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Undecidable problems concerning densities
of languages

Jakub Kozik
Jagiellonian University, Faculty of Mathematics and Computer Science, Institute of Computer Science, ul. Nawojki
11, 30-072 Kraków, Poland

In this paper we prove that the question whether a language presented by a context free grammar has density, is
undecidable. Moreover we show that there is no algorithm which, given two unambiguous context free grammars on
input, decides whether the language defined by the first grammar has a relative density in the language defined by the
second one. Our techniques can be extended to show that this problem is undecidable even for languages given by
grammars from LL(k) (for sufficiently large fixed k ∈ N).
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In the theory of formal languages the notion of density was introduced by Berstel in [Ber72]; density for
regular languages was studied extensively (comp. [SS78]). There theory of formal power series proved to
be the main tool in this development.

A second approach was presented in [BGvOS04]. The authors used theory of Markov chains to obtain
some results concerning computational complexity of the problem of density for regular languages.

A natural extension of the notion of density is a relative density (also introduced in [Ber72]). The
relative density of a language S in L is the limit probability that a uniformly chosen word of a bounded
length from L belongs to S. Using this definition many problems concerning densities (comp. [Zai05],
[CFGG04]) can be reformulated in the theory of languages. The problem whether, for a given pair of
languages, the first language has a relative density in the second one is decidable for the regular lan-
guages ([Koz05]).

In the first part of this paper we show that the existence of the density for a language given by a context
free language, is undecidable.

In the second part we focus on unambiguous context free languages. The well-known theorem of
Chomsky and Shützenberger states that generating functions of unambiguous context free languages are
algebraic. It has been shown in [Ber72] that if there exists a density of some unambiguous context free
language it is an algebraic number. This observation (with several refinements) has been used in [Kem80]
and [Fla87] to prove the inherent ambiguity of several context free languages.

In the second part we address the following question: given a pair of unambiguous context free gram-
mars, decide whether the language defined by the first one has a density in the language defined by the
second one. We show that there is no algorithm answering this question. The problem whether a given
context free grammar is unambiguous is undecidable, and thus our question is defined on a non-recursive
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set. An easy modification of our proof shows that the problem of existence of a relative density is un-
decidable even for grammars belonging to LL(k) (for sufficiently large fixed k ∈ N). Note that for any
fixed k ∈ N the set of LL(k)-grammars is recursive.

It is shown in [Koz06] that the question is decidable if we assume that the language defined by the first
grammar is a subset of the language defined by the second one.

1 Relative densities
We denote the empty word by ε. For a language L over some finite alphabet we let L(n) denote the
number of words of length n in L.

The density of a language can be defined in a number of ways. Some authors ([Koz05], [BGvOS04])
define the density of a language L over an alphabet Σ as

d(L) = lim
n→∞

Card(L ∩ Σn)
Card(Σ)n

,

which is an asymptotic probability that an uniformly chosen word of length n belongs to L. We call the
number d(L) the density or the ordinary density of the language L. This definition is usually used for
structures like trees ([Zai05], [CFGG04]) and graphs.

On the other hand, J. Berstel ([Ber72], [SS78]) uses the following definition:

dc(L) = lim
n→∞

∑n
i=0 Card(L ∩ Σi)∑n

i=0 Card(Σ)i
.

We refer to the number dc(L) as to the cumulative density of a language L.
It is an easy exercise to show that a language L over a non unary alphabet has density if and only if it

has cumulative density (and in such a case d(L) = dc(L)). Thus the decidability of the problem does not
depend on the definition we use.

Throughout the paper we use the notion of a step language. For a fixed alphabet Σ we will say that the
language L ⊂ Σ∗ is a step language if there exists q ∈ Q and N ∈ N such that:

L(n)
Card(Σ)n

=
{

0, n < N ;
q, n ≥ N.

Clearly every step language has the density q.
Although the function of density is not countably additive on disjoint languages, for disjoint step lan-

guages it is.

Lemma 1.1 If {Li}i∈N is a family of pairwise disjoint nonempty step languages then:

d
( ⋃

i∈N
Li

)
=

∑
i∈N

d(Li)

Proof: Let L =
⋃

i∈N Li. Since d is finitely additive (on disjoint sets) we get
∑N

i=0 d(Li) < 1 for any
N ∈ N. Therefore the series

∑
i∈N d(Li) is convergent.
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Let us assume that the ordering of the languages Li is such that for every i ∈ N the shortest word
from Li is no longer then the shortest word from Li+1. Note that for every n ∈ N there is finitely many
languages Li with words of length n. We define ν : N → N such that for every n ∈ N a language Li

contains words of length n if and only if i ≤ ν(n). Then

L(n)
Card(Σ)n

=
ν(n)∑
i=0

Li(n)
Card(Σ)n

=
ν(n)∑
i=0

d(Li).

The last equality follows from the fact that each language Li is a step language and contains words of
length n. It shows that:

d(L) = lim
n→∞

L(n)
Card(Σ)n

=
∞∑

i=0

d(Li).

2

We define the relative density of a language S in a language L to be

d(S|L) = lim
n→∞

Card(S ∩ L ∩ Σn)
Card(L ∩ Σn)

, (1)

and its cumulative version as

dc(S|L) = lim
n→∞

∑n
i=0 Card(S ∩ L ∩ Σi)∑n

i=0 Card(L ∩ Σi)
.

Note that the fraction in (1) is well-defined if L ∩ Σn 6= ∅. By an abuse of notation, we say that a limit
is well-defined if there are words of almost every length in L. By the same token the relative cumulative
density requires L 6= ∅. It is easy to see that for any two languages L, S the existence of d(S|L) implies
the existence of dc(S|L) and that the inverse implication does not hold.

In the second part of the paper we show that there is no algorithm which, given a pair of unambiguous
context free grammars (G1, G2) on input, decides whether d(L1|L2) exists (where L1, L2 are the lan-
guages defined by G1, G2 respectively). The proofs we present can be applied directly to prove the same
theorems for relative cumulative density.

Finally, we note that the definition of relative density given by Berstel in [Ber72] assumes that S ⊂ L.
For regular languages, considered by Berstel, the difference is insignificant (since regular languages are
closed with respect to intersections). Unambiguous context free languages are not closed with respect to
the intersection and, moreover, the problem of inclusion of two languages given by unambiguous context
free grammars is undecidable. If we restrict our problem to pairs of grammars such that the inclusion
holds for the corresponding languages, then it becomes decidable (as was shown in [Koz06]).

2 Density of a context free language
The problem of existence of density in full language is undecidable even for context free languages. To
show this we encode Post Correspondence Problem into the problem of density. Our proof is a modifi-
cation of the standard argument for the undecidability of the problem of emptiness of intersection of two
languages given by context free grammars.
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Theorem 2.1 The question of existence of ordinary density for a language given by a context free gram-
mar is undecidable.

Proof: Let {(αi, βi)}i∈{1,...,n} be an instance of Post Correspondence Problem over the alphabet Σ =
{a, b}. Let Γ = {a, b, c, d} and L1 be a language generated by the grammar:

L1 → α1L1
←−
β1| . . . |αnL1

←−
βn (2)

L1 → cFc (3)

F → aF |bF |cF |dF |ε

where←−βi denotes reverted word βi. We use the same symbol to denote the starting symbol of the grammar
and the whole language it generates. We assign numbers to productions from (2) in such a way that the
production L1 → αiL1

←−
βi has number i.

Let W be the set of all pairs of words that factorize into pairs of words from the instance of the PCP.
Formally (w, v) ∈ W if and only if there exist k ∈ N and ν ∈ Nk such that w = αν1 . . . ανk

and
v = βν1 . . . βνk

. We can rewrite the definition of L1 as follows:

L1 =
⋃

(w,v)∈W

wcΓ∗c←−v .

Note that for two different pairs of words (w1, v1), (w2, v2) languages w1cΓ∗cv1 and w2cΓ∗cv2 are dis-
joint. For every pair (w, v) the language wcΓ∗cv is a step language with its density equal to 1

Card(Γ)|w|+|v|+2 .
Hence L1 is a disjoint union of step languages with positive densities and as a result of Lemma 1.1 it has
positive density as well.

Let L2 be the language generated by

L2 → aL2a|bL2b|cFc,

F → aF |bF |cF |dF |ε.

It consists of words of a form wcvc←−w for some w ∈ Σ∗ and v ∈ Γ∗. Therefore

L2 =
⋃

w∈Σ∗

wcΓ∗c←−w .

Therefore L2 is a disjoint union of step languages with positive density and, by Lemma 1.1, positive
density for L2 exists.

The language L1∩L2 is not empty if and only if a given instance of PCP has a solution. Suppose there is
a solution of PCP. Let (i1, . . . , ik) be the sequence of numbers of the pairs in that solution. By definition
it implies that αi1 . . . αik

= βi1 . . . βik
. Using the same sequence of productions in the first grammar,

production (3), and F → ε we obtain a word αi1 . . . αik
cc
←−
βik

. . .
←−
βi1 = wcc←−w which belongs to L2, and

hence the intersection is not empty. On the other hand whenever the intersection is not empty it contains
some word wcvc←−w for w ∈ Σ∗. Let us consider a derivation of this word in the first grammar. From
the construction of the grammar the first and the last occurrence of c must be generated by production
(3). Therefore words w and←−w are generated by productions from (2). Let (i1, . . . , ik) be the sequence of
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numbers of these productions. Then we have w = αi1 . . . αik
and←−w = ←−βik

. . .
←−
βi1 . Hence the sequence

(i1, . . . , ik) is a solution of the given instance of PCP.
Moreover whenever the intersection contains a word wcvc←−w for some w ∈ Σ∗, it also includes the

whole language wcΓ∗c←−w . If this intersection contains w1cv1c←−w1 and w2cv2c←−w2 for different w1, w2 ∈
Σ∗, the languages w1cΓ∗c←−w1 and w2cΓ∗c←−w2 are disjoint.

Let P ∈ Σ∗ be the language of words w of the form w = αi1 . . . αik
= βi1 . . . βik

for some
(i1, . . . , ik) ∈ N. Trivially

L1 ∩ L2 =
⋃

w∈P

wcΓ∗c←−w

and by previous considerations we know that all languages which are summed are disjoint step languages
with positive densities. By Lemma 1.1 L1 ∩ L2 has positive density as well.

We conclude by saying that L1∩L2 has a positive density if and only if corresponding instance of PCP
has a solution, and density 0 otherwise.

The last step is to modify the second grammar. Let L′2 be a language generated by the grammar below:

L′2 → aL′2a|bL′2b|cF1c|dF2d

F2 → aF1|bF1|cF1|dF1|ε

F1 → aF2|bF2|cF2|dF2.

It is easily seen that
L′2 =

⋃
w∈Σ∗

(wcΓ(ΓΓ)∗c←−w ∪ wd(ΓΓ)∗d←−w ).

Since language L′2 has exactly the same number of words of every length than language L2, it has the
same density.

Analogous considerations show that the instance of PCP has a solution if and only if L1 ∩ L′2 is not
empty.

Let us assume that the given PCP has a solution. Let P ∈ Σ∗ be the language of words w of the form
w = αi1 . . . αik

= βi1 . . . βik
for some (i1, . . . , ik) ∈ N.

Then I = L1 ∩ L′2 is an union of distinct languages wcΓ(ΓΓ)∗c←−w for w ∈ P . Let S = wcΓ(ΓΓ)∗c←−w
for some w ∈ P . Then S has no density since

lim
k→∞

S(2k)
Card(Γ)2k

= lim
k→∞

0
Card(Γ)2k

= 0

and

lim
k→∞

S(2k + 1)
Card(Γ)2k+1

= lim
k→∞

Card(Γ)2k+1−2(|w|+1)

Card(Γ)2k+1
=

1
Card(Γ)2(|w|+1)

.

Thus I(2n) = 0 and I(2n + 1) ≥ S(2n + 1). We proved that the given instance of PCP has a solution
if and only if L1 ∩ L′2 has no density.

Unfortunately, context free languages are not closed under intersections so we cannon use L1 ∩ L′2
directly to prove undecidability. Let us consider L = L1∪L′2 instead. If the intersection L1∩L′2 is empty
then L is a disjoint union of step languages with positive densities and hence it has positive density. On
the other hand we proceed to show that if L1∩L′2 is not empty then L1∪L′2 has no density. Let us denote
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the densities of languages L1 and L2 by d1 and d2 (respectively). Since the intersection L1 ∩L′2 contains
only words of odd length we have L(2n) = L1(2n) + L′2(2n) which implies:

lim
k→∞

L(2k)
Card(Γ)2k

= lim
k→∞

L1(2k) + L′2(2k)
Card(Γ)2k

= d1 + d2.

When intersection is not empty we got L1 ∩ L2 ⊃ S = wcΓ(ΓΓ)∗c←−w for some w ∈ P . Let δ =
1

Card(Γ)2|w|+2 . For sufficiently large n we have δ = S(2n+1)
Card(Γ)2n+1 and since L(2n + 1) ≤ L1(2n + 1) +

L′2(2n + 1)− S(2n + 1), so we obtain

lim sup
k→∞

L(2k + 1)
Card(Γ)2k+1

≤ lim
k→∞

L1(2k + 1) + L′2(2k + 1)− S(2k + 1)
Card(Γ)2k+1

= d1 + d2 − δ.

Therefore the sequence ( L(n)
Card(Γ)n )n∈N diverges and as a result L = L1 ∪ L′2 has no density.

We have shown that a given instance of PCP has a solution if and only if the language L1 ∪ L′2 has no
density. The language L1 ∪ L′2 is context free, and its grammar can be effectively constructed by adding
a new production L → L1|L′2 to the productions of L1 and L′2. Note that the grammar for L1 can be
constructed directly from any given instance of PCP, and the grammar for L′2 is always the same. It shows
that the problem of existence of density in a full language for a language given by a context free grammar
is undecidable. 2

3 Unambiguous context free languages
Between regular and context free languages there exists an interesting class of unambiguous context free
languages. A context free grammar is unambiguous if every word has at most one derivation in it. The
language is unambiguous context free if it is generated by some unambiguous context free grammar.
Unfortunately the problem of existence of relative density is undecidable for that class of grammars. To
prove this fact we need a modified version of the Post Correspondence Problem.

The language L ⊂ Σ∗ is a prefix code if there are no words w, v ∈ L such that w is a prefix of v. In
such a case every word from Σ∗ has at most one factorization into elements of L.

A new problem abbreviated by UPCP is defined as follows:
Given finite set of pairs of words {(αi, βi)}i∈{1,...,n} on input return true if αi 6= αj for i 6= j and

{αi}i∈{1,...,n} is a prefix code and {(αi, βi)}i∈{1,...,n} has a solution as an instance of PCP. Return false
otherwise.

Such modification does not change the undecidability of the problem. The encoding of the halting
problem of the Post Machine into Post Correspondence Problem from [Man74] constructs systems in
which {αi}i∈{1,...,n} is a prefix code and αi 6= αj for i 6= j. Moreover the property of being a prefix code
can be easily verified algorithmically for finite languages.

Theorem 3.1 There is no algorithm which for two unambiguous context free grammars decides whether
language defined by the first one has a relative density in the language defined by the second one.

Proof: Let {(αi, βi)}i∈{1,...,m} be an instance of UPCP over alphabet Σ. We construct two unambiguous
context free languages such that a given instance of UPCP has a solution if and only if the first language
has no density in the second one.
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It is easy to decide whether {αi}i=1...m is a prefix code, if it is not or if αi = αj for i 6= j we put
L1 = L2 = Σ∗. In the remaining case each pair of words (w1, w2) has at most one factorization into
{(αi, βi)}i∈{1,...,n} (since w1 has at most one). Therefore by construction from the proof of 2.1 we obtain
unambiguous languages L1, L

′
2(the second one was unambiguous before).

Let us consider d(L1|L′2). If the instance of UPCP has no solution, the intersection of languages is
empty and d(L1|L′2) = 0.

If, on the other hand, the intersection I = L1 ∩ L′2 is not empty, it contains words of odd length only.
Therefore we have

lim
k→∞

I(2k)
L′2(2k)

= 0. (4)

Let S = wcΓ(ΓΓ)∗c←−w ⊂ L1 ∩ L′2. Let δ = 1
Card(Γ)2|w|+2 . For sufficiently large n we have δ =

S(2n+1)
Card(Γ)2n+1 . Then

lim
k→∞

I(2k + 1)
L′2(2k + 1)

= lim
k→∞

I(2k + 1)
Card(Γ)2k+1

· Card(Γ)2k+1

L′2(2k + 1)
≥ δ

d2
(5)

where d2 is the density of L′2 in the full language Γ∗. It follows from (4) and (5) that there is no relative
density of L1 in L′2.

We proved that the construction used in the proof of Theorem 2.1 gives languages L1, L
′
2 such that an

instance of UPCP has a solution if and only if there is no relative density of L1 in L′2. 2

Grammars used in the last proof belong to simpler classes. The grammar constructed for the language
L1 is in LL(k) for k = max{|αi| : i = 1, . . . , n} and L′2 is in LL(1). In the encoding of the halting
problem of the Post Machine into PCP (from [Man74]) all pairs in a constructed system are short, except
the pair which describes the initial configuration. The same encoding used to the halting problem of Post
Machine with empty initial word constructs instances of UPCP consisting of short pairs only. Even in
such restricted setting the problem remains undecidable. In this way k can be always reduced to 4.

Corollary 3.2 The problem of relative density for languages presented by context free grammars belong-
ing to LL(4) is undecidable.

4 Summary
By further modification of the Post Correspondence Problem we can obtain a situation when the con-
structed language L1 ∩L′2 is regular. Nevertheless it is still undecidable whether is has density (or equiv-
alently in that case: whether it is empty or not).

On the other hand the following theorem is proved in [Koz06]:

Theorem 3.1’ There exists an algorithm which for two unambiguous context free grammars decides
whether the language defined by the first one has relative density in the language defined by the second
one, provided the first language is a subset of the second one.
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