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A k-stack layout(respectivelyk-queue layoytof a graph consists of a total order of the vertices, and a partition
of the edges int& sets of non-crossing (non-nested) edges with respect to the vertex orderkgagk layoutof

a graph consists of a vertéxcolouring, and a total order of each vertex colour class, such that between each pair
of colour classes no two edges cross. Etack-numbefrespectivelygueue-numbettrack-numbey of a graphG,
denoted bysn(G) (qn(G), tn(@)), is the minimumk such thaiG has ak-stack -queue k-track) layout.

This paper studies stack, queue, and track layouts of graph subdivisions. It is known that every grapistaak a
subdivision. The best known upper bound on the number of division vertices per edgestack subdivision of an
n-vertex graphG is improved fromO(log n) to O(log min{sn(G),gn(G)}). This result reduces the question of
whether queue-number is bounded by stack-number to whatimick graphs have bounded queue number.

It is proved that every graph haegueue subdivision, &-track subdivision, and a mixetdstack1-queue subdivi-
sion. All these values are optimal for every non-planar graph. In addition, we characterise those graprstaakh
k-queue, and-track subdivisions, for all values &f The number of division vertices per edge in the casegfieue
and4-track subdivisions, namel§ (log qn(G)), is optimal to within a constant factor, for every gragh

Applications to 3D polyline grid drawings are presented. For example, it is proved that every@raat a 3D
polyline grid drawing with the vertices on a rectangular prism, and @itbog qn(G)) bends per edge. Finally, we
establish a tight relationship between queue layouts and so-@aftedk thickness of bipartite graphs.
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1 Introduction

We consider undirected, finite, and simple graghsvith vertex setV(G) and edge seE(G). The
number of vertices and edges Gf are respectively denoted by = |V(G)| andm = |E(G)|. The
subgraph of7 induced by a set of verticed C V(G) is denoted byG[A]. For all A, B C V(G) with
AN B = 0, we denote byG[A, B] the bipartite subgraph aff with vertex setA U B and edge set
{vw € E(G) : v € A,w € B}. The spanning subgraph 6f induced by a set of edges C E(G) is
denoted byG[S].

A subdivisionof a graphG is a graph obtained fror¢ by replacing each edgev € E(G) by a path
with at least one edge whose endpoints @a@ndw. Internal vertices on this path are calldiision
vertices, whilev andw are calledoriginal vertices. LetG’, G’ andG" be the subdivisions aff with
respectively one, two and three division vertices per edge. Throughout this paper, we implicitly use the
fact that planarity and non-planarity is preserved by subdividing edges. A gfaptaminor of G if H
is isomorphic to a graph obtained from a subgraplédfy contracting edges. A minor-closed class of
graphs iroperif it is not the class of all graphs.

A graph parameters a functiona that assigns to every grajgh a non-negative integer(G). Letg
be a class of graphs. By(G) we denote the functiofi : N — N, wheref(n) is the maximum of(G),
taken over all-vertex graphsy € G. We sayG hasboundedu if «(G) € O(1). A graph parameter
« is bounded bya graph paramete? (for some clasg;), if there exists ainding function g such that
a(G) < g(B(Q)) for every grapltG (in G). If ais bounded by (in G) and/ is bounded byy (in G) then
« andg aretied (in G). Clearly, if « andg are tied then a graph family has bounded: if and only if G
has boundeg@. These notions were introduced by &@fas [51] in relation to near-perfect graph families
for which the chromatic number is bounded by the clique-number.

1.1 Stack and Queue Layouts

An orderingof a setS is a total ordex:,, on S. It will be convenient to interchange™ and “<,” when
there is no ambiguity. For instance, we says ordered byo. For some ordered sét, let 'S denote
the same set with the reverse orderingveéktex orderingof a graphG is an orderings of the vertex set
V(G). Attimes, it will be convenient to expressby the list(vy, vs, .. ., v, ), Wherev; <, v; if and only
if 1 <4< j <n.Suppose that;, Vs,...,V, are disjoint sets of vertices, such that e&¢ls ordered by
<;. Then(V4, Vs, ..., V) denotes the vertex orderingsuch thabt <, w whenever € V; andw € V;
withi < j,orv e V;,w € V;, andv <; w. We writeV} <, Vo <, -+ <, V.

In a vertex ordering of a graphG, let L(e) andR(e) denote the endpoints of each edge E(G) such
thatL(e) <, R(e). Consider two edges f € E(G) with no common endpoint such thite) <, L(f).
If L(e) <, L(f) <+ R(e) <, R(f)thene andf cross and if L(e) <, L(f) <, R(f) <, R(e) then
e and f nest and f is nested inside. A stack(respectivelygueug is a set of edge&’ C E(G) such
that no two edges i’ cross (nest). Observe that when traversing the vertex ordering, edges in a stack
(queue) appear in LIFO (FIFO) order—hence the names. A giiéheas a total ordex, called thequeue
order, such that

Ve,f €E', exf < L(e) <, L(f) andR(e) <, R(f) . Q)

A k-stack(queu@ layoutof G consists of a vertex ordering of G and a partition{E, : 1 < ¢ < k}
of E(G), such that eacli, is astack(queug in o. At times we writestack(e) = ¢ (or queue(e) = ) if
e € E,. Examples oB-stack and-queue layouts of(s are illustrated in Figurg]1.
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Fig. 1: Layouts of K¢: (a) 3-stack, (b)3-queue.

A graph admitting &-stack (queue) layout is calledkastack(queu@ graph The stack-numbenf a
graphG, denoted byn(G), is the minimumk such thatG is a k-stack graph. Thegueue-numbeof a
graphG, denoted byyn(G), is the minimumk such thatG is ak-queue graph. By interpreting a queue
layout as a partition of the edges into sets that saf{i$fy (1), the queue-number of a graph is a natural measure
of its ‘linearity’.

For a summary of applications and results regarding stack and queue layouts see our companion paper
[29]. Despite a wealth of research on stack and queue layouts, the following fundamental questions of
Heathet al. [56] remain unanswered.

Open Problem 1. [56]ls stack-number bounded by queue-number?
Open Problem 2. [56]ls queue-number bounded by stack-number?

Suppose that stack-number is bounded by queue-number, but queue-number is not bounded by stack-
number. This would happen, for example, if there exists a constsunth that for every there exists an
s-stack graph with ng-queue layout. Then we would consider stacks to be more ‘powerful’ than queues,
and vice versa.

Heathet al. [56], in their study of the relationship between stack- and queue-number, restricted them-
selves to linear binding functions. For example, for stack-number to be bounded by queue-number meant
thatsn(G) € O(an(G)) for every graphG. Thus Heattet al. [56] considered Open Problgm 1 to be
solved in the negative by displaying an infinite class of graphsuch thasn(G) € Q(39"(9). In our
more liberal definition of a binding function, this result merely provides a lower bound on a potential
binding function.

Depth-first search and breadth-first search can be thought of as the same algorithm, where depth-first
search operates with a stack and breadth-first search operates with a queue. Thus stack and queue layouts
of graphs are a means for measuring the relative power of depth-first search and breadth-first search.
It is no coincidence that many algorithms for computing stack layouts use depth-first searchl [16, 47],
while breadth-first search is often used for computing queue layouts [27, 56, 86]. These ideas are made
particularly concrete in the case of trees (see Lemmnata 15 and 16).

1.2 Stack and Queue Layouts of Subdivisions

Stack and queue layouts of graph subdivisions are a central topic of this paper. The following fundamental
result has been observed by many authors [V, 39, 70, 73]. The well known proof, which we include for
completeness, can be traced to the seminal result by Atnedsen [3] that every graph has an embedding in
a 3-page book. Kainen and Overbay [64] state that, according to Jozef Przytycki, this result was also
discovered by Holtz, a student of Reidemeister.
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Theorem 1. [739[ 70, 73Every graph has &-stack subdivision.

Proof: Leto be an arbitrary vertex ordering of a given graghConsider the grapts”’ with each edge of

G subdivided twice. For each vertexc V(G), insert intoo the verticeqz : vz € E(G")} immediately

to the right ofv, and assign the edgds" = {vz : v € V(G),vz € E(G")} to the first stack. Clearly

no two edges inE* cross inc. It remains to assign a subdivision of the matching=") \ E* to the
remaining two stacks. This amounts to drawing a matching in the plane with no edge crossings such that
the vertices are fixed to a line. Clearly this can be accomplished. An edgé&®f) \ E* is subdivided

every time it crosses the line. Thus every graph hasstack subdivision. O

Note that3-stack layouts are important in complexity thearyl|[45,[46, 65], austhck layouts of knots
and links, so calle®ynnikov diagramgshave also recently been considered [18| 38, 34, 35, 36, 67,176, 91].

The proof of Theorern|1 provides no bound on the number of division vertices. Itis interesting to deter-
mine the minimum number of division vertices ir3atack subdivision of a given graph. The previously
best known bounds are due to Enomoto and Miyauchi [39], who proved that every grapl3istechk
subdivision withO(log n) division vertices per edge. Moreover, a trade-off between the number of stacks
and the number of division vertices per edge was observed. In particular, Enomoto and Miyalchi [71, 73]
proved that for alls > 3, every graph has aststack subdivision withO(log,_, n) division vertices per
edge, and Enomotet al. [40] proved that this bound is tight up to a constant factor&gy (and some
slightly more general families). Thus Enomabal. [40] claimed that the(logn) upper bound is ‘es-
sentially best possible’. Note that Miyauchi [72] recently improved the upper bouéiltg,_, ») for
bipartite graphs wit vertices in the smaller bipartition.

We prove a refinement of the upper bound of Enomoto and Miyalchi [39], in which the number of
division vertices per edge depends on the stack-number or queue-number of the given graph. In particular,
every graphG has a3-stack subdivision withO(log min{sn(G),qn(G)}) division vertices per edge.
Sincesn(G) andgn(G) are both no more tham, our bound is at most th@(log n) bound of Enomoto and
Miyauchi [39] (ignoring constant factors). This result has a significant implication for Open Prpblem 2.
Namely that queue-number is bounded by stack-number if and odvstidck graphs have bounded queue-
number (Theorein|8). For this corollary to hold, it is essential that the number of division vertices per edge
is some function oén(G), thus emphasising the significance of our bound in comparison with previous
results. As described in Taljlé 1, our result Sestack subdivisions generalisesststack subdivisions in
a similar fashion to the result of Miyauchi [[73].

We prove an analogous result for queue layouts. In particular, every grawals &2-queue subdivision
with O(log gn(G)) division vertices per edge. Thus, at least for the representation of graph subdivisions,
two queues suffice rather than three stacks. In this sense, queues are more powerful than stacks. Moreover,
our bound on the number of division vertices per edge is optimal up to a constant factor for all graphs.
Unfortunately, no such universal lower bound is known for stack layouts of subdivisions.

Stack and queue layouts are generalised through the notioomi¥edlayout. Here each edge of a
graph is assigned to a stack or to a queue, defined with respect to a common vertex ordering. We speak
of an s-stackg-queue mixed layownd ans-stackg-queue graph Part of the motivation for studying
mixed stack and queue layouts is that they model the double-ended queue (dequeue) data structure, since
a dequeue may be simulated by two stacks and one queue. Observe that the proof of Theorem 1 implies
that every graph haszastackl-queue subdivision, since the first stack is also a queue, whereas we prove
that every graph haslastackl-queue subdivision.
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Tab. 1: Layouts of a subdivision of a gragh.

graph type of layout # division vertices per edge reference
arbitrary s-stack 6 > 3) O(log, ,sn(G)) Theoren{
arbitrary s-stack & > 3) O(log,_, an(G)) Theore
planar 2-stack 1 [49,[66]; Lemm
arbitrary g-queue § > 2) O(log, an(G)) Theorems 4 and 5
planar 1-queue n—2 Theorem 2
arbitrary s-stackg-queue §>1,q¢>1) O(10g(54.¢)4 SN(G)) Theoren 11
arbitrary s-stackg-queue §>1,g>1) O(log(s14)4 AN(G)) Theore
planar 1-stackl-queue 4 Lemm
arbitrary  (d + 1,2)-track @ > 2) O(log, qn(@)) Theorem$ 14 arld 1.7
arbitrary (d,3)-track @ >2) O(loggan(G)) Theorems 15 and 17
arbitrary (d+2)-track @ >2) O(log,an(QG)) Theorems 16 arnd 17
planar 3-track n—2 Theorem 2l

1.3 Track Layouts

A vertext-colouring of a graphG is a partition{V; : 1 < ¢ < t} of V(G) such that for every edge
vw € E(G), if v € V; andw € Vj theni # j. Suppose that each colour cldgss ordered by<;. Then
the ordered sefl;, <;) is called arack, and{(V;, <;) : 1 <1 < t} is at-track assignmentf G. We say
track(v) = < whenv € V;. To ease the notation we denote track assignmen{dby 1 < i < ¢} when
the ordering on each colour class is implicit.

The spanof an edgevw in a track assignmertV; : 1 < i < t}is|i — j| wherev € V; andw € V.
That there is a fixed ordering of the tracks in a track assignment is implicit in the definition of span.

An X-crossingn a track assignment consists of two edgesandzy such thav <; « andy <; w, for
distinct colours; andj. An edgek-colouringof G is simply a partition{ E; : 1 < i < k} of E(G). An
edgevw € E; is said to becoloured:, writtencol (vw) = i. A (k, t)-track layoutof G consists of &-track
assignment o7 and an edgé-colouring of G with no monochromatic X-crossing. A graph admitting
a (k,t)-track layout is called &k, t)-track graph The minimumt such that a graply is a (k, ¢)-track
graph is denoted by (G).

(1,t)-track layouts (that is, with no X-crossing) are of particular interest due to applications in three-
dimensional graph drawing (see Sectjdn 5). (1At)-track layout is called a-track layout A graph
admitting a-track layout is called &track graph Thetrack-numbernof G is tn; (G), simply denoted by
tn(G). For a summary of bounds on the track-number see our companion paper [28].

The following lemma highlights the fundamental relationship between track layouts, and queue and
stack layouts. Its proof follows immediately from the definitions, and is illustrated in Higure2<ot.

Lemma 1. Let{A, B} be a track assignment of a bipartite gragh Then the following are equivalent:
(a) {4, B} admits a(k, 2)-track layout ofG,
(b) the vertex orderind A, B) admits ak-queue layout o7, and

(c) the vertex ordering A, E) admits ak-stack layout of=. O
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() (b) (©

Fig. 2: Layouts of a caterpillar: ()-track, (b)1-queue, (c)l-stack.

The relationship between queue and track layouts in Lefjma 1 was extended by Bugtnal{28]
who proved that queue-number and track-number are tied.

Our main result concerning track layouts highlights the trade-off between few tracks and few edge
colours. We prove that every graghhas a subdivisio® with O(log gqn(G)) division vertices per edge,
such that (a)D has &1, 4)-track layout, (b)D has &2, 3)-track layout, and (cP has &3, 2)-track layout.
We shall see that all of these numeric values are best possible for any non-planatzgipteover, the
number of division vertices per edges is optimal, since any subdivision satisfying (a), (b) or (c) has an
edge withQ2(log gn(G)) division vertices. For all > 2, our results generalise {d, d + 2)-, (d, 3)-, and
(d + 1, 2)-track layouts as summarised in Tapje 1.

1.4 Thickness and Topological Parameters

Let o be a graph parameter. Lsib-« be the graph parameter definedsmp-o(G) = o(G’) for every
graphG. We saya is topologicalif o andsub-« are tied. For example, chromatic number is not topo-
logical sinceG’ is bipartite. On the other hand treewidth is topological. In fact, it is well known that the
treewidth of a grapld equals the treewidth of every subdivision®f23, Exercise 13, p. 278].

Thethicknesf a graphG, denoted byd(G), is the minimum number of subgraphs in a partition of
E(G) into planar subgraphs [63]. Thickness is not topological sti¢€) < 2. Beineke [[4] attributes
this observation to Tutte. The proof is straightforward. LétZ) = {v1,ve, ..., v,}. Denote by, ; the
division vertex of each edggv; withi < j. Then{v;z; ; : 1 <i < j <n}and{vz;, :1 <j<i<n}
is a partition of E(G’) in two (planar) forests.

The geometric thicknessf a graphG, denoted byl (G), is the minimum number of colours such that
G can be drawn in the plane with edges as coloured straight-line segments, such that monochromatic
edges do not cross [24,163]. Every grafhhas such a drawing in the plane with an arbitrary set of
preassigned vertex locations, and witfG) edge colours [53, 81]. Thus, the key difference between
geometric thickness and (graph-theoretic) thickness is that geometric thickness requires the edges to be
drawn as straight line-segments, whereas thickness allows edges to bend arbitrarily. Epgstein [41] proved
thatd(G’) < 2 for every graphG. Thus geometric thickness is not topological.

Stack-number (or book-thickness) is equivalent to geometric thickness with the additional requirement
that the vertices are in convex position [5]. Thus

v graphG, 6(G) < 0(G) < sn(G) . )

Blankenship and OporowsKil[7], Enomoto and Miyauchil[39], and Eppstein [41] independently proved
thatsn(K,) is bounded byn(K],). The proofs by Blankenship and OporowskKi [7] and Eppsteih [41] use
essentially the same Ramsey-theoretic argument. i) = 2, Eppstein[[41l] observed that stack-
number is not bounded by geometric thickness. Using a more elaborate Ramsey-theoretic argument,
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Eppstein[[41] proved that geometric thickness is not bounded by thickness. In particular, for therey
exists a graph with thickness three and geometric thickness attleB&inkenship and Oporowskil[7]
conjecture that their result for complete graphs extends to all graphs.

Conjecture 1. [7] There exists a functioyfi, such that for every grapty and every subdivisio®/ of G
with at most one division vertex per edge, we havigs) < f(sn(H)).

In Lemma[ I3 we prove thatub-sn is bounded bysn. Thus the truth of Conjectufg 1 would imply
that stack-number is topological. Moreover, in Theofern 10 we prove that if Conj¢dture 1 is true then
stack-number is bounded by queue-number, thus giving an affirmative solution to Open Hrpblem 1. In
Section$ 2]1 ar[d 2.2 we prove that both track-number and queue-number are topological.

We now relate queue-number to a new thickness parameter. Letthek thicknessf a bipartite graph
G, denoted by, (G), be the minimunik such thatG has a(k, 2)-track layout. By[(2) and Lemniq 1(c),

V bipartite graphss, 6(G) < 6(G) < sn(G) < 62(G) .

Let the 2-track sub-thicknessf a graphG, denoted bysub-6,(G), be the2-track thickness of’.
This is well-defined sinc&” is bipartite. In Theorerp]2 we prove that queue-number is tiezitack
thickness for bipartite graphs, and queue-number is tiettttack sub-thickness (for all graphs). The
immediate implication for Open Probldm 1 is that stack-number is bounded by queue-number if and only
if stack-number is bounded Bytrack sub-thickness. While it is an open problem whether stack number
is bounded by track-number or by queue-number, in our companion paper [28] we prove the weaker result
that geometric thickness is bounded by track-number, which implies that geometric thickness is bounded
by queue-number.

1.5 Three-Dimensional Polyline Drawings

A three-dimensional polyline grid drawirgf a graph, henceforth calledB® polyline drawing represents

the vertices by distinct points i#® (calledgridpointy, and represents each edge as a polyline between

its endpoints with bends (if any) also at gridpoints, such that distinct edges only intersect at common
endpoints, and each edge only intersects a vertex that is an endpoint of that edge. A 3D polyline drawing
with at mosth bends per edge is calle®® b-bend drawing A 3D 0-bend drawing is called 3D straight-

line drawing Of course, a 3»-bend drawing of a grapty’ is precisely a 3D straight-line drawing of a
subdivision ofG with at mostb division vertices per edge.

In contrast to the case in the plane, it is well known that every graph has a 3D straight-line drawing.
We therefore are interested in optimising certain measures of the aesthetic quality of such drawings. The
bounding boxof a 3D polyline drawing is the minimum axis-aligned box containing the drawing. If the
bounding box has side lengths— 1, Y — 1 andZ — 1, then we speak of a x Y x Z polyline drawing
with volumeX - Y - Z. That is, the volume of a 3D polyline drawing is the number of gridpoints in the
bounding box. This definition is formulated so that two-dimensional drawings have positive volume.

This paper initiates the study of upper bounds on the volume and number of bends per edge in arbitrary
3D polyline drawings. (Three-dimensional polyline graphs drawings with orthogonal edges have been
previously studied; see [38, 100] for example.) The volume of 3D straight-line drawings has been widely
studied [10] 13, 17, 20, 21, 22,127,130] 44} 55,[80, 84]. Three-dimensional graph drawings in which the
vertices are allowed real coordinates have also been investigatéd|[12] [14,[15/ 19, 3/7, 48, 58, 59, 60, 61, 62,
74,79]. Aesthetic criteria besides volume that have been considered include symmétryl[58, 59, 60, 61, 62],
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aspect ratio[[15, 48], angular resolution [L5] 48], edge-separation [15, 48], and convexity![L4} 15, 37].
Three-dimensional graph drawing has applications in software visualisation [31.182] 94| 95, 96, 97] and
VLSI circuit layout [1,[2] 68, 68, 78, 85, 87, '90,199] for example.

Table[2 summarises the best known upper bounds on the volume and bends per edge in 3D polyline
drawings, including those established in this paper. In general, there is a tradeoff between few bends and
small volume in such drawings, which is evident in TdHle 2. Our upper boudt{flog ¢) is within a
factor of O(log ¢q) of being optimal for all-queue graphs, since Boseal. [10] proved that 3D polyline
drawings have at leagt(n + m) volume.

Tab. 2: Volume of 3D polyline drawings of graphs withvertices andn > n edges.

graph family bends per edge volume reference

arbitrary 0 Oo(n? Cohenet al. [17]
arbitrary 0 O(m*3n)  Dujmovic and Wood[[3D]
maximum degreé\ 0 O(Amn) Dujmovi¢t and Wood([3D]
bounded maximum degree 0 O(m'/?n)  Dujmovic and Wood[[3D]
bounded chromatic number 0 O(n?) Pachet al. [80]

bounded chromatic number 0 O(m?/3n)  Dujmovic and Wood[[3D0]
H-minor free { fixed) 0 O(n3/?) Dujmovic and Wood|[[30]
bounded treewidth 0 O(n) Dujmovic et al. [27]
c-colourableg-queue 1 O(

arbitrary 1 O(

g-queue 2 O(

g-queue (constant > 0) 0(1) O(

g-queue O(log q) O(

1.6 Organisation

This paper is organised as follows. Secfidn 2 presents results regarding queue, stack and track layouts of
the subdivisiong?’ andG”. Sectior] B presents most of our main results discussed above. In $ecion 3.2
we review known results concerning stack and queue layouts of trees, and prove a useful lemma about
mixed stack and queue layouts of trees. Sedtion 4 considers layouts of subdivisions of planar graphs.
Finally, in Sectiorj b we present applications in three-dimensional polyline graph drawing.

2 Small Subdivisions

In this section we consider layouts 6f andG”, the subdivisions of a graph with one and two division
vertices per edge, respectively.

2.1 Track Layouts

Lemma 2. For everyg-queue graplG, the subdivisiorG’ has a(q + 1, 2)-track layout. That is2-track
sub-thickness is bounded by queue-number. In particsiard, (G) < gn(G) + 1.
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Proof: Let o be the vertex ordering in g¢queue layout of7 with queues{E, : 1 < ¢ < ¢}. Recall
that L(e) and R(e) denote the left and right endpointsdnof each edge. Let X (e) denote the division
vertex ofe in G’. Let < be the total order ojX (e) : e € E(G)} such thatX (e) < X (f) whenever
L(e) <, L(f),or L(e) = L(f) andR(e) <, R(f). ConsidenV(G),o) and({X (e) : e € E(G)}, <)

to define a2-track assignment of?’. Colour the edges ofr’ as follows. For all edges € F, let
col(L(e)X (e)) = 0andcol (X (e)R(e)) = ¢. Since in<, division vertices are ordered primarily by the left
endpoint of the corresponding edge, no two edg@s X (e) andL(f) X (f) form an X-crossing. Suppose
e/ = X(e)R(e) and f' = X(f)R(f) form an X-crossing. Without loss of generali§(e) <, R(f) and
X(f) < X(e). By constructionL(f) <, L(e), ande is nested insid¢ in o. Thuse and f are in distinct
queues, andol(e’) # col(f’). Hence there is no monochromatic X-crossing. The number of edge colours
is g + 1. Therefore we have @ + 1, 2)-track layout ofG’. O

Lemma[ 2 is best possible in the following (weak) sense. (die a2-queue subdivision of a non-
planar graph, which exists by Theor@n 4 belowGlIfhas a(k, 2)-track layout, therk > 3 sinceG’ is
non-planar, and by Theorgm|22 below, only planar graphs f&&-track layouts. In Lemmp]3 below
we prove a complimentary result to Lemfija 2.

Lemma 3. Queue-number is bounded Rytrack sub-thickness. In particular, stib-6,(G) < k for some
graphG, thenan(G) < 1k(k +1).

Proof: Clearly we can assume th@tis connected. Thus in the givéh, 2)-track layout ofG’, the vertices
of G are on one track and the division vertices are on the other track: hetthe ordering of the original
vertices ofG on the first track, and let be the ordering of the division vertices on the second track. Let
1 < col(e) < k be the colour assigned to each edgd G’. ConsideV (G) to be ordered by Partition
the edges of7 into queues as follows. For each edge € F(G) subdivided by vertex: in G’, let
queue(vw) = {col(vz), col(wz)}. We now prove that this defines a queue layoutfofSayvw is nested
insideab in o. Without loss of generality <, v <, w <, b. Letvw be divided byz in G’, and letab
be divided byc in G'. First suppose that <, ¢ in the second track. Then eachab andzv form an
X-crossing withac. Thuscol(zw) # col(ac) andcol(xzv) # col(ac). Hencequeue(vw) # queue(ab).
Now suppose: <, x in the second track. Themre forms an X-crossing with each ofw andzv. Thus
col(bc) # col(zw) andcol (be) # col(zv). Hencequeue(vw) # queue(ad). The number of queues in the
queue layout of is (5) + &k = 3k(k + 1). O

The observant reader will notice parallels between the above proof and that of the Ezekeres
Theorem[[42] regarding increasing and decreasing subsequences. In fact,db«SEetteres Theorem in
conjunction with Lemma 33 below can prove Lemnha 3 with the slightly weaker bouema(6f) < k2.

Theorem 2. Queue-number is tied @track thickness for bipartite graphs, and queue-number is tied to
2-track sub-thickness (for all graphs).

Proof: The first claim is proved in our companion pager [28]. The second claim follows from Lerpinata 2
and3. O

Lemma 4. Everyc-colourableg-queue graplG satisfies:
@tn2(G") <qg+1, B)tn(G')<c(g+1), and C)tn(G")<qg+2.
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Proof: Let o be the vertex ordering in @queue layout of7 with queues(E, : 1 < ¢ < ¢}. Let X (e)
denote the division vertex efin G’. Let X, = {X (e) : e € E,} for eachl < ¢ < ¢. Let <, denote the
queue order of each,. Consider<, to also ordetX,. That is, for all edges, f € E,

X(e) <¢ X(f) <= L(e) <, L(f) andR(e) <, R(J) . 3

First we prove (a). The s€(X,, <) : 1 < /¢ < ¢} U{(V(G), o)} defines &q + 1)-track assignment
of G'. Colour edged.(e) X (e) of G’ blue, and colour edgeB(e) X (e¢) of G’ red. We claim that there
is no monochromatic X-crossing. All edges@f are between a vertex @¢f and a division vertex. Thus
an X-crossing must involve two division vertices on the same track. Consider two edgesf with
X(e) <¢ X(f) for somel < ¢ < q. By (3), each of the pairs of edggd.(e) X (e), L(f)X(f)} and
{R(e)X (e), R(f)X(f)} do not form an X-crossing. For each pair of ed§ése) X (¢), R(f) X (f)} and
{R(e)X (e), L(f)X(f)} the edges are coloured differently. Thus there is no monochromatic X-crossing
and we have @, ¢ + 1)-track layout ofG’".

Now we prove (b). Let{V; : 1 < i < ¢} be a vertexc-colouring of G. Let X, , = {X(e) :

e € Ey, Le) € Vijforalll < ¢ < gandl < i <c Thus{(X;e<¢) :1<i<el<l<
q} U{(Vi, <o) : 1 < i < ¢} defines a(gc + c¢)-track assignment off’. Consider division vertices
X(e), X(f) € X, suchthatX(e) <, X(f). By (3), L(e) < L(f) in the ordering or¥/;. Thus the pair
of edges{L(e)X (e), L(f)X(f)} do not form an X-crossing. Since boff(e) and R(f) are not inV},
the pairs of edge$L(e)X (e), R(f)X(f)} and{R(e)X (e), L(f)X(f)} do not form an X-crossing. If
both R(e) and R(f) are in the same colour cla3§, thenR(e) <, R(f) by (3), and the pair of edges
{R(e)X (e), R(f)X(f)} do not form an X-crossing. Thus we havéga + c)-track layout ofG’.

Finally we prove (c). LetL(e), X(e),Y (e), R(e)) be the path replacing each edgén G”. The
first track consists of (V(G),0)}. The second track consists §K (e) : e € E(G)}, ordered so that
X(e) < X(f) wheneverL(e) <, L(f), or L(e) = L(f) andR(e) <, R(f). Edges between the first
and second track are of the forhie) X (e). Since vertices( (e) in the second track are primarily ordered
by L(e), there is no X-crossing between the first and second track. Now define andrp@ewith X,.
Then(Ye, <¢) : 1 < ¢ < q} comprises the finaj tracks. An X-crossing involving vertices on these tracks
can only be between pairs of edgek (e)Y (e), X (f)Y (f)} or {Y (e)R(e), Y (f)R(f)}, wheree and f
are in the same queue. By (3), such pairs of edges do not form an X-crossing. Thus Weg-h@ydrack
layout of G”. O

We now describe how to produce a track layout®fgiven a track layout of a grap. We will need
the following result from our companion paper [28].

Lemma 5. [28] Queue-number is bounded by track-number. In particular, eyery)-track graph with
maximum spag (< ¢ — 1) has aks-queue layout.

Lemma 6. LetG be a(k, t)-track graph with maximum span(< ¢t — 1). Then
@tnes+1(G) <2, )t (G)<2t—1, and (C)tn(G) <k({t—1)+1t .

Proof: Let{V; : 1 < i < ¢} be a(k,t)-track layout ofG with spans. Let{E, : 1 < ¢ < k} be
the corresponding edge-colouring. By Lempmabhas aks-queue layout. By Lemmig| 4(aj;y’ has a
(ks + 1, 2)-track layout. This proves part (a).

For each edgew of G, let both edges 6’ corresponding taw be coloured by the colour assigned
to vw. Now we prove part (b). Foreadh< i <t —1, letX; C V(G’) \ V(G) be the set consisting of
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Fig. 3: lllustration for Lemma}(c).

the division vertices of edgesy € E(G) such that € V;, w € V;, andi < j. Order the vertices iX;
with respect to the order of the corresponding verticelg; jibreaking ties by the order in soni& where
applicable. Clearly there is no monochromatic X-crossing, where vertiogs\af’ remain in the given
track layout. The number of tracksds — 1.

Finally we prove part (c). Foreadh< ¢ <t —1andl </ <k, letX; , C X, be the set consisting
of the division vertices of edgesv € E, such thab € V;, w € V;, andi < j. Order each¥X; , as inX;.
All edges ofG’ incident to a vertex inX; , are monochromatic. Thus there is no X-crossing regardless of
the edge colours. The number of tracks is k(t — 1). O

We now describe how to produce a track layout of a gr@miven a track layout ofy’.

Lemma 7. If a graph G is vertexc-colourable andG’ has a(k, t)-track layout, theni has a(tk?, ct)-
track layout.

Proof: Let{V; : 1 < i < ¢} be a vertex--colouring of G, and for each vertex € V(G), letcol(v) = i
wherev € V;. Let{(W;, <;) : 1 < j <t} be a(k, t)-track layout ofG" with edge colourind Ey : 1 <

¢ <E}. LetV; ; = V;nW, foreachl <i <candl <j <t Then{(V;,;,<;):1<i<¢ 1<j<t}is

a track assignment @¥. We now colour each edgev of G. Without loss of generalitgol(v) < col(w).
Let = be the division vertex obw in G’, and sayx € W;, va € E;, andwz € E,,. Then colour
vw by the ordered tripléj, ¢1, ¢>). Note that the number of edge coloursti€. We claim that there
is no monochromatic X-crossing in the track assignment’ofSuppose for the sake of contradiction,
that there are monochromatic edges andpq in G that form an X-crossing. Without loss of generality,
col(v) = col(p) < col(w) = col(g), and in the given track layout @’, v <;, p andg <;, w for some

1 < j1,j2 < t. Letz andy be the division vertices ofw andpq, respectively. Sincew andpq are
monochromaticg andy are in the same track/;,. If = <;, y thenwz andgy form a monochromatic
X-crossing in the given track layout, andiif<;, = thenvz andpy form a monochromatic X-crossing in
the given track layout. In both cases we have the desired contradiction. Thus there is no monochromatic
X-crossing in the track assignment@f and we have &k?, ct)-track layout ofG. O

Lemma 8. For every graphG, if tn(G’) < t thenG is vertext(2¢t — 1)-colourable.
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Proof: Consider a-track layout ofG’. For1 < i < t, letV; be the set of original vertices @ on

the i-th track. LetG; be the subgraph aff induced byV;. Let E; ; be the set of edgesw of G for
which v, w € V; and the division vertex ofw is in thej-th track of G’ (1 < j < t,j # 7). Each vertex

in V; is incident to at most two edges i, ;, as otherwise there would be an X-crossing in the track
layout of G’. ThusG,; has maximum degree at mast — 1). HenceG, is (2t — 1)-colourable, andx is

t(2t — 1)-colourable. O

Theorem 3. Track-number is topological. In particular, every graghsatisfies
tn(G') <2tn(G) -1 ,

and iftn(G’) < t then
mn(G) < (2t — 1)¢2 - 4(&)(@=DE-1)

Proof: The first claim is Lemmé&]|6(c) witk = 1. Now suppose thah(G’) < t. By Lemmd8,G is
t(2t — 1)-colourable. By Lemmp|7 witth = 1 ande = ¢(2t — 1), G has a(t,t?(2t — 1))-track layout.
In our companion paper [28], we proved thatid, ¢')-track layout of a graplz can be refined to an

(edge-monochromatic) - 4(2)' =1 _track layout ofG. The lemma follows by applying this result with
k' =tandt =t3(2t —1). O

2.2 Queue Layouts

In this section we study the relationship between the queue-number of a@raptl the queue-number
of G’. First note that Lemmafd 2 ahHl 5 imply the following.

Lemma 9. The subdivisior?’ of a¢-queue graphG has a(q + 1)-queue layout. O
We have the following converse result.

Lemma 10. For every graphG, if G’ has ag-queue layout with vertex ordering, theno restricted to
V(G) admits ag(2q + 1)-queue layout ofs.

Proof: Let X be the set of division vertices ¢¥'. In our companion paper [28], we prove that for every
vertex colouring{V; : 1 < i < ¢} of ag-queue grapli, there is &2¢, ¢)-track layout of H with tracks
{Vi : 1 <i < c}. Now apply this result t@7’. The vertex set¥ (G) and X define a vertex-colouring
of G'. ThusG’ has a(2¢, 2)-track layout with track$V (G), o) and(X, o). That is,sub-02(G) < 2q. By
Lemmd 3o restricted tol/ (G) admits ag(2g + 1)-queue layout of5. O

Lemmatd P anfl 10 imply that queue-number is topological, as mentioned in Seclion 1.4. We now
prove a slightly more general result than Lenjmp 10 that will be used in Sgction 3.5. Here we start with a
subdivision with at most one division vertex per edge rather than exactly one division vertex per edge.

Lemma 11. Let D be ag-queue subdivision of a gragh with at most one division vertex per edge. Then
G has a2¢(q + 1)-queue layout.

Proof: Let o be the vertex ordering in @queue layout ofD. Let A be the set of edges @F that are
subdivided inD, and letB the set of edges af that are not subdivided ib. By Lemmd 1DG[A] has
aq(2q + 1)-queue layout with vertex ordering By assumption(z[B] has ag-queue layout with vertex
orderingo. ThusG has &¢(gq + 1)-queue layout with vertex ordering O
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2.3 Stack Layouts

We now describe how to produce a stack layoutiffrom a queue, stack or track layout 6f By
Lemmatd [L(c) and]|2 we have:

Lemma 12. The subdivisiorG’ of a ¢g-queue graphG has a(q + 1)-stack layout. That issn(G’) <
an(G) + 1. O
<

Lemma 13. The subdivisiorG’ of an s-stack graphG has an(s + 1)-stack layout. That issn(G’)
sn(G) + 1.

Proof: Consider ars-stack layout ofG with vertex orderings. Denote the division vertex aefin G’ by

X (e). We now create a stack layout 6f. For each vertex of G, letey,es, ..., eq be all the edges
incident tov such that eacliL(e;) = v, andR(eq) <, R(ei—1) <, -+ <, R(e1). Add the division
verticesX (e1), X (ea), ..., X (eq) immediately to the right of in this order. Clearly for all edgesand

fof G, the edged.(e) X (e) andL(f) X (f) of G’ do not cross. Thus all these ‘left’ edges can be assigned
to a single stack. Each ‘right’ edg€(e) R(e) of G’ inherits the stack assigneddan G. Clearly no two
right edges in the same stack cross. TBUdas a(s + 1)-stack layout. O

Lemma 14. LetG be a(k, t)-track graph with maximum span(< ¢ — 1). Then the subdivisio6”’ of G
with one division vertex per edge has & + 1)-stack layout.

Proof: Let {(V;,<;) : 1 < i < t} be a(k, t)-track layout ofG with maximum spars, and with edge
colouring{E, : 1 < ¢ < k}. Denote byL(e) andR(e) the endpoints of each edgef G whereL(e) € V;
andR(e) € V; with ¢ < j. Denote byX (e) the division vertex inG’ of e. For eachl < ¢ <t —1and
1<a<s,let

Xia = {X(e) : ¢ € E(G), L(e) € Vi, R(e) € Vita} .

Since the maximum span is every division vertex of¥ is in someX; ,. Order eachX; , such that
for all X(e), X(f) € X, we haveX(e) < X(f) wheneverL(f) <; L(e), or L(e) = L(f) and
R(f) <i+a R(e). Leto be the vertex ordering @&’ defined by

(Vi, X160 X1 o100, X113 Vo, Xo 6, Xo 1,0, Xo1s -5 Vi)
Note thatL(e) <, X(e) <, R(e) for every edge: of G. For alll < o < s let
E,={L(e)X(e) : L(e) €V;, X(e) € X; o} .
Foralll</<kand0< (g <s—1,let
Eip={X(e)R(e) : e€ Ep, L(e) € V;, i = (mod s)} .

This partitions the edges @¥ into s(k + 1) sets. We claim that no two edges in a single set cross in
Consider two edgesand f of G. SayL(e) € V;, andL(f) € V.

Consider edge&(e) X (e) and L(f) X (f) both in someF,,. Without loss of generality; < i,, and if
L(e) = L(f) thenR(e) <, R(f). If i1 < iz thenL(e) <, X(e) <, L(f) <, X(f), andL(e)X (e)
andL(f)X(f) do not cross. lf; = iy then without loss of generaliti(e) <, L(f). SinceL(e)X (e)
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andL(f)X(f) are inE,, both X (e) and X (f) are inX;, . ThusL(e) <, L(f) <, X(f) <o X(e),
andL(f)X (f) does not crosé(e) X (e). Thus each sef,, is a valid stack in.

Now suppose the edges(e)R(e) and X (f)R(f) cross ino. Without loss of generalityX (e) <,
X(f) <o R(e) <, R(f). SayR(e) € V;, andR(f) € V;,. Theniy < iy < iz < i4. If 93 < iz then
ig — i1 < i3 —1i1 < s. Thusi; # iy (mod s), andX (e)R(e) and X (f)R(f) are not in the samé&y 3.
Now suppose; = iz. SinceX(e) <, X(f), we haveis = ig and L(f) <;; L(e). If L(f) = L(e)
then, sinceX(e) <, X(f) we haveR(f) <;, R(e), and thusR(f) <, R(e), a contradiction. If
L(f) <;, L(e) thenR(e) <;; R(f) sinceR(e) <, R(f). Thatis,e and f form an X-crossing in the
track layout, and are thus coloured differently. Hefitig) R(e) and X (f)R(f) are not in the sam&, 3.

Thus eachF,, and eachF, s is a valid stack, and’ has as(k + 1)-stack layout. O

3 Big Subdivisions

In this section we prove the main results introduced in Se€fion 1. That is, every Grapk a3-stack
subdivision, &-queue subdivision, a mixettstack1-queue subdivision, and 4&track subdivision. In
each case the number of division vertices per edg8(isgsn(G)) or O(logan(G)). First of all we
introduce the notion of &, H)-layout.

3.1 (k,H)-Layouts

Let G andH be graphsH is called ahost graph and its vertices are calletbdes An H-partition of G
is a partition{ H,, C V(G) : z € V(H)} of V(G) into bagsindexed by the nodes df such that for all
edgeyw € E(G) either:

- 3nodex € V(H) such that both, w € H, (vw is called arintrabag edge mappet =), or
- Jedgezy € E(H) such thav € H, andw € H, (vw is called arinterbag edge mappeio zy).

Tree-partitions, that is @-partition for some tre&", have been widely studied![9, 25,126, 52| 88], and
were instrumental in the result by Dujméet al. [27] that track-number and queue-number are bounded
by treewidth.

To obtain our main results for layouts of subdivisions we employ the following general structure. A
(k, H)-layout of G is a pair({ 1, Ea, ..., B}, {(Hz, <z) : © € V(H)}) such that:

- {H, CV(G):z € V(H)} is anH-partition of G.
- Vnodesr € V(H), <, is a total order orf,,.

- {E1,..., E} is acolouring of the interbag edges such that there is no monochrofat@ssing
where an X-crossing consists of a pair of interbag edgesndpg such that for some edge; €
E(H),v <z pandg <, w.

For each edgey € E(H), let k,, denote the number of colours used in the edge colouring of the
interbag edges af that are mapped tey. For each node € V(H), lets, denote the minimum number
of stacks such that, admits ans,-stack layout ofG[H,], and letg, denote the minimum number of
queues such that,, admits ag,.-queue layout o&G[H,].



Stacks, Queues and Tracks: Layouts of Graph Subdivisions 169

A (k, H)-layout with no intrabag edges is called/a H)-track layout A (1, H)-track layout is called
an H-track layout Observe that &k, K;)-track layout is simply dk, t)-track layoutas defined in Sec-
tion[1.3.

Our main results are proved using the following strategy. First a particular host t(eetree-like
graphT) is defined. The vertices of our graghare mapped to the root @f, and each edgew of G is
mapped to some node @f At each non-root node df on the path from the root to the node thait is
mapped to, we add two division verticesd@. This process produces(a, T')-layout of a subdivision
D of G, and is described in Sectipn B.3. Then a stack, queue, mixed or track-layBus afetermined,
as described in Sectign 3.2. Then in Secfion) 3.4 we describe how to transform a given layauatmf
the desired layout ob). This process is then carried out for queue, stack, mixed, and track layouts in
Section§ 3H=3]8.

3.2 Layouts of Trees

Let T be a rooted tree. The vertices Bfare callednodes and we assume that the edges are oriented
away from the root node. This will be the case for the remainder of this paper. A nod& iith no
outgoing edge is keaf in T'. As is standard, when referring to the edge of a directed grapmeans an
edge oriented from to y. Thedepthof a nodex € V(7)) is the distance from to  in 7', and is denoted

by deptl{z). Theheightof T is the maximum depth of a node 1 Let dedz), deg (z), and degd (x)
denote the degree, indegree, and outdegree of eachunadé (7). We denote by(x) the parent node

of each non-root node € V (T'). A vertex orderings of T' is breadth-firstif for all nodesz,y € V(T),

x <, y whenever deptfx) < deptiy), or deptiiz) = deptHy) andp(z) <, p(y).

Lemma 15. [57]A breadth-first vertex ordering of a trée admits al-queue layout of .
Proof: Since the depths of adjacent nodes differ by exactly one, and the nodes are ordered by non-

decreasing depth, the endpoints of a nested pair of edges must be at consecutive depths. By construction,
such a pair of edges are not nested, as illustrated in Higure 4. O

Fig. 4: 1-queue layout of a complete binary tree.

A depth-firstvertex orderingr of a rooted tredl” is defined recursively as follows. Letbe the root
node ofT with child nodesry, zs,...,z4. LetT; be the subtree rooted at, 1 < i < d. Theno is
defined byo (T') = (r,0(T1),0(Ts), ..., 0(Tq)).

Lemma 16. [16]A depth-first vertex ordering of a treeT" admits al-stack layout off".
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Proof: For the sake of contradiction, suppose that a pair of edgeandxy cross ino. Without loss of
generalityy <, r <, w <, y. Sincew is a child ofv andv <, x <, w, we have that (andy) are in
some subtre®; rooted at a child; of v. Sincexr <, w we haveV (T;) <, w. Sincey € V(T;), we have
y <, w, which is the desired contradiction. Thus no two edges crossas illustrated in Figur|5. O

Fig. 5: 1-stack layout of a complete binary tree.

The next lemma is the starting point for our results on mixed layouts in Sectipn 3.7. An2edge
colouring of a tred” with colours red and black good if for each noder € V(T") with an incoming red
edge, no other edge incidentds red. A vertex ordering of a directed graphagologicalif all edges
are directed from left to right.

Lemma 17. Let T be a rooted tree with a good edg@ecolouring. ThenT' has a topological vertex
ordering in which the red edges form a stack, and the black edges form a queue.

Proof: Let h be the height off’. For each0 < d < h, let V; be the set of nodes &f at depthd.
For eachl < d < h, let Ry and B; denote the sets of nodes Wy with an incoming red and black
edge, respectively. Let be the vertex orderingVy, Ry, By, Re, Ba, ..., R, By,) of T, where for each
1 < d < h, the nodes iB, are ordered with respect to the order of their parent¥{in ), and the nodes
in R, are in reverse order to that of their parentsi(in;). More precisely, for alb,w € B, we have
v <, wwhenevep(v) <, p(w), and for allv, w € Rq we havev <, w whenevep(w) <, p(v).

Since the depths of adjacent nodes differ by exactly one, and the nodes are ordered by non-decreasing
depth, the endpoints of a nested pair of edges must be at consecutive depths. By construction, such a pair
of black edges are not nested. Hence the black edges form a queue.

Suppose, for the sake of contradiction, that the red edgeandpq cross. Without loss of generality
v <, p <o w <, ¢. Then depttw) < depth{p) < depti{w). Since depttw) = depth{v) + 1,
either deptlp) = deptH{v) or deptt{p) = depti{v) + 1. First suppose that defh) = deptiv). Then
depth¢q) = depti{w). Since bothy andw have incoming red edgeg,<, w by construction. This is a
contradiction. Now suppose that defgth= depth{v)+1. Then deptfp) = depti{w). Letd = deptt{p).

Sincep has an outgoing red edge, the incoming edge at is black, andp € B;. Noww € Ry since
w has an incoming red edgev. SinceR,; <, By, we havew <, p, which is the desired contradiction.
Thus no two red edges cross, and hence the red edges form a stack. O

The next result is implicit in the work of Felsnet al. [44].

Lemma 18. [44]Every rooted tred" has an(edge-monochromafid¢rack layout in which every edge has
span one.
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Proof: Let o be a breadth-first vertex orderingBfstarting at the root. Lét; be the set of nodes at depth
d. Itis easily seen that there are no X-crossings in the track [a§(d4t o) : d > 0}. Clearly every edge
has span one, as illustrated in Figlfe 6. 0

Fig. 6: Track layout of a complete binary tree with every edge having $pan

3.3 (k,T)-Layouts

Lemma 19. LetT be the tree comprised of a root nod@ndd > 1 leavesvy, vo, ..., v4 adjacent tor.
Suppose that the nodesBfare labelled with non-negative integdis), I(v1), l(v2), . .., l(vq). LetG be
a graph with ak-queue (respectively;-stack) layout with vertex ordering, wherek < I(r) + I(v1) +
I(v2) + -+ +1(vq). ThenG has a subdivisiorD with zero or two division vertices per edge such that
has a(1, T')-layout in which the division vertices are mapped to the leavéds ahd the original vertices
are mapped to the root and are ordered by. Furthermore, every node € V(T) hasq, < I(x)

(s2 < ().

Proof: Sayo = (v1,vs,...,v,). Letl be aninteger such that— [ < [(vy) +(ve) + -+ {(vg). Let F
be the set of edges ¢f in an arbitrary set of queues (stacks). Subdivide every edge vw € E(G)\ F
twice, and denote the resulting pathye,, e,,, w). This defines a subdivisioP of G with zero or two
division vertices per edge. For each vertex V(G), let Nt (v) = {e, : e € E(G) \ F,v = L,(e)}
andN~(v) = {e, : e € E(G) \ F,v = R,(e)}. Order the vertices aN*(v) and N~ (v) with respect
to the order of the neighbours ofin ¢ as follows. In the case of a given queue layoutsléte the vertex
ordering of V(D) \ V(G) defined by

T=(NT(v1), N~ (v2), N"(v2), N~ (v3), N*(v3),..., N~ (vp—1), N (vy—1), N~ (vp) ) .

For a given stack layout, let be the vertex ordering df (D) \ V(G) defined by

m= (N+(v1),N*(v2),N+(v2),N*(vg),N+(vg),...,N*(vn_l),an_l),N*(vn)) :

Partition the remaining — [ queues (stacks) @F into setsA;, A, ..., A4 so that eachd; has at most
I(v;) queues (stacks). Creatéla T')-layout of D as follows. Map the original vertices ordereddyo r.
By construction, the intrabag edgé€sof D mapped ta- form [ queues (stacks) with respectdo Thus
qr <1 (s, <1). For each edgew € E(G) \ F thatis in a queue (stack) id,;, mape, ande,, to v;.
Order each bad’,, by =. Sincer is ordered primarily with respect to, there is no X-crossing in the
layout. That is, we have @1, T)-layout of D. In this layout, the edges,e,, of D are intrabag edges
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mapped to the leaves @f. Consider each such edgge,, to be assigned to the same queue (stackas

in the given layout of5. Consider two edges = vw and f = zy in E(G) \ F that have no common
endpoint. Sincer is ordered primarily with respect i, the edges,e,, and f, f, nest/cross inr if and

only if e and f nest/cross ir. Now consider two edges= vz andf = vy in E(G) \ F (that have a
common endpoint). In the case of queugs,, and f, f, are either crossing or disjoint. For stackse,

andf, f, are either nested or disjoint. Thus the queue (stack) assignment for intrabag edges is valid, and
Gv; < U(v;) (s0, <(v;)) foreachl < i <d. O

For the next result we will need the following construction. [&be a graph with gk, T} )-layout
for some tre€l;. Letx be a node off}, and suppose that the subgra@fil’; ] has a subdivisiorD,,
whereD,. has a(kq, T»)-layout, for some tre@s such that all the original vertices @, are mapped to
the rootr of T, ordered by< . Letmerge-atx be a binary operation on the layouts,, 7>) and(k,T})
defined as follows. First repladd’,, <) by (T}, <,), and rename: to y. Deleter from T, and make
its children point toy. Each node: # y in the new tre€l’; inherits (T, <) from the node it originated
from. It follows from the definition that merging., 7») and(k1, T>) atx results in a ks, T3)-layout of
the subdivisionD of G whereks < max{ki, k2} and wherey, = ¢ (s, = s,.), and each node # y in
V(T3) hasg, (s.) equal to that of the node it originated from.

Lemma 20. LetT be a rooted tree of heigtit. Suppose that each nodec V(7)) is labelled by a non-
negative integef(v) such thatheV(T) I(v) > k. LetG be ak-queue (respectively-stack) graph. Then
G has a subdivisioD with an even number of division vertices per edge, suchffhlads a(1, T')-layout
in which every node: € V(T) hasq, < l(z) (s, < I(z)). Every edge o has at mos®h division

vertices inD, and if all the non-leaf nodes @f are labelled0 and if all its leaves are at depth, then
every edge off has exactly2h division vertices inD.

Proof: We proceed by induction oh. If h = 0 then the result follows trivially. Assume the result
holds for all trees with height less than and letT be a tree of height rooted atr. Let 7" be the
subtree ofl" induced by the nodes at depth at mast- 1. Define a labeling on the nodes ®f as
follows. For each node € V(7T”) at depthh — 1, letl’(z) = I(z) + I(z1) + I(x2) + - - - + I(z4) Where
x1,T9,...,xq are the children of in 7. For all remaining nodes € V(7”), letl’(z) = I(x). Now
zevir V(@) =2, cv(r) Uz) = k. Thus by induction(+ has a subdivisio)’ with at most2(h — 1)
division vertices per edge, and has a(1,7")-layout such that, < I'(z) (s, < U/(z)) for all nodes

x € V(T"). For each node € V(T) at depthh — 1, let T'(z) denote the subtree @f induced byz
and its children, and let each node®fz) inherit its label fromT. For every leaf node: € V(T") at
depthh — 1, apply Lemma 19 to th&(z)-queue (stack) layoutD’[T7], <, ) and the labelled tre€ (z).
Merging(-atz) the resulting 1, T'(x))-layout of D’[T"] with the (1, T")-layout of D’ (for every leaf node
x) gives rise to the desirgd, T')-layout of a subdivisiorD of G. Since only the intrabag edges in the leaf
nodes ofl” are subdivided and they are subdivided either zero or two timiés a subdivision of7 with

an even number of division vertices per edge. Moreaenas at mos2h division vertices per edge. The
final claim of the lemma is immediate from the construction. Figlire 7 illustrates the main concepts of the
proof. a

For all integersi;, ds > 0, acomplete(d;, ds)-ary treeis a rooted tree in which all the leaves are at
the same depth, every non-leaf node at even depth has outdegaed every non-leaf node at odd depth
has outdegreds. If d; = d2 = d then we speak of aompleted-ary tree The following special case of
Lemmd 20 will be useful.
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()

()

Fig. 7: lllustration for Lemm4 20. Given (a) a labelled tréeand (b) ad-stack layout ofG (that is also al-queue
layout), the algorithm produces(a, T')-layout of a subdivision oz with () s, < I(z) or (d) g» < I(z).

We say &k, T')-layout of G is simpleif for every non-leaf node € V(T'), the sefl’, is an independent
set ofG. Thus for simple layouts;, = s, = 0 for all non-leaf nodes.

Lemma 21. LetT be a subdivision of the completé,, d.)-ary tree of height.. Leth’ be the height of
T. Leta = (dp)["/?1(dy) /2], Then every:-queue (respectively;-stack) graph has a subdivisioD
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with an even number of division vertices per edge, Briths a simpl€1, T')-layout in whichg, < [k/a/]
(sz < [k/a])) for every noder € V(T'). Moreover, the number of division vertices per edge is at most
21/, or exactly2h’ if all the leaves ofl" are at depth?’.

Proof: Let!(z) = 0 for each non-leaf node € V(T). Letl(z) = [k/a] for each leaf node € V(7).
The number of leaves in the complété , dy)-ary tree of height: is «. Subdividing the edges of a tree
does not change the number of leaves. Thualso hasy leaves. Thereforg_ . (1) l(z) = k. Since
the non-leaf nodes are labellédby Lemmd 2D has a subdivisioD with a (1, T)-layout such that
for each leaf node: € V(T), ¢, < l(z) = [k/a] (s, < l(z) = [k/a]), and for each non-leaf node
z € V(T), g < l(z) =0 (s, < l(xz) = 0). Thus the(1,T)-layout is simple. The claim about the
number of division vertices per edge follows immediately from Lerpmja 20. O

3.4 (k,H)-Layout — Layout of G

For a graph; with a (k, H)-layout, we now show how to convert a layout®finto a layout ofG. First
consider &k, T)-layout in whichT is a rooted directed tree. We will often defin@-&olouring of the
edges ofl" using colours red and black. The edgesibfmapped to red edges @f will be associated
with stacks, and those mapped to black edgeE will be associated with queues. LBt (T) and E*(T')
denote the sets of red and black edge¥ of

Lemma 22. Let G be a graph with &k, T')-layout for some rooted tre€. Suppose that each edge and
node ofT is coloured red or black such thdt has a topological vertex ordering where the red edges
form a stack and the black edges form a queue. For each modé/ (T'), let s/, = s, if = is red, and
s, = 0if z is black. Similarly, lety, = ¢, if z is black, andy, = 0 if « is red. Let

)\s: /+ km+ kx 5
s T T

zy€ET(T) yr€ET(T)

and

Ay = max {q,+ max > ke
zeV(T) { er(T):ySnyzeEb(T)zmgﬂz

ThenG has an);-stack),-queue mixed layout, such that the edge& dfiat are mapped to red nodes or
edges ofl" are in stacks, and the edges@fthat are mapped to black nodes or edged’'afre in queues.

To prove Lemm@ 22 we need the following lemma due to Heath and Rosehbkerg [57]. (See our compan-
ion paper([29] for a simple proof.) Let be a vertex ordering of a grajgh. A rainbowin o is a matching
{viw; € B(G) : 1 <i<k}suchthat) <, vy <y« <o Uk <o Wi <o Wi—1 <g "+ <5 WI.

Lemma 23. [57]A vertex ordering of a grapli admits ak-queue layout o5 if and only if it has no
(k + 1)-edge rainbow.

Proof of Lemma(22: First we label the nodes df asforward or backward Consider the nodes @f in
the order of their appearancedn Label the root node as forward or backward arbitrarily. Now consider
a non-root node: with incoming edgeyz. Sinceo is topological,y has already been labelled. yf is
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black then labet with the same label as that givemjolf yx is red then labet with the opposite label to
that given toy. Now create a vertex orderingof G by replacing each nodein o by T, if x is forward,

and byfc if z is backward. (Recall theﬁ is the reverse ordering @f, to that in the givenk, T')-layout.)

Let E"(G) and E*(G) denote the sets of edges Gfthat are mapped to red edges/nodes and black
edges/nodes df, respectively. We first prove that there is an edgecolouring of E°(G) such that no
two monochromatic edges i’ (G) are nested inr.

Let R be a rainbow inr formed from the edges df’(G) and with the maximum number of edges.
Let the set of intrabag edges Rbe denoted b4, and the set of interbag edges be denotedkiy:.
Then|R| = |Rintral + |Rinter]- Suppose the left endpoint of the innermost edg& @ mapped to node
x. Then the right endpoint of each edgelnis mapped to a node such thatr <, z. Intrabag edges
mapped to distinct nodes @fare not nested (and not crossing). Thus all the edg&siR are mapped to
the same node @. Hence all the edges @inya (if any) are mapped to. Thus|Ringa < ¢,. Atleast one
of the endpoints of each edge Rater is Not mapped ta:. Thus by the construction af, such endpoints
appear inr either before or after all the endpoints of the edgeRiig.. Therefore the edges @i, are
all nested inside the innermost edgeftiier. Since the black edges i are not nested in, all the edges
of Riner have an endpoint mapped to the same npdel’. Since the edges iRjny, are nested inside the
edges ofRiner, ¥ <, x. Furthermore, since is a topological vertex-ordering df, each edge oRjnter
is mapped to some outgoing edgeyoflf two edges ofRjner are mapped to the same edge incident to
y, then by Lemma|1(b) they may be nested only if their edge colours ifktHiE)-layout are different.
Therefore | Rinter] < ZzEV(T):wgaz k,. and thusR| < ¢/, + ZZEV(T):JUSUZ k,.. By considering all
choices ofr andy <, z in V(T'), we conclude that a rainbow informed by the edges df’(G) may
have at mosh, edges. By Lemm@& the edgesHf(G) can be coloured with,, colours such that no
two monochromatic edges are nested.

We now define an edgk;-colouring of E"(G). We then prove that no two monochromatic edges in
E"(G) cross. Consider the nodesBfin the order of their appearancedn For each node, colour the
edges ofGG that are mapped to the red edges incident &5 follows. Two interbag edges 6f that are
mapped to the same outgoing red edge céceive the same colour if and only if they belong to the same
colour classF; € {E1, Es,...Ey} in the (k,T)-layout of G. Two interbag edges af mapped to two
distinct red edges incident toalways receive distinct colours (regardless of whether they are incoming
or outgoing). Ifx is red, colour the intrabag edges mapped: twith distinct colours to those used on
the interbag edges mapped to the red edges incident and so thak, admits ans,-stack layout of
G|T,]. We now show thah; colours suffices for such a colouring. If the incoming eggeof « is red
the edges ofs mapped tayx usek,, colours out ofA; colours, otherwise 0 out ofs colours are used.
Thus we have eithek, — k,, or A, colours available for colouring the edges@mapped tor and the
red outgoing edgesy:, xys, ..., xy, incident toz. Clearly we can colour the edges 6f mapped to
Ty1, Y2, . .., 2y, andx as described above withy,, + kyy, + - - - + kyy, + s, distinct colours. Thus
the number of colours used is at most

We now show that no two monochromatic edgeses € E"(G) cross inm. That is, monochromatic
edges inE"(G) can be in the same stack. From the description of the edge colouring, it is clear that if
eithere; or ey is an intrabag edge then the pair does not form a monochromatic crossing. Thus it suffices to
consider pairs of interbag edges. Since the red edg€sair not crossing ia, the only pairs of interbag
edges that can create a monochromatic crossing are those with endpoints in the s@ndrbtat case,
if e; ande, are mapped to the same edge incident thene; ande, do not cross by Lemnig 1(c). ¢f
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ande, are mapped to two distinct edges incidenttthene; andes are not monochromatic. O

Lemma 24. Let H be a graph with a-track layout{V; : 1
Vi, 1 <4 < t, has at most one neighbour in each track 1
(k, H)-track layout. Let

t} such that each node in track

<
< i —1. LetG be a graph with a

<
<jJ

p= s 2k @
zyeE(H) :track(y)=¢
Then replacing each nodein the ¢-track layout of H by (H,, <,) from the(k, H)-track layout ofG,
gives a(p, t)-track layout ofG.

Proof: Define an edge colouring a¥ as follows. For each node of T in track V;, and for eacl?,

1 < £ < t, consider the set of edgé% incident tox that have their other endpointi. Colour the edges
of G that are mapped to the edgesifwith p colours such that any two edges e; € E(G) receive the
same colour if and only if they are mapped to the same egge E, and they belong to the same colour
class in thek, H)-layout of G. This is possible with at mogtcolours by [(%).

We now prove that there are no monochromatic X-crossings with this@dgkuring. Consider two
monochromatic edges,es € E(G). If e; ande, are mapped to the same edgefbthen by the above
colouring procedure and by the properties of the edge colouring ifkthié)-track layout ofG, edges:;
ande, do not form a monochromatic X-crossing.elf ande, are mapped to two edges, zq € E(H)
that have no endpoint in common, thepandes do not form a monochromatic X-crossing sinegand
zq do not form a monochromatic X-crossing in th&rack layout ofH. Finally, if e; ande; are mapped
to two edgesty, 2z € E(H) that share an endpoint thene; ande, can only form a monochromatic
X-crossing ify and z are in the same tracky;. Sayx € V;. Sincex has at most one neighbour in
Vi, Vo, ..., V;_1, we have that > i. Therefore, by the above colouring procederendes; do not have
the same colour. O

Lemma 25. Letd > 1 be an integer. Letd be a graph with a simpl¢l1, Tp)-layout for some tredy,
such that every leaf node hasq, < ¢ for somec > 0, and every non-leaf node hasq, = 0 and
deg" (z) = d. Then there is a tre@, such that the subdivisioP obtained fromG' by subdividing each
intrabag edge once has(a + 1, T')-track layout in which every node € V(T') has

Z kgy + Z kye < max{d+1,c+2}, and Z kzy < max{d,c+1} . (5)

zy€E(T) yz€E(T) zyeE(T)

Proof: For every leaf node € V(Ty), let D, be the subdivision of?[Ty ] obtained by subdividing each
edge ofG[Ty,] once. By the proof of Lemn{d 2, has a(c + 1, T*)-track layout wherd™ is a single
edge comprised of a root node adjacent to one leaf, such that all the original verti¢d$ gfare mapped
to the root and are ordered ky,, and all the division vertices are mapped to the leaf nod&‘inFor each
leaf nodex € V (1), merge-ate the (1, Ty )-layout of G and the(c + 1, 7*)-track layout ofG[T,]. In
the resultingc + 1, T')-layout of D there are no intrabag edges. Thus we haye-a1, T')-track layout,
whereT is the subdivision of y with each leaf-edge df, subdivided once. Lél; be the set of leaves in
T. Let E, be the set of edges @f with an endpoint in/,. All the interbag edges ab that are mapped
to the edges irE, are coloured with at most+ 1 colours. All the interbag edges &f that are mapped
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to the edges itE' \ E, are coloured with one colour. Thus, each nade V (7') that has no neighbour in
V, satisfies[(b). Each nodee V (T') that has a neighbour i, has degree at mogt Since the incoming

edgeyz of x hask,, < 1 and its outgoing edgev hask,, < ¢+ 1, z satisfies[(p). Finally, each leaf
nodez hask,, < c+ 1 whereyz is the incoming edge af. Thusz satisfies|(p). O

3.5 Queue Layouts
Lemma 26. For every graphiZ, G” has queue-numben (G”') < 2[/an(G)].

Proof: Letd = [/gn(G)]. LetT be the complete-ary tree of height ; that is, thed-ary star. By
Lemma.. |21,G” has a S|mple{1 T)-layout in which the root node has ded(r) = d andg, = 0, and
every leaf node: € V(T') hasg, < [an(G)/d] < d. Let all the edges and nodesﬂbe coloured black.
Leto be the vertex ordering dF starting with the root, followed by the leaves. Defingas in Lemma 22.
That is, )\, is the maximum, taken over all nodess V(T'), of

gz + max Z ky. . (6)
vev(T):ysqe yz€E(T):z<,z
For leaf nodes;, (§) isd+d = 2d. For the root node, (6) is0+d = d. Thus\, = 2d. By Lemde]Z
G" has & d-queue layout.

Theorem 4. For every integei > 2, every graph has ad-queue subdivision with[log,qn(G)] + 1
division vertices per edge.

Proof: Let Ty be the completé-ary tree of height, = [log, qn(G)]. By Lemmd 21 withd; = d» = d,
G has a subdivisioD, with 2k division vertices per edge, such thap has a simpld1, T;)-layout in
which every non-leaf node € V' (Tj) hasg, = 0, and every leaf node € V(Tj) hasq, < 1. Let D be
subdivision ofG obtained fromD, by subdividing each intrabag edge (in theT})-layout of Dy) once.
Clearly D has2[log, qn(G)] + 1 division vertices per edge @f. By Lemm withc = 1 applied to
Dy, there is a tre@” such thatD has a(2, T')-track layout in which every node € V(T') has

Z kzy < max{d,2} < d . (7)
zy€E(T)

Let all the edges and nodesBfbe coloured black. By Lemnja[lB, has a topological vertex ordering
o that admits d-queue layout. Defing, as in Lemma 22. By {7) and since every nade T hasg, = 0,
we have

q m(){q R DD D } mu{ 2 } ®

yz€BE(T):z<,z zveE(T)

Therefore, by Lemmfa 22) has ad-queue layout, as illustrated in Figyree 8 fbe= 2. O

We now prove that the number of division vertices per edge in Thepfem 4 is optimal up to a constant
factor.
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Fig. 8: A 2-queue subdivision of ag-queue graph.

Lemma 27. Let D be ag-queue subdivision of a grapgh with at mostk division vertices per edge. Then
G has a(%(2q + 2)%* — 1)-queue layout.

Proof: Letg; = 3(2¢ + 2)?" — 1, andk; = k/2°. We proceed by induction on> 0 with the hypothesis:
there exists a subdivisial; of G with at mostk; division vertices per edge, and; has ag;-queue layout.
Consider the base case with= 0. Let Dy = D. ThenDy is a subdivision of5 with ky = k division
vertices per edge, and, has agy-queue layout, sincg, = q.

Suppose that there exists a subdivisionof G with at mostk; division vertices per edge, ard; has
a g;-queue layout. By contracting every second division vertex on the path representing each @dge of
in D;, we obtain a grapl®; ; such thatD;, is a subdivision ofD; ; with at most one division vertex per
edge, and); ,; is a subdivision o7 with at mostk; /2 division vertices per edge. By Lemina 12, ; has
a2q;(q;+1)-queue layout. Nowk; /2 = k; 1, and2q; (¢;+1) < 2(¢;+1)?—1 = %(2q+2)21+ —1=qiy1.
Thus the inductive hypothesis holds for all

With i* = |log, k| + 1, we havek;- < 1. The only subdivision of7 with less than one division
vertex per edge i&/ itself. ThusG has ag;--queue layout, and,- = 1(2¢ + 2)@™**""™) —1 <

%(2(] + 2)(21+lug2 k) —-1< %(QQ + 2)2k —1. 0

Theorem 5. Let D be ad-queue subdivision of a grapfi for somed > 2. Then there is an edge 6f
with at least log,; an(G) division vertices inD.

Proof: Let k be the maximum number of division verticesfinin a single edge ofs. By Lemmd 2} &
has(1(2d + 2)?* — 1)-queue layout. Thugn(G) < 1(2d +2)%* — 1, andgn(G) < 3(3d)** — 1 since
d > 2. Thatis,k > 1logs;2(qn(G) + 1) = 1(logsy d)(log, 2(qn(G) + 1)) > Llog,2(an(G) + 1)
sinced > 2. Thereforek > $log, an(G), as claimed. Note thdbgs, d — 1 for larged, and the lower
bound onk tends to} log, 2(an(G) + 1). O

3.5.1 Queue Layouts and Graph Embeddings

An embeddingf a graphG into a connected ‘host’ grapH is an injection¢ : V(G) — V(H). The
dilation of an edgevw € E(G) is the distance betweef(v) and¢(w) in H. Thedilation of ¢ is the
maximum dilation of an edge @f. For each edgew € E(G), fix a path of minimum length from(v) to
¢(w) in H, called thevw-pathof ¢. Let X be the set of vertices df that are internal on somev-path.
Thedegreeof ¢ is the maximum degree of a vertex . Of course, the degree @fis no more than the
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maximum degree off. For example, letd be a subdivision of a grapf with at mostk division vertices
per edge. Then there is an obvious embedding d@fito H with dilation k& + 1 and degre@. Thus the
following result provides a generalisation of Lemma 27.

Theorem 6. If a graph G has an embedding into a k-queue graphH with dilation d and degreeA,
thenG has queue-number

2k(A +1)((2k(A +1))% — 1)
2k(A+1)—1

an(G) < —k2A+1) .

Moreover, for everyA > 3 and evenl > 2, there exists a grapty, a 1-queue grapl#/, and an embedding
of G into H with dilationd, degreeA, and

A(A -1 1)

an(G) > 2B 9)

Proof: Let X be the set of vertices dff that are internal on someav-path of¢. Let D be a copy ofH.
Let X’ be the set of vertices dP that are not internal on evemyw-path of¢. Now subdivide every edge
of D that is incident to a vertex € X’, and then delete from D. Clearly the maximum degree @
is A. By Vizing’s Theorem|[92],D has a proper edge colouring with + 1 colours. Using the obvious
bijection between edges &f andD, letcol(zy) denote the colour assigned to each edgef H. Leto
be the vertex ordering in B-queue layout off. Let queue(zy) denote the queue containing each edge
xy of H.

Orient each edgew of G from v to w, where¢(v) <, ¢(w). For each oriented edgev of G, fix a
path P(vw) from ¢(v) to ¢(w) in H consisting of at most edges. SupposB(vw) = g, 1, .. ., Ty,
whereg(v) = zp, ¢(w) = x4, andl < d. For eachl < i < /¢, letdir(z;—12;) be '+ if z;_1 <, z;,
and -’ otherwise. If¢ = 1 then letqueue(vw) = queue(zyz1 ); otherwise lefueue(vw) be the vector of
triples

queue(vw) = [(queue(mi_lmi),col(x,»_lac,»),dir(a:i_la:i)) 11<i < 4 :

We claim that this is a valid queue-assignment@busing the vertex ordering restricted to{¢(v) :
v € V(G)}. Suppose thaqueue(vw) = queue(pq) for distinct edgesw andpq of G. Then|P(vw)| =
|P(pq)|. Let P(vw) = zp,21,...,2¢ and P(pq) = yo,y1,---,ye. If £ = 1 thenqueue(zozy) =
queue(yoy1 ), and thuyw andpg are not nested. Now assurhie> 2.

We havecol(z;_1z;) = col(y;—1y;) forall 1 < i < ¢. Foreachl < i < ¢— 1, z; andy; are
internal vertices orP(vw) and P(pq) respectively, and thus; € X andy; € X. Edges ofH incident
to a common vertex ifX are coloured differently. Thus; # y; forall 1 < ¢ < ¢ — 1. Without loss
of generalityzy <, yo, Or g = yo andz; <, yi. Sincequeue(vw) = queue(pq), we have that
dir(xoxz1) = dir(yoy1 ), andzox; andygy; are not nested.

First suppose thatir(zoz1) is ‘+'. Thenzy <, z1 andyy <, y1. Sincex; # y1, and sincecyz; and
Yoy1 are not nested, eithagy <, 1 <, Yo <o Y1 O 9 <5 Yo <o 1 <o 1. IN both casesy; <, y;.
Now suppose thadir(zoz1) is -. Thenx; <, zg andy; <, yo. Sincex; # y;, and sinceryz, and
Yoy1 are not nested, either, <, x¢ <, y1 <o Yo Or 1 <, Y1 <o Lo <o Yo. IN both casesy; <, y;.

Thus by induction, for all < i < ¢, we have that; <, y; (or z, = y). Thusz, <, y,. Thus inG
we havev <, p andw <, ¢. That is,yw andpq are not nested. Thus we have a valid queue-assignment
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for G. The number of queues is

d 2k(A + 1) ((2k(A +1))4 — 1)

k+;(2km+1))4 = k+ TN —2k(A+1)
O 2k(A+1)((2k(A+1))7 —1)
= h(A+1) 1 —REA+D)

Now for the lower bound. Lef'a ;, be the tree of heighit > 1 in which every non-leaf node has degree
A > 3, and every leaf node is at height Let » be the number of nodes i . Then

h—1
_ i (A-DF—1\  AA-1"-2
n—l—i—A;(A 1) —1+A( N = 3

By Lemmg 15an(7Ta,») = 1. Any embedding of7 = K, into Tx , has dilationd = 2h and degree\.
Sincegn(K,,) = | 5|, we have
n—-1 AA-D'—A A((A-1)¥2-1)

NG 2 5= Ry T a9

|

Theoren{ B implies that to prove that a family of grapfisias bounded queue-number, it suffices to
demonstrate that every graphhhas a bounded-dilation embedding into a graph with bounded degree
and bounded queue-number.

We have the following example of Theor@in 6, which will be of particular interest if Open Pr¢blem 4 is
solved in the affirmative. Arawingof a graphG represents the vertices by distinct points in the plane,
and represents each edge by a simple Jordan curve between its endpoints. The only vertices that an edge
may intersect are its own endpoints. At most two edges may cross at a single point, edges only cross
properly, and no two edges may overlap.

Corollary 1. Suppose that every planar graph hascajueue layout. LetG be a graph admitting a
drawing in the plane with each edge involved in at mostossings. Thelr has queue-number at most

10k ((10k)e+* — 1)
< — 11k .
an(@) < 10k — 1 K
Proof: Let H be the plane graph obtained from the drawingzoby replacing each crossing point by
a vertex. Thus7 has an embedding intd with dilation ¢ + 1 and degred. By assumptionH has a
k-queue layout. The result follows from Theorpn 6 with= 4 andd = ¢ + 1. O

3.6 Stack Layouts
Theorem 7. For every integes > 3, every graplG has ans-stack subdivision witB[log,_, sn(G)] —2
division vertices per edge.

Proof: Letd = s — 1 andk = sn(G). Apply Lemm withT" the completei-ary tree of height
h = [logy k] —1. Thena = /2 +1h/21 = gh > goeak)=T = k /4. By Lemm4 2]L(+ has a subdivision
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D with 2h division vertices per edge, such thathas a simplé1, T")-layout in which every non-leaf node
x € V(T) has ded (z) = d ands, = 0, and every leaf node € V(T) hass, < [k/a] < d. Let all
the edges and nodes Bfbe coloured red. Defink, as in Lemm& 22. That is\, is the maximum, taken

over all nodes: € V(T), of
Set Y kay + Y kya (9)
zy€E(T) yx€E(T)
For leaf nodeg;, (9) is at mostl+ 0+ 1 = s. For non-leaf nodes, (9) is0+d+1 = s. Thus\; = s. By
Lemmd 161 has a topological ordering that admits-atack layout, and by Lemnja2P) has as-stack
layout. The stack layout @b is illustrated in Figurg] fos = 3. O

Fig. 9: 3-stack subdivision of a6-stack graph.

Theorem 8. The following are equivalent:
(1) queue-number is bounded by stack-number,
(2) bipartite 3-stack graphs have bounded queue-number,
(3) bipartite 3-stack graphs have boundeetrack thickness.

Moreover, if queue-number is bounded by stack-number then queue-number is bounded by a polynomial
function of stack-number.

Proof: That (1) implies (2) is immediate. Theorgr 2 proves that (2) and (3) are equivalent. It remains
to prove that (2) implies (1). Suppose that every bipaittack graph has queue-number at most some
constany. Consider an arbitrary graph. By Lemmd 1B’ has a(sn(G) + 1)-stack layout. Thus, by
Theorenj (& has a-stack subdivisiorD with 2[log, (sn(G)+1)]—2 division vertices per edge. Thatis,

G has &-stack subdivision wit2(2[log, (sn(G)+1)]—2)+1 = 4[log,(sn(G)+1)] —3 division vertices

per edge. Since every edge@fis subdivided an odd number of timg3,is bipartite. By assumptior)

has queue-number at magstBy LemmG has queue-number at m@g2g+2)8Mtoe:(SNE+11-6 1,

Sincegq is constant, queue-number is bounded by a polynomial function of stack-number. a

Theorem 9. For every integes > 3, every graplG has ans-stack subdivision with+2[log,_; gn(G)]
division vertices per edge.
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Proof: Letd = s — 1. Apply Lemmg 2] withl;, the completel-ary tree of height: = [log, qn(G)].
ThenG has a subdivisioD, with 2[log, qn(G)] division vertices per edge such that has a simple
(1,Ty)-layout in which every non-leaf node € V(T') hass,, = 0, and every leaf node hase V(T)
hasg, < 1. Let D be the subdivision of7 obtained by subdividing each intrabag edgdigfonce. Thus
D hasl + 2[log,_, qn(G)] division vertices per edge @f. By Lemm withe = 1, there exists a tree
T such thatD has a(2, T')-track layout, where

max { S ket > kym} < max{d+1,3} < d+1. (10)

eV Lyer(r) Y€ E(T)

Colour all the edges and nodesBfred. Define), as in Lemma 22. That is\, is the maximum, taken

over all nodes: € V(T'), of
Set Y kgt Y ke (11)

zy€E(T) yz€E(T)
Since every node € V(T) hass, = 0, (1) is at mostd + 1 by (I0). Thush; < d+ 1 = s. By
Lemmd 161" has al-stack layout, and by Lemnja]2®), has as-stack layout. ]

Theorenj D has the following implication for Open Prob[em 1.

Theorem 10. If Conjecturd 1 is true then stack-number is bounded by queue-number.

Proof: Conjecturg ] states that there exists a funcfipsuch that for every grapfi and everys-stack
subdivisionH of G with at most one division vertex per edge, we hanéG) < f(s). Thus there exists
a functionf* such that for any-stack subdivision of a grapfd with & division vertices per edgé; has

a f*(s, k)-stack layout. By Theorefr] 9, every graphhas a3-stack subdivision with + 2[log, an(G)]
division vertices per edge. Thus(G) < f*(3,1 + 2[loggn(G)]), and stack-number is bounded by
queue-number. O

3.7 Mixed Layouts

Theorem 11. For all integerss > 1 andq > 1, every graphz has ans-stackg-queue subdivision with
4[log (1 4) 4 SN(G)] division vertices per edge.

Proof: Apply Lemmg 2} withd; = s + ¢, d> = ¢, h = 2[log(,,.4),5n(G)], andT a complete(d; , dz)-
ary tree of height.. ThenG has a subdivisiod with 4[log,_, ., sn(G)] division vertices per edge, and
D has a simplé¢1, T')-layout wheremax,cy (1) {s.} < 1 and where every nodec V(7') at even depth
has deg (v) < s + ¢ and every node € V(T at odd depth has dégv) < ¢. Colour the edges df’
as follows. For each non-leaf nodec V(T') at even depth, colour its outgoing edges red or black so
that at most outgoing edges are red and at mgstre black. For nodes € V(T') at odd depth, colour
the outgoing edges af black. Clearly this edge colouring is good. By Lemiméa T7has a topological
ordering that admits &-queue layout of [E®] and al-stack layout of'[E"].

Colour all the vertices of' red. Consequently, every noaén T hasg,, = 0. (See Lemm@Z to recall
the definitions ofy, ands’,.) For each node € V (T'), let deg},.(z) denote the outdegree ofin T[E?].
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Define), and)\, as in Lemma 22. Then
Ag = max { ¢+ max Z Ky
zeV (T) { er(T):ygazyzEEb(T):azggz
kao

zvEEY(T)
< de
Iglva(}%) g)lack( )

<q.

By the properties of the simpl@, T')-layout of D every non-leaf node of T hass!, = 0 and every
leaf nodex of T hass/, < 1. For a node: in T', let deg,4(z) denote the degree afin T[E"]. Sinceh is
even, the height ot is even and thus all the edges incident to leaves afe black. For every leaf node
x € V(T) that implies that deg,(z) = 0. Therefore,

zyeE"(T) yzeE(T)

< ! de
= max {IGV(TI?:a(‘i)éqgc)_l Sa xEV(Tr)ﬂi%}éga:)?ﬁl ged(a:)}
<s.

By Lemmd 22, the subdivisiof» of G has ans-stackg-queue mixed layout. O

Theorem 12. For all s > 1 andq > 1, every graphG has ans-stackg-queue subdivision witB +
4[log 444) ¢ an(G)] division vertices per edge.

Proof: Apply Lemmg[21 withd; = s + ¢, d> = ¢, h = 2[log(, ), an(G)], andT a tree obtained from
a completegd, , do)-ary tree of height by subdividing each leaf-edge once. The heighf'da$ » + 1 and
all of its leaves are at depth+ 1. ThenG has a subdivisioD with 2 + 4[log,., ), an(G)] division
vertices per edge, anl has a simplé1, T)-layout in which every non-leaf node< V (T') hasg, = 0,
and every leaf node € V(T) hasg, < 1.

Colour the edges df as follows. For each node € V(T') at odd depth, colour all its outgoing edges
black. For each node € V(T') at even depth, if deptlr) < h colour each of its outgoing edges red
or black such that are red and are black, otherwise, degth) = h, colour its only outgoing edge red.
Clearly this edge colouring df is good. Thus by Lemnfa 117, has a topological vertex ordering, such
that the black edges form a queue, and the red edges form a stack.

Colour all the vertices of" black. Consequently, every nodec V(T') hass), = 0. (See Lemmf 32
to recall the definitions of/, ands)). For each node € V(T), let deg.4(z) denote the degree afin
T[E"]. DefineX, and), as in Lemma 22. Then

zy€ET(T) yx€ET(T

/\SZIIGI%/aé){S + Z Ky + Z kvw}_xglva(};,){deged( )} <s.
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By the properties of the simpl@, T')-layout of D every non-leaf node of T hasg,, = 0 and every
leaf nodex of T hasq), < 1. By construction, the edges incident to leave§'dadre red. Thus every leaf
nodez € V(T) has degree zero [A[E®]. Now ), is the maximum, taken over all nodes= V (T'), of

/
4y + max Z Rz 0
yeV(T) :y<,z yz€EY(T) :2<02

Since nodes of” appear ino according to nondecreasing depth, for each node V (T') at depthi,
the summation ir (2) may be nonzero only for noges V (T') at depthi — 1 andi. Since the nodes at
depthh andh + 1 have outdegrees zero T E®], for leaf nodese, (I2) is1 + 0 = 1. Since the nodes
at depth less thah have outdegreegin T[E?], for non-leaf nodes, (I2) isO + max{q, 0} = ¢. Since
q > 1, by Lemmg 2P, the subdivisiaP of G has ans-stackg-queue mixed layout. O

Theorem$ 1]1 ar{d 12 with= 1 andq = 1 imply the following.

Theorem 13. Every graphG has al-stackl-queue subdivision with
min{4[log, sn(G)], 2 + 4[log, an(G)]}

division vertices per edge. |

Corollary 2. LetG be a graph family with bounded stack-number and/or bounded queue-number. Then
every graph ing has al-stackl-queue subdivision with a bounded number of division vertices per
edge. O

Since the stack-number of a proper minor-closed graph family is bouhtled [6, 8], Cofgllary 2 implies
that every graph from such a family has-atackl-queue subdivision with a bounded number of division
vertices per edge.

3.8 Track Layouts

In this section we consider layouts of subdivisions on few tracks. We will need the following lemma for
wrapping a track layout from our companion paper [28].

Lemma 28. [28]Let{V;; : i« > 0,1 < j < b;} be a(k,t)-track layout of a graphG with maximum
partial spans (for some irrelevant valug). For each0 < a < s, lett, = max{b; : i = « (mod s+1)}.
For each0 < o < 2s, lett], = max{b; : i = o (mod 2s+ 1)}. Then

s 2s
@)t24(G) < 3t , and (b) i (G) < S,
a=0 a=0

The special case of Lemrfia]28 with= 1 (for all ¢ > 0) will be useful.

Lemma 29. [28]Let G be a(k,t)-track graph with maximum span Then(a) tna,(G) < s+ 1, and
(0) tny,(G) < 25 + 1.

First we consider layouts of subdivisions on two tracks.
Lemma 30. For every graphG, the subdivisiorG"”’ has 2-track thicknes%, (G"") < 1 + 2[+y/an(G)].
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Proof: Letd = [1/an(G)]. LetT;, be the complete-ary tree of height; that is, thed-ary star. By
Lemmd 21,G" has a simplé1, Tp)-layout in which the root node has deg (r) = d andg, = 0, and
every leaf noder € V(Tp) hasg, < [an(G)/d] < d. LetT be the tree obtained by subdividing each
edge ofIy. Letr be the root node df". By Lemmd 25 with: = d, the subdivisiorG’” has a(d + 1,T)-
track layout in whichk,., = 1 for every edge-x incident to the root, anél,, = d + 1 for every leaf-edge

xy. Consider the2, 2)-track layout ofT" with the root preceding the leaf nodes on the first track, and the
remaining nodes on the second track. Replace each nodd’ by T,,. We obtain a(2d + 1, 2)-track

layout of G O

Theorem 14. For every integerl > 2, every graphGd has a(d + 1, 2)-track subdivisionD with
4[log, an(G)] + 3
division vertices per edge. That iB, has2-track thicknes#,(D) < d + 1.

Proof: By Theoren| },G has ad-queue subdivisiorD, with 2[log,; an(G)] + 1 division vertices per
edge. By Lemmp|2D = Dj has a(d + 1, 2)-track layout. ]

Now we consideB-track layouts of subdivisions.

Theorem 15. For every integetl > 2, every graphG has a(d, 3)-track subdivision with+2[log,; qn(G) |
division vertices per edge.

Proof: LetT, be the completé-ary tree of height = [log, an(G)]. By Lemmd 21L(7 has a subdivision
Dy with 2[log, gqn(G)] division vertices per edge such thag has a simplé1, Tp)-layout in which every
non-leaf noder € V(T;) has deg () = d andg, = 0, and every leaf node € V(T,) hasg, < 1. By
Lemmd 25 withc = 1, there is a tred”, such that the subdivisioP = D, obtained by subdividing each
intrabag edge ab, once has &2, T)-track layout in which every node € V(T') has}_,., c p(r) kay < d
and deg () < d. Consider the (edge-monochromatic) track layouf'gfroduced by LemmEjrB. By
Lemm withp = d, for somet, D has a(d, t)-track layout with every edge having span one, as
illustrated in Figur¢ 10 fod = 2. By Lemmg 29 (b) withs = 1 andk = d, D has a(d, 3)-track layout.

Finally we consider layouts of subdivisions on four or more tracks, and with no X-crossings.

Theorem 16. For every integer > 2, every graphG has a bipartite(d + 2)-track subdivision with at
most8[log, an(G)] + 1 division vertices per edge.

Proof: Let T, be the completd-ary tree of heights = [log,;qn(G)]. Let T be the subdivision of
obtained as follows. For each nodez V (Tj) at depth at most — 2, subdivide its rightmost outgoing
edge twice, and subdivide the remainidg- 1 outgoing edges three times. For each non-leaf node
x € V(1) that is incident to a leaf-edge, subdivide its rightmost outgoing edge once, and subdivide the
remainingd — 1 outgoing edges twice. The resulting trfBéas height. + 3L — 1 = 4[log,; gn(G)] — 1.
By Lemm& 2] has a subdivisioD, with at most8[log, an(G)] — 2 division vertices per edge and a
simple(1, T')-layout, such that every non-leaf nodec V(T') hasg, = 0, and every leaf node € V(T
hasg, < 1. Moreover, every edge @ has an even number of division vertices/in

Let H the graph obtained frof by adding ad-cycle (z, a, b,, ¢,) to each leaf node € V(T), as
illustrated in Figuré Tl1. Now subdivide every intrabag edgef D, three times. We obtain a subdivision
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4-queue
layout of Kg

Ilu o

[}

J

queue 1 queue 2 queue 3 queue 4

Fig. 10: Track layout of a subdivision ak’s before wrapping.

D of G in which every edge ofs has an odd number of division verticesiin ThusD is bipartite, and
has at mos8[log, qn(G)] + 1 division vertices per edge.
Create &1, H)-layout of D from the simple(1, T')-layout of D, as follows. For each intrabag edge
vw € E(Dy) mapped to a leaf node € E(T') such that <, w in the (1, T)-layout, place the division
vertexa,,, incident tov in the bagH,_, place the middle division vertéy,,, in the bagH,_, and place
the division vertex,,,, incident tow in the bagH..,. Since the intrabag edges mapped to the (1, 7))-
layout of Dy induce al-queue layout, we can order the division verticeddn , H,, and H.._ by the
queue order of the edges they subdivide. As in Leffjma 4(c), there is no X-crossing in the resulting layout.
Thus we have aif-track layout ofD.
Now create a track layout dff indexed by

{(1,/):0<i<3h,1<j<dyU{(3h+1,1)} .

Nodes are ordered in the obvious way so that there are no X-crossings, as illustrated ifi Higure 11.
Firstly, consider a node € V(H) that corresponds to a node Bf at depthi < h — 2 in T;. Recall

that the firstd — 1 outgoing edges of in T; are subdivided three times, and the rightmost outgoing edge

in Ty is subdivided twice. Denote theoutgoing paths at in H by

(w,alaﬂlﬁl),(557012,@772),-~~,(%adq,ﬁdflﬂdq),(x,ﬁdﬁd) .

Positionz in track (3¢, 1). For eachl < j < d — 1, positionc; in track (3i, j + 1). For eachl < j <d,
position; in track (3 + 1,1), and positiony; in track (3: + 2, 1).

Now consider a node € V(H) that corresponds to a node B at depthh — 1 in 7. Recall that
the firstd — 1 outgoing edges af in T;, are subdivided twice, and the rightmost outgoing edd&iis
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Fig. 11: Track layout ofH.
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subdivided once. Denote thiroutgoing paths at in H by

(x7a1u51)7 (xa QQ,BQ), ey ("E7O[d,1,ﬁd,1), (xvﬁd) .

Positionz in track (3h — 3, 1). Position each node;, 1 < j < d — 1, in track(3h — 3, j + 1). Position
each nodes;, 1 < j < d, intrack(3h —2,1).

Finally consider a node € V(H) that corresponds to a leaf node®f (at depthh in T;). Positionz
in track (3h — 1, 1), positiona,, in track (3h, 1), positiond,, in track (34 + 1, 1), and positior,, in track
(3h,2).

Now wrap the track layout off using Lemmé 28(b) wittk = 1. The partial spas = 1, so we are
wrapping modul® = 2s + 1. Observe that the track layout &f is indexed by:

{(i,j):i=0 (mod 3),0<i<3h,1<j<d}
U{(,1):i=1 (mod 3),0<i<3h+1}
U{(i,1):i=2 (mod 3)0 < i< 3h} .

Thus in Lemm4 28(b), we hawg = d, t| = 1, andt}, = 1. ThusH has a(d + 2)-track layout. In
Figure[1] we indicate the new track assignmentdyy..., A4, B, C, where for eacl) < i < h, the
tracks(3i, j) are mappedi;, the track(3: + 1,1) is mapped taB, and the track3i + 2, 1) is mapped to
C'. Note that fori = 3h we use the assumption that> 2.

It is easily seen that in thel + 2)-track layout ofH, every node has at most one neighbour on any
other track. Thus replacing each nad@n the track layout o7 by H,., we obtain &d + 2)-track layout
of D, asin Lemma 24. O

Note that the bound on the number of division vertices per edge in Th¢olem 16 can be slightly improved,
at the expense db no longer being bipartite. We will neeld to be bipartite in Sectidn| 5.

The following result proves that in each of Theor¢mg 14, 15 ahd 16, the bound on the number of division
vertices per edge is within a constant factor of optimal for all graphs.
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Theorem 17. In every(k, t)-track subdivisionD of a graphG there is an edge with at least
3 logyy, 2an(G) division vertices.

Proof: Let r be the maximum number of division vertices in an edgé&zah the subdivisionD. By
Lemmg$,D hask(t — 1)-queue layout. By Lemnfa R@n(G) < $(2k(t — 1) + 2)*" — 1 < 3(2kt)*".
Hence2 gn(G) < (2kt)*" andr > £ logy,, 2an(G). O

4 Planar Subdivisions

We have seen that every graph hassiack subdivision, 8-queue subdivision, &track subdivision, and

a subdivision with bipartite thickness at mastt is interesting to consider which graphs havetack
subdivisions for eachh < s < 2; which graphs havé-queue subdivisions; which graphs haveack
subdivisions for2 < ¢t < 3; and which graphs have subdivisions withirack thickness at mostfor

1 <t < 2. In this section we completely answer these questions. As the section title suggests, planar
graphs will play a leading role in the characterisations.

4.1 Planar Stack Layouts

Theorem 18. Every graph has &-stack subdivision. A graph has2astack subdivision if and only if it
is planar. A graph has a-stack subdivision if and only if it is outerplanar.

Proof: By Theoren{ ]l withd = 2 every graph has 8-stack subdivision. The-stack graphs are pre-

cisely the subgraphs of planar Hamiltonian graphs [5]. Thus a non-planar graph does noRtstaela
subdivision. Many authors$ [49, 66,181] have observed that every planar graph has a subdivision that is
a subgraph of a planar Hamiltonian graph (see Lefnma 31 below), and hence-steck layout. The
1-stack graphs are precisely the outerplanar grdghs [5]. Thus, for any outerplanar graph, the graph itself
is al-stack subdivision. Conversely, if a subdivision of a grépts outerplanar then so S. Thus only

the outerplanar graphs havestack subdivisions. a

We now consider how many division vertices per edge are needet}steeck subdivision of any planar
graph. Pach and Wengeér |81] proved that the subdivision of a planar graph with two division vertices per
edge is the subgraph of a Hamiltonian planar graph, and hencehstaek layout. Kaufmann and Wiese
[66] and Giacomeet al. [49] improved this result by showing that the subdivisi@hof a planar graph
G with one division vertex per edge is the subgraph of a Hamiltonian planar graph, and hence has a
stack layout. (Note that Pach and Wengel [81] were more interested in the total number of vertices in the
Hamiltonian supergraph rather than the number of division vertices per edge. Giat@h{®9] also
prove that the division vertex of each edgew is betweeny andw in the 2-stack layout.) Here we give
a new proof of the above result in [49,/66], with the additional property that the Hamiltonian supergraph
is bipartite.

Lemma 31. For every planar graph, the subdivisiorG’ of G with one division vertex per edge is the
subgraph of a bipartite Hamiltonian planar graph, and hence hasséack layout.

Proof: Without loss of generality= is a triangulation. Otherwise we can add edges &b that every face
is a3-cycle. LetV = V(G). Now subdivide every edge once. LEtbe the set of these division vertices.
Finally add a single vertex to each face adjacent to the six vertices on that fadé.becthe set of these
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vertices. We obtain a planar triangulatiéh Observe thaf{V, X, Y} is a vertex3-colouring of H. Thus
every triangle off contains one vertex from eachBf X andY'. Every such triangle forms a face £f.
Therefore every triangle i/ is a face, andd has no separating triangles. Sindes a triangulation, by
the classical result of Whitney [98H has a Hamiltonian cyclé'.

The subgraph off induced byl U X is G'. ThusH andG’ are2-stack graphs. We now construct
a bipartite Hamiltonian planar gragh” from H such thatG’ is a subgraph of¥’. Consider a facg of
G’'. Let z be the vertex adjacent to every vertexfoh H. Exactly two edges incident toare inC. Say
xv,zw € C, wherev,w € f. Delete all the edges incident toexceptzv andxw. Clearly the resulting
graph remains Hamiltonian. In the case that the distance fréaw along the boundary of is odd,
subdivide the edgev. The resulting graphV is clearly Hamiltonian. It is easily verified that each face
of W is an even cycle. Thud/ is bipartite. O

4.2 Planar Queue and Track Layouts
Felsneret al.[44] asked the following question.

Open Problem 3. [44]Does everyn-vertex planar graph have a 3D straight-line drawing with(n)
volume?

By Theoreni 2B below, this question has an affirmative answer if planar graphs have bounded track-
number. Whether planar graphs have bounded track-number is an open problem due to Hubert de Frays-
seix [private communication, 2000], and since queue-number is tied to track-number [28], is equivalent
to the following open problem due to Heathal. [56,[57].

Open Problem 4. [56] 57]Do planar graphs have bounded queue-number?

We make the following contribution to the study of this problem, which is analogous to Thgprem 8 for
arbitrary graphs. Note that the best known upper bound on the queue-number of planar gt&p/is)is

Theorem 19. Let F(n) be the family of function®(1) or O(polylog n). The following are equivalent:
(1) n-vertex planar graphs have queue-numbeffim),
(2) n-vertex bipartite Hamiltonian planar graphs have queue-numbef(n),

(3) n-vertex bipartite Hamiltonian planar graphs hagerack thickness it (n).

Proof: That (1) implies (2) is immediate. Theorgr 2 proves that (2) and (3) are equivalent. It remains
to prove that (3) implies (1). Suppose that everyertex bipartite Hamiltonian planar graph Hatrack
thickness at most some functigitn) € F(n). Let G be ann-vertex planar graph. By Lemnia|31, there

is a bipartite Hamiltonian planar grapli containingG’ as a subgraph. Observe th&thasn + (3n —

6) + 2(2n — 4) < 8n vertices. By assumptiot}’ has2-track thicknes#, (W) < f(8n), and sinc&?’ is

a subgraph ofV’, we haved, (G’) < f(8n). By Lemmd 3G has queue-number at most

(f(8n))? € F(n). O

We now answer the questions discussed at the start of this section in the case of queue and track layouts.

Lemma 32. Everyn-vertex planar graptG has a subdivisiorD such that every edge has at mest 2
division vertices, and admits ann-track layout with every edge having span one.
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Proof: By the classical result of&y [43] and Wagnei [93)+ has a straight-line plane drawing. Rotate
such a drawing so that every vertex has a unigjueoordinate. Draw: lines parallel to the X-axis, one
through each vertex, and subdivide every edge at the point at which it crosses a line. The subBivision
obtained has at most — 2 division vertices per edge. Now consider each line to be a track. Since there
are no crossings in the drawing, there are no X-crossings in the track assignni&ntbfis we have an
n-track layout of D with every edge having span one. O

Theorem 20. Every graph has &-queue subdivision. A graph had equeue subdivision if and only if it
is planar.

Proof: By Theorenj # with = 2 every graph has 2-queue subdivision. Sindequeue graphs are planar
[57], non-planar graphs do not havegqueue subdivisions. For any planar graghthe subdivisionD

from Lemma 3R has a-queue layout by Lemmfg 5. Note that this conclusion can also be reached by
observing thaD is arched levelled planar (seée [57]). O

Theorem 21. Every graph has d-track subdivision. A graph has&track subdivision if and only if it
is planar. A graph has &-track subdivision if and only if it is a forest of caterpillars.

Proof: By Theorenj Ip withi = 2 every graph has &track subdivision. By Lemmja 35 below3atrack
graph is planar. Thus non-planar graphs do not I3atrack subdivisions. For any planar gragh the
subdivision ofG from Lemmg 3P can be wrapped int@drack layout by Lemmp 29(b). It is easily seen
that a graph has Ztrack layout if and only if it is a forest of caterpillais [54]. If a subdivision of a graph
G is a forest of caterpillars then soGs Thus a graph hasatrack subdivision if and only if it is a forest
of caterpillars. O

We expect that the bound on the number of division vertices per edge in Lemima 32 can be improved.

Open Problem 5. Is there a functionf such that every planar graplt has a subdivisionD with
f(an(@)) division vertices per edge, ard has al-queue layout and/or &-track layout?

Theorem 22. Every graph has a subdivision withtrack thickness at most A graph has a subdivision
with 2-track thickness at mog&tif and only if it is planar. A graph has a subdivision wizktrack thickness
at mostl if and only if it is a forest of caterpillars.

Proof: The first claim is Theorein 14 witth = 2. If the 2-track thickness of a grapfi is at most2, then

sn(G) < 2 by Lemmd 1(c), and thu§ is planar [5]. Thus no non-planar graph has a subdivision with
2-track thickness at mo8t By Lemmg 32, every planar graph has a subdividibthat admits an (edge-
monochromatic) track layout with every edge having span one. By L§mma 29(a), such a track layout can
be wrapped into 42, 2)-track layout. That isf2(D) < 2. This proves the second claim. A graph has
2-track thickness at modtif and only if it is a forest of caterpillars [54]. If a subdivision 6fis a forest

of caterpillars then so i&. This proves the third claim. O
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4.3 Planar Mixed Layouts

Since the stack-number of planar graphs is at most four [101], Th¢orem 13 implies that every planar graph
has al-stack1-queue subdivision with eight division vertices per edge. Although asymptotically much
weaker than Theorem [11, the following result gives a better bound on the number of division vertices per
edge for graphs with small stack-number.

Lemma 33. For every integers > 1, every graphG has as-stack1-queue subdivision with at most
[sn(G)/s] division vertices.

Proof: Letk = [sn(G)/s]. Leth = | 4]. LetT be the path o2k edges rooted at the ‘middle’ vertex
r. ThusT has height.. Label each node € V(T) by i(z) = s. Then)_ i(z) = (2h + 1)s

(2|%] +1)s > ks = [sn(G)/s]s > sn(G). By Lemmg 2D has a subdivisiom with at most2h < k;
division vertices per edge, ardd has a1, T')-layout such that, < s for all nodesr € V(T).

Change the root df” from r to one of the two leaves &f and redirect the edges accordingly. Now
every node iril” has at most one outgoing edge. Colour all the edgés lofack and all the nodes af
red. Since all the edges are black, by LenjmpZLhas a topological ordering that admits al-queue
layout of T'. Furthermore, since there are no red edgés,in

; ko kya ¢ <
m<>{+ 2k 2 }—

zyeE"(T) yzeE(T)

Since there are no black nodes and since every node has at most one black outgoing edge

max !+ max k max kyp <1 .
zeV(T) {qx yeV(T): y<ox Z = = :z:eV(T Z =
yz€EY(T):2<,2 zveEY(T)

(See Lemma 32 to recall the definitions gif and s,). Therefore by Lemmp 22D has ans-stack
1-queue mixed layout. O
By Lemmg 3B withs = 1 and since planar graphs hatstack layouts [101] we have:
Lemma 34. Every planar graph has a-stackl-queue subdivision with four division vertices per edge.

This concludes the proof a

Similar bounds can be be obtained for the number of division vertices per edgestaakl-queue
subdivision of a graph with small stack-number (see [29]). Leinnma 34 provides a partial solution to the
conjecture of Heath and Rosenberg|[57] that every planar graphhataakl-queue mixed layout.

5 Three-Dimensional Polyline Drawings

Track layouts have previously been used to produce three-dimensional drawings with small volume. The
principle idea in these constructions is to position the vertices in a single track so that they have the same
X-andY-coordinates. That is, each track is positioned on a vertical ‘rod’. Since there are no X-crossings
in the track layout, no edges between the same pair of tracks can cross.

Theorem 23. [27[30] Let G be ac-colourablet-track graph. Then



192 Vida Dujmové and David R. Wood
(@) G has a0O(t) x O(t) x O(n) straight-line drawing withO(¢>n) volume, and
(b) G has aO(c) x O(c*t) x O(c*n) straight-line drawing withO(c"tn) volume.

Moreover, ifG has anX x Y x Z straight-line drawing theri¥ has track-numbetn (G) < 2XY.

The constants in Theorgm]23 can be significantly improved in the ca&rack andd-track layouts.
Here the vertices are positioned on the edges of a triangular or rectangular prism. These models of graph
drawing were introduced by Felsnetral. [44].

Lemma 35. Let{V1, V2, V3} be a3-track layout of a graplG. Letn’ = max{|V1|, |V2|, |V3|}. ThenG
has a2 x 2 x n’ straight-line drawing with the vertices on a triangular prism. In this casés necessarily
planar.

Proof: Position the-th vertex inV; at (0, 0, 7). Position the-th vertex inV; at (1, 0,4). Position the-th
vertex inVs at (0, 1,). Since there is no X-crossing in the track layout, no two edges cross. Siige
embedded in a surface homeomorphic to the spli¢ie planar. O

Lemma 36. Let{V1, Vs, V5, V, } be ad-track layout of a graptG. Letn’ = max{|V1|, [Va|, |V5|, | V4l }-
ThenG has a2 x 2 x 2n’ straight-line drawing with the vertices on a rectangular prism.

Proof: Position thei-th vertex inV; at (0,0, 27). Position thei-th vertex inV; at (1, 0, 2¢). Position the
i-th vertex inVj at (0,1, 2¢). Position thei-th vertex inV, at (1,1,2: + 1). Clearly the only possible
crossing is between edges andxy with v € Vi, w € V4, x € Vo, andy € V3. Such a crossing point is
onthelineL = {(1,1,z) : = € R}. Howeverw intersectsL at (3, 3, a + 3) for some integer, and

’ 272
xy intersectd at (2%, 2%, () for some integep. Thusvw andzy do not intersect. O

Di Giacomo and Meijer [22] proved thatdatrack graph withm vertices has @ x 2 x n drawing. When
n' < % the above construction has less volume.

In the case of bipartite graphs, the authors [30] gave a simple proof of Théofem 23(b) with improved
constants, which we include for completeness. The construction is illustrated in Figure 12.

Lemma 37. [30]Everyi-track bipartite graphG with bipartition { A, B} has a2 x ¢ x max{|A|, |B|}
straight-line drawing.

Proof: Let{T; : 1 < i < t} be at-track layout ofG. For eachl < i < ¢, letA; = T; N A and

B; = T; N B. Order eacd; andB; as inT;. Place the/-th vertex inA4; at (0,t —i+ 1,5 + 22;11 |Ak|).
Place thej-th vertex inB; at(1,4,j + >,_) | Bx|). The drawing is thug x ¢ x max{|A|, |B|}. There is

no crossing between edges@iA;, B;| andG|[A;, B;] as otherwise there would be an X-crossing in the
track layout. Clearly there is no crossing between edgés iy, B;| andG[A;, By| for j # k. Suppose
there is a crossing between edgesd;, B;] andG[Ay, B, with ¢ # k andj # ¢. Without loss of
generalityi < k. Then the projections of the edges in thé -plane also cross, and théds< j. This
implies that the projections of the edges in &Ki&-plane do not cross, and thus the edges do not cross.

We now prove results for 3D-bend drawings.

Theorem 24. Everyc-colourableg-queue graphG with n vertices andn edges has @ x ¢(¢ + 1) x
(n + m) polyline drawing with one bend per edge. The voluntig + 1)(n + m).
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Fig. 12: 3D straight-line drawing of &-track bipartite graph.

Proof: The subdivisionG’ of G with one division vertex per edge is bipartite and has m vertices.
By Lemmg 4(b)in(G’) < ¢(q + 1). Thus by Lemma 37" has a2 x c(q + 1) x (n + m) straight-line
drawing, which is the desired 3D polyline drawing@f O

The next result applies a construction of Calamoneri and Stefbini [13].

Theorem 25. Everyn-vertexm-edge graphG has ann x m x 2 polyline drawing with one bend per
edge.

Proof: Let (vy,vs,...,v,) be an arbitrary vertex ordering ¢of. Let (z1,zs,...,z,,) be an arbitrary
ordering of the division vertices af’. Place each; at (¢,0,0) and eache; at (0,7,1). Clearly the
endpoints of any two disjoint edges 6f are not coplanar (seg [13]). Thus no two edges cross, and we
have am x m x 2 straight-line drawing o7, which is a 3D1-bend drawing of5. |

Subsequent to this research, Morin and Waod [75] studied-BBnd drawings. They showed that if the
vertices are required to be collinear, then the minimum volume of a-BBnd drawing of any:-vertex
graph with cutwidthe is ©(cn). Moreover, they proved that every graph has al3Bend drawing with
O(n?/log® n) volume.

Now consider 3D2-bend drawings. For every-queue graph, the subdivisionG” is obviously3-
colourable. Thus by Lemnfa 4(c) and Theoferh 23(bhas a0 (1) x O(q) x O(n+m) polyline drawing
with two bends per edge. This result can be improved as follows.

Theorem 26. Everyn-vertexm-edgeg-queue graphG has a2 x 2¢g x (2n — 3) polyline drawing with
two bends per edge. The volume is at n&gst € O(n+/m).
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Proof: Leto = (v1,vs,...,v,) be the vertex ordering in @queue layout of7. Let {F, : 1 < ¢ < ¢}

be the queues. Order the edges in each quguaccording to the queue order (see Eq. (1)). Denote
by (L(e), X (e),Y (e), R(e)) the path replacing in G”, whereL(e) <, R(e). Put each vertex; at
(0,0,7). If e is the j-th edge in the ordering oF,, put the division verticesY (e) at (1,2¢,5) and
Y(e) at(1,2¢ + 1,5). Observe that the projection of the drawing onto &i& -plane is planar. Thus
the only possible crossings occur between edges contained in a plane parallel witlaxiee Thus an
X-crossing could only occur between pairs of ed§ése) X (e), L(f) X (f)}, {X ()Y (e), X (/)Y (f)},

or {Y(e)R(e),Y(f)R(f)}, wheree and f are in a single queu&,. Suppose <, f. Then theZ-
coordinates satisfyZ(L(e)) < Z(L(f)), Z(R(e)) < Z(R(f)), Z(X(e)) < Z(X(f)), andZ(Y (e)) <
Z(Y (f)). Thus there is no crossing. The drawing is at nfgt2q x (2n — 3) since each queue has at
most2n — 3 edges([28, 57, 83]. The volume is at m&gh, which isO(n./m) [29,[57)89]. |

Heath and Rosenberg [57] observed that the complete diaphas a| % |-queue layout. Thus Theo-
rem[26 gives @ x n x (2n — 3) polyline drawing ofK’,, with two bends per edge. Independent of this
research, Dyclet al.[32] also proved thak,, has a 3D2-bend drawing withO(n?) volume.

Theorem 27. LetG be ag-queue graph with vertices andn edges. For every > 0, G has a
2x ([¢]+2) x (n+ (8[1] + 1)m)

polyline drawing with at mos$[1] + 1 bends per edge. The volume®$¢“(n + )). For constante
there areO(1) bends per edge and the volume&lsg©(n + m)), which is inO(n¢(n + m)).

Proof: Letd = [¢]. By Theorenf 16( has a bipartite subdivisioP with at most3[log, ¢] + 1 division
vertices per edge such that the track-numbé€p) < d + 2. Nowlog, ¢ < % Thus D has at most
8[1] + 1 division vertices per edge, and(D) < [¢°] 4+ 2. The number of vertices ab is at most
n+ (8[1] + 1)m. By Lemmg 3}.D has a2 x ([¢<] +2) x (n + (8[%] + 1)m) straight-line drawing,
which is the desired 3D polyline drawing 6f. The other claims immediately follow singe< n. a

Theorem 28. Everyqg-queue graph with n vertices andn edges has a
2x2x (n+ (8[logyq] +1)m)

polyline drawing on a rectangular prism. There aflog ¢) bends per edge, and the volume&lsn +
mlogq), which is inO(n + mlogn).

Proof: By Theoren{ 15,G has a4-track subdivisionD with at most8[log, ¢] + 1 division vertices
per edge. The number of vertices bfis at mostn + (8[log, ¢] + 1)m. By Lemma[3p,D has a
2 x 2 x (n + (8[log, ¢] + 1)m) straight-line drawing, which is the desired polyline drawingzfThe
volume isO(n + mlogn) sinceq < n. 0

Since the queue-number of anvertex graph is at most we have the following corollary of Theo-
rem[28.

Corollary 3. Every graph withn vertices andm edges has a polyline drawing with(n + mlogn)
volume and)(log n) bends per edge. O
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