deg}(a), \operatorname{deg}(b)\}+1$ coefficients of $X(z)$ and the $a_{i}^{\prime} s$ (there are a total of $2(L+1)$ unknowns). Comparing coefficients on both sides of Gosper gives deg $(c)+1$ linear homogeneous equations. In order to guarantee a non-zero solution, we need

$$
\text { \# of unknowns }-\# \text { of equations } \geq 1
$$

and this holds if

$$
2(L+1)-(\operatorname{deg}(c)+1) \geq 1
$$

In particular, if we choose

$$
L:=\max \{\operatorname{deg}(a), \operatorname{deg}(b)\}
$$

we are guaranteed to get a non-trivial solution(!). This gives the $P(x, z)$ and the $L . G(x, z)$ is the antidifference outputted by parametric Gosper [MZ].

Theorem 2. Let (H, G) be an MWZ-pair.
(a) If $\lim _{j \rightarrow \infty} G(x, j)=0 \forall x \geq 0$, then

$$
\sum_{z=0}^{\infty} H(0, z)=\sum_{x=0}^{\infty} G(x, 0)-\lim _{i \rightarrow \infty} \sum_{z=0}^{\infty} H(i, z) P(i, z)
$$

whenever both sides converge.
(b) If $\lim _{i \rightarrow \infty} H(i, z) P(i, z)=0 \forall z \geq 0$, then

$$
\sum_{z=0}^{\infty} H(0, z)-\lim _{j \rightarrow \infty} \sum_{x=0}^{\infty} G(x, j)=\sum_{x=0}^{\infty} G(x, 0)
$$

whenever both sides converge.

Proof. (a) Let $P(x, z)$ be the polynomial that features in the MWZ-pair $(H(x, z), G(x, z))$ arising from $H(x, z)$.
Then apply theorem $7[Z]$ to the 1 -form

$$
\begin{equation*}
w=H(x, z) P(x, z) \delta z+G(x, z) \delta x \tag{1}
\end{equation*}
$$

and the region

$$
\Omega=\{(x, z) \mid 0 \leq z \leq \infty, 0 \leq x \leq i\},
$$

with the discrete boundary
$\{(0, z+1) \rightarrow(0, z) \mid z \geq 0\} \bigcup\{(x, 0) \rightarrow(x+1,0) \mid 0 \leq x \leq i\} \bigcup\{(i, z) \rightarrow(i, z+1) \mid z \geq \infty\} \bigcup\{(x+$ $1, \infty) \rightarrow(x, \infty) \mid i-1 \leq x \leq 0\}$,
and use the initial conditions $a_{i}(0)=\delta_{i 0}$ for $0 \leq i \leq L$.
(b) Replace the region in (a) by

$$
\Omega=\{(x, z) \mid 0 \leq x \leq \infty, 0 \leq z \leq j\}
$$

with the corresponding discrete boundary in the proof of (a), and apply to (1) together with the initial conditions $a_{i}(0)=\delta_{i 0}$ for $0 \leq i \leq L$.

Corollary 1. If the limit in the conclusion of (a) or (b) is zero in addition to the given hypothesis, then

$$
\sum_{z=0}^{\infty} H(0, z)=\sum_{x=0}^{\infty} G(x, 0)
$$

Theorem 3. Let N_{0} be a non-negative integer and (H, G) be an MWZ-pair. Then

$$
\sum_{z=0}^{\infty} H(0, z)=\sum_{x=0}^{\infty}\left(H\left(N_{0}+x, x\right) P\left(N_{0}+x, x\right)+G\left(N_{0}+x, x+1\right)\right)+\sum_{x=0}^{N_{0}-1} G(x, 0)-\lim _{j \rightarrow \infty} \sum_{x=0}^{\infty} G(x, j)
$$

whenever both sides converge.

Proof. Let $P(x, z)$ be the polynomial that features in the MWZ-pair $(H(x, z), G(x, z))$ arising from $H(x, z)$. Then the proof follows from theorem $7[\mathbf{Z}]$ by applying to the 1 -form

$$
w=H(x, z) P(x, z) \delta z+G(x, z) \delta x
$$

and the region

$$
\Omega=\left\{(x, z) \mid 0 \leq z \leq \infty, 0 \leq x \leq z+N_{0}\right\}
$$

with the discrete boundary
$\partial \Omega_{N_{0}}:=\{(0, z+1) \rightarrow(0, z) \mid z \geq 0\} \cup\left\{(x, 0) \rightarrow(x+1,0) \mid 0 \leq x \leq N_{0}\right\} \cup\left\{\left(N_{0}+x, x\right) \rightarrow\left(N_{0}+x+\right.\right.$ $\left.1, x) \rightarrow\left(N_{0}+x+1, x+1\right) \mid x \geq 0\right\} \bigcup\{(x+1, \infty) \rightarrow(x, \infty) \mid x \geq 0\}$,
and using the initial conditions $a_{i}(0)=\delta_{i 0}$ for $0 \leq i \leq L$.
Corollary 2. Let (H, G) be an MWZ-pair. If $\lim _{j \rightarrow \infty} \sum_{x=0}^{\infty} G(x, j)=0$, then

$$
\sum_{z=0}^{\infty} H(0, z)=\sum_{x=0}^{\infty}(H(x, x) P(x, x)+G(x, x+1))
$$

Proof. Set $N_{0}=0$ in theorem 3 and use the initial conditions $a_{i}(0)=\delta_{i 0}$ for $0 \leq i \leq L$.
Remark. If $\lim _{j \rightarrow-\infty} G(x, j)=0 \forall x$ and the hypothesis of theorem 1 (a) holds, then

$$
\sum_{z=-\infty}^{\infty} H(x, z) P(x, z)
$$

has a closed form evaluation (see example 10 below).

In the following examples, we use the Maple package MarkovWZ [MZ] which, for a given $H(x, z)$, outputs the polynomial $P(x, z)$ and the $G(x, z)$.

2 Examples of Accelerating Series

Let $H(a, b):=\frac{(a x+z)!}{(b x+z+1)!}$ in examples 1 through 9
Example 1. Consider the hypergeometric term $(-1)^{z} H(0,1)$, and corresponding to this kernel determine a polynomial $P(x, z)$ in z with a minimum degree such that $\left((-1)^{z} H(0,1), G(x, z)\right)$ is an MWZ-pair. Using the maple package MarkovWZ [MZ] , we see that the polynomial is

$$
P(x, z)=\frac{x!}{2^{x}},
$$

and the corresponding MWZ mate of $(-1)^{z} H(0,1)$ is

$$
G(x, z)=\frac{(-1)^{z} x!}{2^{x+1}} H(0,1) .
$$

It is not hard to check that $\left((-1)^{z} H(0,1), G(x, z)\right)$ is indeed a MWZ-pair with the corresponding polynomial $P(x, z)=x!/ 2^{x}$.

Applying corollary 2 to the MWZ-pair we get,

$$
\log (2)=\frac{3}{2} \sum_{x=0}^{\infty} \frac{(-1)^{x} x!(x+1)!}{(2 x+2)!2^{x}}=2 \operatorname{arcsinh}\left(\frac{\sqrt{2}}{4}\right)
$$

Similarly, if we apply corollary 1 to the MWZ-pair, we find

$$
\log (2)=\frac{1}{2} \sum_{x=0}^{\infty} \frac{1}{2^{x}(x+1)}
$$

In the remaining examples, we simply give the hypergeometric term $H(x, z)$, the polynomial $P(x, z)$ that features in the MWZ-pair, the corresponding $G(x, z)$, and then the identities that follow from the application of the corollaries above.
Example 2. Starting with the kernel $(-1)^{z} H(0,3)$, we find

$$
P(x, z)=\frac{(3 x)!}{8^{x}}
$$

and

$$
G(x, z)=\frac{32+63 x^{2}+93 x+22 z+30 x z+4 z^{2}}{8(3 x+z+2)(3 x+z+3)} P(x, z)(-1)^{z} H(0,3) .
$$

Application of corollary 1 gives

$$
\log (2)=\frac{1}{8} \sum_{x=0}^{\infty} \frac{(-1)^{x}(x+1)!(3 x)!\left(415 x^{2}+487 x+134\right)}{(4 x+4)!8^{x}}
$$

On the other hand if we apply corollary 2 , we get

$$
\log (2)=\sum_{x=0}^{\infty} \frac{\left(63 x^{2}+93 x+32\right)}{24(3 x+2)(x+1)(3 x+1) 8^{x}}
$$

Example 3. By taking the kernel $(-1)^{z} H(0,6)$, we find

$$
P(x, z)=\frac{(6 x)!}{2^{6 x}}
$$

and

$$
G(x, z)=\frac{Q(x, z) P(x, z)}{16(6 x+z+2)(6 x+z+3)(6 x+z+4)(6 x+z+5)(6 x+z+6)}(-1)^{z} H(0,6),
$$

where $Q(x, z)$ is a certain polynomial in x and z.
Corollary 2 gives

$$
\log (2)=\sum_{x=0}^{\infty} \frac{(-1)^{x}(6 x)!(x+1)!P(x)}{(7 x+7)!64^{x}}
$$

where

$$
P(x):=1648544 x^{5}+4584284 x^{4}+4905938 x^{3}+2511703 x^{2}+610829 x+55914
$$

and corollary 1 gives

$$
\log (2)=\sum_{x=0}^{\infty} \frac{40824 x^{5}+129924 x^{4}+158814 x^{3}+92655 x^{2}+25605 x+2654}{384(6 x+1)(3 x+1)(2 x+1)(3 x+2)(5+6 x)(x+1) 64^{x}}
$$

Example 4. Starting with $H(0,2)^{2}$, we find that

$$
P(x, z)=\frac{\sqrt{\pi}((2 x)!)^{3}}{16^{x} \Gamma(2 x+1 / 2)}
$$

and

$$
G(x, z)=\frac{Q(x, z)}{2\left((1+4 x)(3+4 x)(2 x+z+2)^{2}\right)} P(x, z) H(0,2)^{2}
$$

where

$$
\begin{aligned}
Q(x, z):=120 x^{4}+372 x^{3}+136 x^{3} z+56 x^{2} z^{2} & +426 x^{2}+316 x^{2} z \\
& +242 x z+86 x z^{2}+8 x z^{3}+213 x+39+33 z^{2}+6 z^{3}+61 z
\end{aligned}
$$

Application of corollary 2 gives

$$
\zeta(2)=\frac{\sqrt{\pi}}{8} \sum_{x=0}^{\infty} \frac{\left(2912 x^{4}+7100 x^{3}+6381 x^{2}+2494 x+355\right)((x+1)!)^{2}((2 x)!)^{3}}{\Gamma(2 x+5 / 2)((3 x+3)!)^{2} 16^{x}}
$$

On the other hand, corollary 1 yields

$$
\zeta(2)=\frac{3 \sqrt{\pi}}{32} \sum_{x=0}^{\infty} \frac{\left(20 x^{2}+32 x+13\right)(2 x)!}{(2 x+1)(x+1) \Gamma(2 x+5 / 2) 16^{x}}
$$

Example 5. By taking the kernel $H(1,2)^{2}$, we get

$$
\begin{gathered}
P(x, z)=\frac{(x!)^{3} \sqrt{\pi}}{4^{x} \Gamma(x+1 / 2)} \\
G(x, z)=\frac{21 x^{3}+55 x^{2}+47 x+13+28 x^{2} z+48 x z+20 z+13 x z^{2}+11 z^{2}+2 z^{3}}{2(2 x+1)(2 x+z+2)^{2}} F(x, z),
\end{gathered}
$$

where $F(x, z):=P(x, z) H(1,2)^{2}$.
If we apply corollary 2 we get

$$
\zeta(2)=\frac{1}{9 \sqrt{\pi}} \sum_{x=0}^{\infty} \frac{\left(145 x^{2}+186 x+59\right)(x!)^{5} \Gamma(x+1 / 2) 4^{x}}{((3 x+2)!)^{2}}
$$

On the other hand, corollary 1 yields

$$
\zeta(2)=\frac{\pi^{3 / 2}}{64} \sum_{x=0}^{\infty} \frac{(21 x+13) x!^{3}}{(64)^{x}(\Gamma(x+3 / 2))^{3}}
$$

Example 6. Corresponding to $H(1,3)^{2}$, we find that

$$
P(x, z)=\frac{\sqrt{\pi}(2 x)!^{3}}{16^{x} \Gamma(2 x+1 / 2)}
$$

and
$G(x, z)=\frac{Q(x, z)}{2(3+4 x)(1+4 x)(3 x+z+2)^{2}(3 x+z+3)^{2}} P(x, z)(-1)^{z} H(1,3)^{2}$,
where $Q(x, z)$ is a polynomial in x and z. Application of corollary 2 gives

$$
\zeta(2)=\frac{\pi^{3 / 2}}{2048} \sum_{x=0}^{\infty} \frac{((2 x)!)^{3}\left(10920 x^{4}+27908 x^{3}+25962 x^{2}+10275 x+1421\right)}{(\Gamma(2 x+5 / 2))^{3}(4096)^{x}}
$$

and corollary 1 gives

$$
\zeta(2)=\frac{\sqrt{\pi}}{72} \sum_{x=0}^{\infty} \frac{P(x)(x!)^{2}((2 x)!)^{2}}{16^{x} \Gamma(2 x+5 / 2)((3 x+2)!)^{2}}
$$

where

$$
P(x):=2912 x^{4}+7100 x^{3}+6381 x^{2}+2494 x+355
$$

Example 7. Corresponding to $H(1,5)^{2}$, we find that

$$
P(x, z)=\frac{\sqrt{2 \pi}(4 x)!^{3}}{4(256)^{x} \sin (1 / 8 \pi) \sin (3 / 8 \pi) \Gamma(4 x+1 / 2)},
$$

and a corresponding MWZ mate $G(x, z)$. If we apply corollary 2 we find

$$
\zeta(2)=\frac{\sqrt{2 \pi}}{3200 \sin (3 / 8 \pi) \sin (1 / 8 \pi)} \sum_{x=0}^{\infty} \frac{P(x)((4 x)!)^{3}(x!)^{2}}{(256)^{x} \Gamma(4 x+9 / 2)((5 x+4)!)^{2}},
$$

where

$$
\begin{aligned}
& P(x):=3333245952 x^{10}+18842142336 x^{9}+47204597136 x^{8}+68964524342 x^{7}+65011852179 x^{6} \\
& \quad+41280848445 x^{5}+17862102186 x^{4}+5194331883 x^{3}+970166319 x^{2}+104901994 x+4974228
\end{aligned}
$$

The terms of this series are $O\left(\left(\frac{256}{9765625}\right)^{j}\right) \approx O\left(10^{-5 j}\right)$.
Example 8. Similarly for the kernel $H(0,2)^{3}$, we get
$P(x, z)=\frac{(-1)^{x}(x!(2 x)!)^{3}}{(3 x)!}$ and
$G(x, z)=\frac{Q(x, z)}{6(3 x+1)(3 x+2)(2 x+z+2)^{3}} H(0,2)^{3} P(x, z)$,
where $Q(x, z)$ is a certain polynomial in x and z.
By using corollary 2, we get

$$
\zeta(3)=\sum_{x=0}^{\infty} \frac{(-1)^{x}(2 x)!^{3}(x+1)!^{6} P(x)}{2(x+1)^{2}((3 x+3)!)^{4}}
$$

where

$$
P(x):=40885 x^{5}+124346 x^{4}+150160 x^{3}+89888 x^{2}+26629 x+3116
$$

and application of corollary 1 gives

$$
\zeta(3)=\sum_{x=0}^{\infty} \frac{(-1)^{x}\left(56 x^{2}+80 x+29\right)(x!)^{3}}{4(2 x+1)^{2}(3 x+3)!}
$$

Example 9. Starting with the kernel $H(1,3)^{3}$, we get
$P(x, z)=\frac{(-1)^{x}(x!(2 x)!)^{3}}{(3 x)!}$ and
$G(x, z)=\frac{Q(x, z)}{6(3 x+2)(3 x+1)(3 x+z+2)^{3}(3 x+z+3)^{3}} P(x, z) H(1,3)^{3}$,
where

$$
\begin{aligned}
Q(x, z)= & 448 x^{5}+624 z x^{4}+1760 x^{4}+1932 z x^{3}+2728 x^{3}+348 z^{2} x^{3}+2214 x^{2} z+2084 x^{2}+792 z^{2} x^{2} \\
& +90 z^{3} x^{2}+594 x z^{2}+1113 x z+9 z^{4} x+132 z^{3} x+784 x+6 z^{4}+207 z+48 z^{3}+147 z^{2}+116
\end{aligned}
$$

In this example, we show all the steps to demonstrate the application of theorem 2
Let

$$
F(x, z):=H(x, z) P(x, z) .
$$

Define $M(n)$, for $n=0,1,2,3,4, \ldots$, by

$$
M(n):=\sum_{x=0}^{n-1} G(x, 0)+\sum_{x=0}^{\infty}(F(x+n, x)+G(x+n, x+1)) .
$$

Then theorem 2 says that $\zeta(3)=M(n), \forall n=0,1,2,3,4, \ldots$.
In particular

$$
\begin{equation*}
\zeta(3)=M(0)=\frac{1}{24} \sum_{x=0}^{\infty} \frac{(x!)^{3}(2 x)!^{6}(-1)^{x} P(x)}{(3 x+2)!((4 x+3)!)^{3}} \tag{2}
\end{equation*}
$$

where

$$
P(x):=126392 x^{5}+412708 x^{4}+531578 x^{3}+336367 x^{2}+104000 x+12463 .
$$

On the other hand, application of corollary 1 gives

$$
\zeta(3)=\frac{1}{162} \sum_{x=0}^{\infty} \frac{P(x)(x!)^{6}((2 x)!)^{3}(-1)^{x}}{((3 x+2)!)^{4}}
$$

where

$$
P(x):=40885 x^{5}+124346 x^{4}+150160 x^{3}+89888 x^{2}+26629 x+3116
$$

The series (2) was first derived in AZ] and used by S. Wedeniwski (1999) to obtain up to 128 million correct decimal places. The terms of the series in (2) are $O\left((110592)^{-j}\right) \approx O\left(10^{-5 j}\right)$, while the terms of the second series are $O\left(\left(\frac{64}{531441}\right)^{j}\right) \approx O\left(10^{-4 j}\right)$.

Instead, if we take $H(1,5)^{3}$, we get

$$
P(x, z)=\frac{2 \sqrt{3}}{3 \sqrt{\pi}} \frac{(2 x-1 / 2)^{3}(2 x)!^{5}(4096)^{x}}{(729)^{x} \Gamma(2 x+2 / 3) \Gamma(2 x+1 / 3)}
$$

and a corresponding $G(x, z)$. Let

$$
F(x, z)=H(1,5)^{3} P(x, z),
$$

and let $M(n)$ be as above.
Then theorem 2 gives $\zeta(3)=M(n), \forall n=0,1,2,3,4, \ldots$ and in particular

$$
\begin{equation*}
\zeta(3)=M(0)=\frac{16}{81} \sum_{x=0}^{\infty} \frac{P(x)(4096)^{x}((4 x)!)^{3}((2 x)!)^{2}((2 x+1)!)^{4}(-1)^{x}}{((6 x+5)!)^{4}} \tag{3}
\end{equation*}
$$

where

$$
\begin{array}{r}
P(x):=5561689253120 x^{13}+41827852352256 x^{12}+143295193251200 x^{11}+295842983236608 x^{10} \\
+410324548816928 x^{9}+403368918753744 x^{8}+288879369092920 x^{7}+152460289970616 x^{6} \\
+59240414929957 x^{5}+16722886152858 x^{4}+3330604771504 x^{3} \\
+442815051024 x^{2}+35195802021 x+1261871244 .
\end{array}
$$

The terms of this series are $O\left(\left(\frac{4096}{282429536481}\right)^{j}\right) \approx O\left(10^{-8 j}\right)$.
This improves the previous record (2).
Example 10. If we start with

$$
H(x, z)=\binom{x+a}{a+z}\binom{x+b}{b+z}
$$

we get

$$
P(x, z)=\frac{(a+b)!(x+a)!(x+b)!}{(a+2 x+b)!a!b!}
$$

and

$$
G(x, z)=\frac{\left(3 x^{2}+2 x a+2 x b+6 x-2 x z+2 b+2 a-2 z+3-z a+a b-z b\right)(a+z)(b+z)}{\left.(a+2 x+1+b)(2 x+b+2+a)(x+1-z)^{2}\right)} H(x, z) P(x, z) .
$$

One can easily check that $G(x, \pm \infty)=0$.
Hence, we get

$$
\sum_{z=-\infty}^{\infty}\binom{x+a}{a+z}\binom{x+b}{b+z}=\frac{(a+2 x+b)!a!b!}{(a+b)!(x+a)!(x+b)!} .
$$

This is a derivation of the classical Chu-Vandermonde summation formula, in the framework of the MWZmethod. The Markov-WZ method can sometimes lead to a discovery of new identities with appropriate $H(x, z)$.
Example 11. Let

$$
H_{s}(x, z):=\left(\frac{(-1)^{z}(m)_{z}}{(m+\delta)_{x+z}}\right)^{s}
$$

In this example we will show how to use implementations of some numerical methods together with the Markov-WZ Method to give new WZ-pairs. The steps are:
(a) Take the output from Markov in MarkovWZ (see [MZ]), which is a system of first order linear recurrence relation(s) for the unknown coefficient functions $a_{i}(x)^{\prime} s$.
(b) Crank out some terms for the unknown coefficients, i.e. use the recurrence equation outputted by the program and find the first few terms.
(c) Use the Salvy-Zimmermann gfun program in the Algolib library available from algo.inria.fr, or findrec in EKHAD ${ }^{\dagger}$, to find a recurrence equation satisfied by the coefficient functions.
(d) Finally, solve the recurrence relations to find a closed form for the coefficients (if there exists one) (for example, in Maple, use rsolve).
11.1 Starting with $H_{2}(x, z)$, we find that $L=0$ and

$$
P(x, z):=\frac{\Gamma(\delta+x)^{3} \Gamma(\delta-1 / 2)}{4^{x} \Gamma(\delta+x-1 / 2) \Gamma(\delta)^{3}}
$$

Therefore we get a WZ-pair $(F, G)(\operatorname{not} M W Z!)$, where $F(x, z):=H_{2}(x, z) P(x, z)$, and

$$
G(x, z):=F(x, z) \frac{(3 x+2 z+2 m-2+3 \delta)}{2(2 x+2 \delta-1)}
$$

and by applying corollary 1 , we get the identity

$$
\sum_{z=0}^{\infty} \frac{\Gamma(z+m)^{2} \Gamma(m+\delta)^{2}}{\Gamma(m)^{2} \Gamma(m+\delta+z)^{2}}=\frac{1}{2} \sum_{x=0}^{\infty} \frac{(3 x+3 \delta+2 m-2) \Gamma(\delta+x)^{3} \Gamma(\delta-1 / 2) \Gamma(m+\delta)^{2}}{\Gamma(\delta+x-1 / 2) \Gamma(\delta)^{3} \Gamma(m+x+\delta)^{2}(2 x+2 \delta-1)}\left(\frac{1}{4}\right)^{x}
$$

for $\delta=0,1,2,3, \ldots, m=0,1,2,3, \ldots$. If we specialize to $m=1$ and $\delta=1$, we get the formula for $\zeta(2)$, which is

$$
\zeta(2)=\frac{3 \sqrt{\pi}}{4} \sum_{x=0}^{\infty} \frac{\Gamma(x+1)}{(x+1) \Gamma(3 / 2+x)}\left(\frac{1}{4}\right)^{x}=\frac{3}{2}{ }_{3} F_{2}\left(\begin{array}{c}
1,, 1,1 \\
2, \frac{3}{2}
\end{array} ; \frac{1}{4}\right)
$$

11.2 Starting with $H_{3}(x, z)$ we find that $L=1$ and there is a vector first order recurrence relations for the polynomials $a_{0}(x), a_{1}(x)$.. That means if we set
$a(x):=\left[a_{0}(x), a_{1}(x)\right]^{T}$,
then there is a 2 by 2 matrix $\mathbf{A}(x)$ such that $a(x+1)=\mathbf{A}(x) a(x)$, and by using findrec in EKHAD we get
$a_{0}(x):=\frac{(-1)^{x} \Gamma(x+\delta)^{3}(x+\delta-1) \Gamma(\delta-1 / 2)}{\Gamma(\delta)^{3}}$, and $a_{1}(x):=\frac{2(-1)^{x} \Gamma(\delta+x)^{3} \Gamma(\delta-1 / 2)}{\Gamma(\delta)^{3}}$.
Hence our polynomial is $P(x, z)=a_{0}(x)+a_{1}(x)(z+m)$, and the corresponding WZ-pair is $\left(H_{3}(x, z) P(x, z), G(x, z)\right)$, where

$$
G(x, z):=\frac{2 x+2 \delta+z+m-1}{2 z+2 m+\delta+x-1} P(x, z) H_{3}(x, z)
$$

as outputted by zeil in EKHAD. Applying corollary 1, we get the identity

$$
\sum_{z=0}^{\infty} \frac{(-1)^{z}(2 z+2 m+\delta-1) \Gamma(m+z)^{3}}{\Gamma(m)^{3} \Gamma(m+\delta+z)^{3}}=\sum_{x=0}^{\infty} \frac{(-1)^{x}(2 x+2 \delta+m-1) \Gamma(x+\delta)^{3}}{\Gamma(\delta)^{3} \Gamma(m+\delta+x)^{3}}
$$

for $\delta=0,1,2,3, \ldots$, and $m=0,1,2,3, \ldots$.

[^0]11.3 Starting with $H_{4}(x, z)$ we find that $L=1$ and there is a first order vector recurrence relations for the polynomials $a_{0}(x), a_{1}(x)$. Using findrec in EKHAD we get
$$
a_{0}(x):=\frac{(-1)^{x} \Gamma(\delta+x)^{5}(\delta+x-1) \Gamma(\delta-1 / 2)}{\Gamma(\delta+x-1 / 2) \Gamma(\delta)^{5} 4^{x}}
$$
and
$$
a_{1}(x):=\frac{2(-1)^{x} \Gamma(\delta+x)^{5} \Gamma(\delta-1 / 2)}{4^{x} \Gamma(\delta+x-1 / 2) \Gamma(\delta)^{5}}
$$

This leads to the WZ-pair $\left(F(x, z)\left(a_{0}(x)+a_{1}(x)(m+z)\right), G\right)$, where G is

$$
G:=\frac{5 x^{2}+6 m x+10 \delta x+6 m \delta+5 \delta^{2}+2 m^{2}+6 x z-6 x+6 \delta z-6 \delta+4 m z-4 m+2 z^{2}-4 z+2}{2(2 x+2 \delta-1)(2 m+2 z+x+\delta-1)}
$$

Application of corollary 1 yields the identity

$$
\sum_{z=0}^{\infty} \frac{\Gamma(m+z)^{4}(2 m+2 z+\delta-1)}{\Gamma(m+\delta+z)^{4}}=\frac{1}{4} \sum_{x=0}^{\infty} \frac{\Gamma(m)^{4} \Gamma(x+\delta)^{5} \Gamma(\delta-1 / 2) P(x)}{\Gamma(x+1 / 2+\delta) \Gamma(m+\delta+x)^{4} \Gamma(\delta)^{5}}\left(\frac{-1}{4}\right)^{x}
$$

that holds for $\delta=0,1,2,3, \ldots$, and $m=0,1,2,3,4, \ldots$, where

$$
P(x):=5 x^{2}+10 x \delta+6 x m+2 m^{2}+5 \delta^{2}+6 \delta m+2-6 x-4 m-6 \delta
$$

If we specialize to $m=1$ and $\delta=1$, we find the motivation for Andrei Markov's beautiful work, namely

$$
\zeta(3)=\frac{5 \sqrt{\pi}}{4} \sum_{x=0}^{\infty} \frac{\Gamma(x+1)}{(x+1)^{2} \Gamma(x+3 / 2)}\left(\frac{-1}{4}\right)^{x}=\frac{5}{4}{ }_{4} F_{3}\left(\begin{array}{c}
1,1,1,1 \\
2,2, \frac{3}{2}
\end{array} ; \frac{-1}{4}\right)
$$

11.4 Starting with $H_{5}(x, z)$ we found that $L=3$. The corresponding polynomial satisfies a recurrence relation of order ≥ 2, for which we couldn't find an explicit closed form solution for the polynomial. Nonetheless, as described in [MZ] , we have an accelerating formula for $\zeta(5)$ (see [MZ] for $5 \leq n \leq 9$).

Acknowledgements

I wish to thank my thesis advisor, Prof. Doron Zeilberger, for his guidance. Also many thanks to the anonymous referees for helpful comments and suggestions on earlier versions.

References

[A] T. Amdeberhan, Faster and faster convergent series for $\zeta(3)$, Elec. J. of Combinatorics, 3 (1996):4042.
[AZ] T. Amdeberhan and D. Zeilberger, Hypergeometric Series Acceleration via the WZ Method, Invent. Math. 108, (1992): 575-633.
[M] M. Mohammed, The q-Markov-WZ Method, to appear in Annals of Combinatorics.
[MZ] M. Mohammed and D. Zeilberger, The Markov-WZ Method, Elec. J. of Combinatorics, 11:1, Article R53.
[W] H. Wilf, Accelerated series for universal constants, by the WZ Method, J. of Discrete Mathematics and Theoretical Computer Science 3, (1999): 189-192.
[WZ] H. Wilf and D. Zeilberger, Rational Function Certify Combinatorial Identities, J. Amer. Math. Soc. 3, (1990): 147-158.
[Z] D. Zeilberger, Closed Form (pun intended!), Contemporary Mathematics 143, (1993): 579-607.
[Z1] D. Zeilberger, The method of creative telescoping, J. Symbolic Computation 11, (1991): 195-204.

Mohamud Mohammed

[^0]: \dagger download-able free from: http://www.math.rutgers.edu/~zeilberg/

