
Fourth Colloquium on Mathematics and Computer Science DMTCS proc. AG, 2006, 381–390

Polyominoes determined by permutations
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In this paper we consider the class of permutominoes, i.e. a special class of polyominoes which are determined by
a pair of permutations having the same size. We give a characterization of the permutations associated with convex
permutominoes, and then we enumerate various classes of convex permutominoes, including parallelogram, directed-
convex, and stack ones.
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1 Basics on polyominoes
In the plane Z × Z a cell is a unit square, and a polyomino is a finite connected union of cells having no
cut point. Polyominoes are defined up to translations. A column (row) of a polyomino is the intersection
between the polyomino and an infinite strip of cells whose centers lie on a vertical (horizontal) line. The
enumeration problem for general polyominoes is difficult to solve and still open. The number an of poly-
ominoes with n cells is known up to n = 56 [JG] and asymptotically, this number satisfies the relation
limn→∞ (an)1/n = µ, 3.96 < µ < 4.64, where the lower bound is a recent improvement of [BMRR].

(a) (b) (c)

Fig. 1: (a) column-convex polyomino; (b) a convex polyomino; (c) a directed (not convex) polyomino.

In order to simplify many problems which are still open on the class of polyominoes, several subclasses
were defined by combining two notions: the geometrical notion of convexity, and the notion of directed
growth, which comes from statistical physics. A polyomino is said to be column-convex [row-convex] when
its intersection with any vertical [horizontal] line is convex (Fig. 1 (a)). A polyomino is convex if it is both
column and row convex (Fig. 1 (b)). In a convex polyomino the semi-perimeter is given by the sum of the
number of rows and columns, while the area is the number of its cells.

A polyomino P is said to be directed when every cell of P can be reached from a distinguished cell,
called the root (usually the leftmost at the lowest ordinate), by a path which is contained in P and uses only
north and east unit steps (Fig. 1 (c)). Figure 2 (d) depicts a polyomino that is both directed and convex.
Moreover we can define three types of directed and convex polyominoes, i.e. the Ferrers diagrams (Fig. 2
(a)), the parallelogram polyominoes (Fig. 2 (b)), and the stack polyominoes (Fig. 2 (c)). As Figure 2 shows,
each of these three subsets can be characterized, in the set of convex polyominoes, by the fact that two or
three vertices of the minimal bounding rectangle of the polyomino must also belong to the polyomino itself.

The number fn of convex polyominoes with semi-perimeter n ≥ 2 was obtained by Delest and Viennot,
in [DV]:

fn+2 = (2n + 11)4n − 4(2n + 1)
(

2n

n

)
, n ≥ 0; f0 = 1, f1 = 2.

Moreover, it is well known [S] that the number of parallelogram polyominoes with semi-perimeter n ≥ 2
is equal to the (n− 1)th Catalan number, where Catalan numbers are defined by
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(b) (c) (d)(a)

Fig. 2: (a) A Ferrers diagram; (c) A parallelogram polyomino; (c) A stack polyomino; (d) A directed-convex poly-
omino.

cn =
1

n + 1

(
2n

n

)
.

Finally, the number of directed-convex polyominoes with semi-perimeter n ≥ 2 is equal to bn−2, where
bn are the central binomial coefficients,

bn =
(

2n

n

)
.

2 Convex permutominoes
Let P be a polyomino without holes having n − 1 rows and n − 1 columns, n ≥ 2. Without loss of
generality, throughout the paper we assume that the south-west edge of the minimal bounding rectangle
of the considered polyomino is placed in the point (1, 1). Let A1, B1, . . . , An, Bn be the sequence of the
vertices of P obtained by visiting the boundary in clockwise orientation, starting from the lowest point in
the leftmost column. We say that P is a permutomino of size n if the sets of points A = {A1, . . . , An} and
B = {B1, . . . , Bn} represent two permutation matrices of size n.

Moreover, let us re-arrange the points of A (resp. B) according to the increasing value of their abscissa,
giving { (1, y1(A)), . . . , (n, yn(A)) } (resp. { (1, y1(B)), . . . , (n, yn(B)) }, and let

π1(P ) = ( y1(A), y2(A), . . . , yn(A) ) ,

π2(P ) = ( y1(B), y2(B), . . . , yn(B) ) ;

we say that the permutomino P is associated with the pair of permutations ( π1(P ), π2(P ) ) (briefly,
(π1, π2)); for simplicity the ith element of π1 (resp. π2) will be denoted by π1(i) (resp. π2(i)). By
construction we have that for any permutomino π1(1) < n and π1(n) > 1. Figure 3 shows two permutomi-
noes and the associated permutations; we remark that the size of the permutomino, defined as the dimension
of the associated permutations, is equal to 5, while the side of the bounding square is 4.

2

!   = (1, 3, 4, 2, 5)1!   = (1, 3, 4, 2, 5)

!   = (3, 4, 2, 5, 1)2  = (3, 4, 5, 1, 2)!

1

Fig. 3: Two permutominoes and the associated permutations. The permutation π1 (resp. π2) is represented by black
(resp. white) dots.

In [I] F. Incitti introduced the class of permutominoes while studying the problem of determining the
R̃-polynomials (related with the Kazhdan-Lusztig R-polynomials) associated with a pair (x, y) of permu-
tations. Concerning the class of convex polyominoes, our definition (though different) turns out to be
equivalent to Incitti’s one, which is more general but uses some algebraic notions not necessary in this
paper.
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Here we will focus our interest on the class of convex polyominoes which are also permutominoes (see
Figure 4). As a start we consider the problem of giving a characterization of the set of permutations
associated with convex permutominoes,

{ (π1(P ), π2(P )) : P is a convex permutomino } .

  = (8, 6, 1, 9, 11, 14, 2, 16, 15, 13, 12, 10, 7, 3, 5, 4)
!
1!

  = (9, 8, 6, 11, 14, 16, 1, 15, 13, 12, 10, 7, 5, 2, 4, 3)2

Fig. 4: A convex permutomino and the associated permutations.

In order to do this, we start by observing that convex permutominoes satisfy interesting symmetry prop-
erties: let P be a convex permutomino, and let (π1(P ), π2(P )) be the associated permutations; moreover,
let Px (resp. Py) be the reflection of P with respect to the x-axis (resp. y-axis). It can easily be proved that:

1. π1(Px) is defined by π1(Px)(i) = (n + 1)− π2(P )(i) (resp. π2(Px)(i) = (n + 1)− π1(P )(i)).

2. π1(Py) = π2(P )M , where πM
2 denotes the reversal of π2, and π2(Py) = π1(P )M .

Thus, let Cn be the set of convex permutominoes of size n, and

C̃n = {π1(P ) : P ∈ Cn } , C̃′n = {π2(P ) : P ∈ Cn } .

Trivially we have that for any permutation ζ,

ζ ∈ C̃n if and only if ζM ∈ C̃′n,

hence
∣∣∣C̃n

∣∣∣ =
∣∣∣C̃′n∣∣∣, for all n ≥ 2. For instance, the reader can check that there are 4 convex permutominoes

of size 3 (i.e. semi-perimeter equal to 4), while

C̃3 = { 123, 213, 132 } , C̃′3 = { 321, 312, 231 } .

However, ζ ∈ C̃n does not imply that ζM ∈ C̃n. For instance, referring to the permutomino on the left of
Figure 3 we have that πM

1 = (5, 2, 4, 3, 1) /∈ C̃5. More precisely we have that

C̃n ∩ C̃′n =
{

Π : Π ∈ C̃n and ΠM ∈ C̃n

}
.

Thus, without loss of generality, we study the class C̃n, i.e. we consider the problem of establishing if, for
a given permutation Π of [n] = {1, . . . , n}, there is at least a convex permutomino P of size n such that
π1(P ) = Π. Let us consider the sequence:

i1 = 1 < i2 < . . . < ih < ih+1 < . . . < ik = n,

with 1 < ih ≤ n, where ih = Π−1(n), and

ij−1 = Π−1 ( max {Π(ij − 1),Π(ij − 2), . . . ,Π(1) } ) , j = h, . . . , 2

ij+1 = Π−1 ( max {Π(ij + 1),Π(ij + 2), . . . ,Π(n)} ) , j = h, . . . , k − 1.
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Let us denote by µ the upper unimodal sequence:

Π(i1) = Π(1) < Π(i2) < . . . < Π(ih) = n > Π(ih+1) > . . . > Π(ik) = Π(n),

and by σ the sequence:

( Π(1), Π(j1), . . . , Π(jr), Π(n) ) ,

where j1, . . . , jr are the indices of [n] \
⋃k

s=1 is, with 1 < j1 < . . . < jr < n.

Example 1 Let us consider the convex permutomino of size 16 represented in Fig. 4. We have

π1 = (8, 6, 1, 9, 11, 14, 2, 16, 15, 13, 12, 10, 7, 3, 5, 4),

and we can determine:

i. the upper unimodal sequence µ = (8, 9, 11, 14, 16, 15, 13, 12, 10, 7, 5, 4);

ii. the sequence σ = (8, 6, 1, 2, 3, 4) which turns out to be lower unimodal. In fact the following charac-
terization holds.

Theorem 1 Let Π be a permutation of [n], such that Π(1) < n and Π(n) > 1. Let us consider the following
two cases:

1) Π(1) < Π(n); we have that Π ∈ C̃n if and only if σ is lower unimodal;

2) Π(1) > Π(n); we have that Π ∈ C̃n if and only if σ is lower unimodal and ij + Π(ij+1) ≥ n + 1, for
all ih ≤ ij < n.

(Sketch of proof.) Let us consider the following discrete points: A = ( π−1
1 (1), 1 ), B = ( 1, π1(1) ),

C = (π−1
1 (n), n ), and D = (n, π1(n) ), and the following paths (see Figure 5):

- the “upper path”, running from B to D in a clockwise orientation, obtained connecting the couples of con-
secutive points of µ, say ( i`, µ(i`) ), and ( i`+1, µ(i`+1) ), by means of segments 1µ(i`+1)−µ(i`)0i`+1−i` ,
where as usual 1 and 0 denote the vertical and horizontal unit steps, respectively.

- the “lower path” running from B to D in a counterclockwise orientation, obtained in an analogous way
by connecting the points ( i, σ(i) ).

Let P (Π) be the polygon obtained by connecting the upper and the lower paths. If we want P (Π) to
be a convex polygon, necessarily σ must be lower unimodal. However this is not a sufficient condition for
P (Π) to be a polyomino, since the two paths may cross, as depicted in Figure 5 (b). We point out that, by
construction, this possibility may occur only if Π(1) > Π(n); more precisely, we have that the paths BC
and DA can never cross, while the paths CD and AB cross if and only if the path CD passes below the
diagonal of the square parallel to the line y = −x, i.e. there is at least one index s, h ≤ s < k, such that
is + Π(is+1) < n + 1.

Actually, as we investigate in the next section, there may be more than one convex permutomino asso-
ciated with the permutation Π. It is not difficult to prove that the boundaries of these convex polyominoes
coincide at least for the paths CD and AB, thus if the two paths cross in P (Π) they will cross in all the
convex polygons associated with Π. 2

Example 2 Let us consider the permutation Π = (4, 8, 1, 9, 7, 3, 5, 2, 6), with Π(1) = 4 < Π(9) = 6;
we have µ = (4, 8, 9, 7, 6), and σ = (4, 1, 3, 5, 2, 6). Since σ is not lower unimodal, there is no convex
permutomino P such that Π = π1(P ). However, as depicted in Figure 5 (a), there exists a non convex
permutomino associated with Π.

Example 3 Let us consider the permutation Π = (5, 9, 8, 7, 6, 3, 1, 2, 4), where µ = (5, 9, 8, 7, 6, 4), and
σ = (5, 3, 1, 2, 4). Here σ is lower unimodal, but being Π(1) = 5 > Π(9) = 4 (case 2) of Theorem 1) this
condition is not sufficient to give a convex permutomino; in fact, ih = Π−1(9) = 2

ij 2 3 4 5 9
Π(ij) 9 8 7 6 4



Polyominoes determined by permutations 385
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B
B

A A

D
D

Fig. 5: (a) a non convex permutomino associated with (4, 8, 1, 9, 7, 3, 5, 2, 6); (b) there is no convex permutomino
associated with (5, 9, 8, 7, 6, 3, 1, 2, 4); the “upper” and the “lower” paths have been represented by different lines; (c)
the unique convex permutomino associated with (6, 4, 7, 8, 1, 9, 2, 5, 3).

and 5 + Π(9) = 9 < 10, hence there is no convex permutomino P such that Π = π1(P ), as depicted in
Figure 5 (b).

Example 4 Let us consider the permutation Π = (6, 4, 7, 8, 1, 9, 2, 5, 3) of [9], where Π(1) = 6 > Π(9) =
3. Here we have µ = (6, 7, 8, 9, 5, 3) and σ = (6, 4, 1, 2, 3). Moreover, since ih = Π−1(9) = 6, and

ij 6 8 9
Π(ij) 9 5 3

we have 6 + Π(8) = 11 ≥ 10, and 8 + Π(9) = 11 ≥ 10, hence also the second requirement is satisfied and
there is a convex permutomino associated with Π (see Figure 5 (c)).

3 Enumeration of some classes of convex permutominoes

Let P, P ′ ∈ Cn. We say that P ∼ P ′ if π1(P ) = π1(P ′). Obviously, ∼ is an equivalence relation on Cn,
and for any P ∈ Cn we may consider the equivalence class

[P ]∼ = {P ′ ∈ Cn : P ′ ∼ P } ,

i.e. the class of convex permutominoes associated with the permutation π1(P ); from basic algebraic notions
we have that the set Cn/∼ = { [P ]∼ : P ∈ Cn } is in bijection with C̃n = {π1(P ) : P ∈ Cn } . Thus, by
abuse of notation we sometimes write [π1(P )]∼ to mean [P ]∼.

Lemma 1 Let P ∈ Dn (resp. Pn); then [P ]∼ ⊆ Dn (resp. Pn).

Lemma 1 says that all the convex permutominoes which are in ∼ relation with a directed-convex (paral-
lelogram) permutominoes are still directed-convex (parallelogram).

We can now refine the statement of Theorem 1, and give a characterization of the permutations associated
with some special classes of convex polyominoes. Let us consider the classes Dn, Pn, and Sn of directed-
convex, parallelogram, and stack permutominoes of size n, and the associated classes of permutations, P̃n,
D̃n, and S̃n, respectively.

Theorem 2 Let Π be a permutation of [n], with Π(1) < n and Π(n) > 1. Then:

1. Π ∈ D̃n iff σ is increasing (which implies Π(1) = 1);

2. Π ∈ P̃n iff µ and σ are both increasing (which implies Π(1) = 1 and Π(n) = n);

3. Π ∈ S̃n iff σ = (1,Π(n)) (i.e. Π(1) = 1 and Π = µ).

The reader can verify the statement of Theorem 2 in the case of the polyominoes depicted in Figure 6.
Now investigate the problem of determining how many elements are contained in the class [P ]∼, for any

P ∈ Cn.
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=(1,4,6,8)

1 1! 

=(1,2,4,6)"
"=(1,2)

=    =(1,3,5,7,8,6,4,2)µ

µ

"

=(1,2,3,5,7,8)=(1,3,5,6,7,6)µ
1! =(1,2,3,5,4,7,6,8)=(1,3,2,5,8,4,7,6)

(a) (b) (c)

! 

Fig. 6: (a) a directed-convex permutomino; (b) a stack permutomino; (c) a parallelogram permutomino.

Theorem 3 Let P ∈ Cn, and let F(π1) be the subset of fixed points of π1 in {π1(1), π1(i2), . . . , π(ih)},
(i.e., the ascending part of the sequence µ) which are different from 1 and n. Then we have:

| [ P ]∼ | = 2|F(π1)|.

(Sketch of proof.) Let P ∈ Cn, and let us consider the usual points A, B, C, and D on the boundary of P .
We observe that each fixed point of F(π1) can belong to the “upper path” from B to C or to the “lower
path” from A to D; instead, due to the convexity constrain, the paths from A to B, and from C to D are
uniquely determined, and are equal for all the permutominoes of [ P ]∼. Hence there are 2|F(P )| possible
convex permutominoes which can be obtained from π1. 2

We remark that if π1(1) > π1(n) then necessarily F(π1) = ∅, hence | [ P ]∼ | = 1.

Example 5 Let P be the convex polyomino depicted in Fig. 7. We have that π1 = (2, 1, 3, 4, 7, 6, 5),
µ1 = (2,3,4, 7, 6, 5) σ1 = (2, 1, 5). The fixed points of π1 are 3, 4, 6, hence F(π1) = {3, 4}, and finally
by Theorem 3 we have that |[P ]∼| = 22 = 4. The four permutominoes associated with π1 are depicted in
Figure 7. The reader can try to find all the non convex permutominoes associated with π1.

A

D

C

B

Fig. 7: The four convex permutominoes associated with the permutation (2, 1, 3, 4, 7, 6, 5). Observe that the class is
closed for symmetry through the diagonal x = y.

Now we provide a solution for the enumeration problems concerning the classes of parallelogram,
directed-convex and stack polyominoes, and the associated classes of permutations.

3.1 Parallelogram permutominoes
Let us start by considering the class of parallelogram permutominoes.

Proposition 1 For any n ≥ 2 we have:

i. |Pn| = cn−1;

ii.
∣∣∣P̃n

∣∣∣ = cn−2.
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(Sketch of proof.) i) If a permutomino is parallelogram of size n ≥ 2, its upper path must remain weakly
above the main diagonal, i.e. it is a Dyck path of length 2(n − 1), as shown in Figure 8. Conversely, each
Dyck path of length 2n is the upper path of exactly one parallelogram permutomino of size n + 1, n ≥ 1;
hence we have that |Pn| is given by the number of Dyck paths of length 2(n− 1), which is equal to cn−1.

Fig. 8: A parallelogram permutomino (associated with the permutation π1 = (1, 2, 3, 5, 6, 4, 7, 8, 9)) and its associated
Dyck path.

ii) Let Π be a permutation of P̃n, n ≥ 2. We agree to represent Π by the unique parallelogram permu-
tomino of [ Π ]∼ for which the upper path is an elevated Dyck path (i.e. the permutomino such that all the
fixed points in Π belong to the lower path except 1 and n). Let w(Π) be the upper path of such a permu-
tomino from which we have removed the first and last step (a vertical and an horizontal one, respectively).
Necessarily w(Π) is a Dyck path of length 2(n− 2)(see Figure 9).

Conversely, given any Dyck path w of length 2(n − 2), with n ≥ 2, we elevate it by adding an initial
vertical step and a final horizontal step, and build up the unique parallelogram permutomino P (w) having
such obtained path as upper path. Then we have that π1(P (w)) ∈ P̃n. As a consequence, the number of
permutations of P̃n is equal to the number of Dyck paths of length 2(n− 2), i.e. cn−2. 2

Fig. 9: A parallelogram permutomino representing the permutation π1 = (1, 2, 3, 5, 6, 4, 7, 8, 9) and the associated
Dyck path.

3.2 Directed-convex permutominoes
In order to study the class of directed-convex permutominoes we use the same approach we have used
for parallelogram permutominoes. On a directed-convex permutominoes we identify the following points:
O = (1, 1), C = (ih, n), D = (n, π1(n)) (see Fig. 10). Moreover, let X = (x, π1(n)), x ≤ π1(n), be the
point obtained from the intersection of the path from O to C with the line y = π1(n).

Trivially, a directed-convex permutomino P is uniquely determined by its “upper path”, i.e. the path that
goes from O to D in a clockwise orientation. We encode such a path (hence the permutomino P ) in terms
of a path, called φ(P ), running from (1, 1) to (n, n), where the sequences of consecutive horizontal steps
can be of two different types, say solid or dotted. More precisely, we associate with P a path φ(P ) obtained
by concatenating:

- the path from O to X ,

- a path obtained by projecting over the path from X to C all the horizontal steps of the path from C to D
(such projected horizontal steps are denoted by means of dotted steps, as shown in Fig. 10).

Lemma 2 A directed-convex (non parallelogram) permutomino P of size n is encoded by a 2-colored
Dyck path φ(P ) of length 2(n− 1) running from (1, 1) to (n, n), which can be uniquely decomposed into
two parts:
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x (n)! 1(n)!n !

! (n)1

 ! x

XX
D

C

O
1

Fig. 10: A directed-convex permutomino and its associated two-colored Dyck path.

1. a non-empty path of the form: 1+ ( 0+1+ )∗ ;

2. a non-empty path of the form: 0+1
(

0+1 ∨ 0+1
)∗

0+,

where 0, 0, and 1 denote respectively the solid horizontal, dotted horizontal, and vertical unit steps.

Vice versa it can be easily proved that each 2-colored Dyck path from (1, 1) to (n, n) which can be de-
composed into two parts satisfying properties 1. and 2. leads to a unique directed-convex (non-parallelogram)
permutomino.

Proposition 2 For any n ≥ 2 we have that |Dn| = 1
2 bn−1.

(Sketch of proof.) It is possible to determine a bijection between the class of directed-convex permutominoes
of size n ≥ 2 and Grand-Dyck paths having length equal to 2(n−1) and ending with an horizontal step. We
recall the a Grand-Dyck path of length 2n is simply a path from (0, 0) to (n, n) using vertical and horizontal
unit steps. Let P be a directed-convex permutomino of size n:

1. if P is a parallelogram one, then it is associated with a Dyck path of length 2(n− 1) (Proposition 1);

2. otherwise, using the encoding of Lemma 2, P can be mapped into a (non Dyck) Grand-Dyck path
having length equal to 2(n− 1) and ending with an horizontal step.

Finally, |Dn| is given by the number of Grand-Dyck paths ending with an horizontal step, i.e. 1
2 bn−1. 2

Proposition 3 For any n ≥ 2 we have that |D̃n| = bn−2.

3.3 Stack permutominoes
The case of stack permutominoes is slightly different from the previous cases, since the statement of
Lemma 1 does not hold for this class. We have indeed the following:

Proposition 4 Let Π be an upper unimodal permutation of size n, with Π(1) = 1, Π = µ; then [Π]∼ ⊆ Dn,
and there is exactly one stack polyomino associated with Π, i.e. | [Π]∼ ∩ Sn | = 1.

Proposition 5 For any n ≥ 2 we have that |Sn| = 2n−2.

(Sketch of proof.) A stack permutaomino P of size n ≥ 2 is uniquely determined by its associated permu-
tation π1(P ), which is upper unimodal. The number of such permutations with the number n in the kth
position, 1 < k ≤ n, is clearly given by

(
n−2
k−2

)
, hence follows the thesis. 2

Example 6 Let us consider Π = (1, 2, 3, 5, 4); we have Π(1) = 1 and µ = Π. Hence, according to
Theorem 2 and Lemma 1 we have that [Π]∼ ⊆ Dn, and from Theorem 3 we have that |[Π]∼| = 4 (see
Figure 11). But Proposition 4 ensures that only one of the four directed-convex permutominoes associated
with Π is a stack (precisely, the leftmost in Figure 11).
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Fig. 11: The four directed-convex polyominoes associated with Π = (1, 2, 3, 5, 4).

4 Open problems

In this paper we have considered the class of convex permutominoes; the main results are the charac-
terization of the set of permutations associated with convex permutominoes, and the enumeration of some
classes of convex permutominoes, including the stack, parallelogram, and the directed-convex ones. There
are however several problems concerning permutominoes which are still open. Regarding convex permu-
tominoes, the major open problems are the following:

1. determine the number of convex permutominoes, |Cn|,

2. determine the number of permutations associated with convex permutominoes, |C̃n|, and | C̃n ∩ C̃′n |,

3. determine the cardinalities of the two subsets of C̃n,

C̃1
n =

{
Π ∈ C̃n : Π(1) < Π(n)

}
, C̃2

n = C̃n \ C̃1
n.

Trivially, for any n ≥ 2, we have C̃1
n > C̃2

n.

4. determine the number of convex permutominoes having area m ≥ 1.

Concerning the whole class of permutominoes, our goal is to generalize some of the properties stated for
convex polyominoes. In particular, we wish to give a characterization of the set of permutations associated
with permutominoes, and then of the set [P ]∼ = {P ′ is a permutomino : P ′ ∼ P}.

Acknowledgments. The authors wish to thank F. Incitti for suggesting the problem of enumerating the
class of permutominoes. Moreover special thanks are due to G. Droandi and S. Socci (University of Siena)
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