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This paper tackles the enumeration and asymptotics of the area below directed lattice paths (walks on N, with a finite
set of jumps). It is a nice surprise (obtained via the “kernel method”) that the generating functions of the moments of
the area are algebraic functions, expressible as symmetric functions in terms of the roots of the kernel.

For a large class of walks, we give full asymptotics for the average area of excursions (“discrete” reflected Brownian
bridge) and meanders (“discrete” reflected Brownian motion). We show that drift is not playing any rôle in the first
case. We also generalise previous works related to the number of points below a path and to the area between a path
and a line of rational slope.
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1 Introduction
A lattice path is the drawing in Z2 of a sum of vectors from Z2 (where the vectors belongs to a finite fixed
set S, and where the origin of the path is usually taken as being the point (0,0) from Z2). If all vectors
are in N × Z, the path is called directed (the path is going “to the right”). If all vectors are in {1} × Z,
despite its natural representation as a drawing in Z2, such a path is essentially a unidimensional object. If
all vectors are in {1} × (N ∪ {−1}), the path is called a “simple lattice path” or a “Łukasiewicz path”
because there exists a bijection with simple families of trees. Unidimensional lattice paths pop up naturally
in numerous fields (probability theory, combinatorics, algebra, economics, biology, analysis of algorithms,
language theory, . . . ).

For lattice paths (or their probabilistic equivalent, random walks) which are space and time homoge-
neous, it was proven [4] that symbolic and analytic combinatorics [15] were quite powerful tools to study
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unidimensional lattice paths from an enumerative and asymptotic point of view. The authors developed a
generating function approach to have exact enumeration of lattice paths (via the kernel method), and then
used singularity analysis to study some basic parameters (like number of returns to zero, final altitude)
according to some constraints (drift/reflecting conditions). For random walks there are in fact numerous
works using an approach with a flavour of “generating function” and “analysis of singularity”, either with
probabilistic or combinatorial methods, e.g. for interaction of random walks, for random walks on groups
or for stationary distributions of 2-dimensional models in queueing theory.

In our simpler model of unidimensional lattice paths, for simple parameters which are in one sense
“exactly solvable”, one can expect more than for the above difficult problems: not only one can get here
critical exponents, but also we get fast computation schemes, for exact enumeration and for full asymptotics
(to any order). It is then natural to ask what can be obtained for less trivial parameters, like the area
or the height. We will investigate the height in a future article, and we concentrate here on the area,
as already investigated in combinatorics, mainly for Dyck paths or with Riordan arrays for internal path
lengths of some generating trees [23]. As lattice paths are algebraic objects, as easily proven with context
free grammars [19], some techniques from language theory (Q-grammars [11]) can be used to solve the
simplest cases. We extend most of these results in this article. The probabilistic corresponding object was
analysed by G. Louchard [20], who proved that the limiting distribution of the area below the Brownian
excursion was related to the Airy function, as further investigated in [24], and also by other authors in
different contexts [14, 7, 6]. The area is also naturally related to queueing theory, polyominoes in statistical
physics [27, 28], cumulative cost of some algorithms.

Fig. 1: The two kind of areas we consider in this article: To the left, a path of “continuous” area 25. Enumeration are
given in Section 3 and asymptotics for simple families of walks are given in Section 4. To the right, a path of “discrete”
area 40 (i.e., there are 40 points below the path). Section 5 is devoted to the analysis of this parameter.

In our approach, one of the key trick is the so-called “kernel method”, which is a way of solving functional
equations of the type K(z, u)F (z, u) = A(z, u) + B(z, u)G(z) where F and G are the unknowns one
wishes to determinate. The kernel method consists in getting additional equations by plugging the roots
of the “kernel” K in the initial equation, which in general is enough to solve the system. The kernel
method shares the spirit of the “quadratic method” of Tutte and Brown (for enumeration of maps). In
combinatorics, only the simplest case of the kernel method (namely, when there is only one root) was
used for 30 years, see Knuth [16] for sorting with stacks, Chung et al. [9] for a pebbling game, or [25]
for generation of binary trees. During the same time period, and independently, difficult 2-dimensional
generalisations of this trick were well studied in queueing theory; the classification of the different cases for
the nearest neighbour walks in N2 was already quite a challenge, see the book [13] or [18]. This last decade,
there has been a revival in combinatorics for functional equations, and the full power of the kernel method
was better put into evidence, both for enumeration and for asymptotics. There are indeed nearly 20 (sic!)
articles by M. Bousquet-Mélou [5], which e.g. showed how the kernel method can be, once bootstrapped,
also be used in higher dimensions or for algebraic (non linear) equations. Solving equations is not the
only miracle that the kernel method offers, it also gives compact formulae [5, 1, 3] thus giving access to
asymptotics [4, 2, 29]. Our article thus adds a new stone to the “kernel method” edifice, and gives more
results on complete asymptotics for the average area of directed lattice paths.

2 Summary of results for directed lattice paths
To each directed lattice path, we associate a Laurent polynomial which encodes all the possible jumps
P (u) :=

∑d
i=−c piu

i (where c is the size of the largest backward jump and d is the size of largest ahead
jump, and where the pi’s are some “weights”, “multiplicities”, or “probabilities”).

Figure 2 shows four drawings (for four different constraints) of lattice paths with jumps in

S = {(1,−3), (1,−1), (1, 0), (1, 1), (1, 5)} ;
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the associated Laurent polynomial is therefore P (u) := p−3u
−3 + p−1u

−1 + p0 + p1u + p5u
5.

In [4], Banderier and Flajolet showed that the kernel method was the key to get enumeration and asymp-
totics of directed lattice paths. The main results are summarised in Figure 2. The proofs rely on the
following facts:
Fact 1: There are c distinct roots, u1, . . . , uc of the “kernel” 1− zP (u) = 0 which are analytical in zero.
Fact 2: There is a nice trick (the “kernel method”) which allows to write all the GF’s with these ui’s.
Fact 3: There is a unique positive real number τ such that P ′(τ) = 0, and the radius of convergence of the
GF’s is ρ := 1/P (τ).
Fact 4: Asymptotics are coming from the real root u1, which is singular at ρ, the other roots are analytical
at ρ and therefore, they only affect the multiplicative constant. (Some easy modifications have to be made
here if the walk is “periodic”).
Fact 5: u1 has a square root behaviour near its singularity: u1 ∼ τ + K

√
1− z/ρ.

Fact 6: The drift δ := P ′(1) of the walk plays a rôle for asymptotics of meanders (δ ≥ 0 when τ ≥ 1,
δ ≤ 0 when τ ≤ 1).

ending anywhere ending at 0

unconstrained
(on Z)

walk/path (W)

W (z) =
1

1− zP (1)
Wn = P (1)n

bridge (B)

B(z) = z

cX
i=1

u′i(z)

ui(z)

Bn ∼ β0
P (τ)n
√

πn

constrained
(on Z≥0)

meander (M)

M(z) =
1

1− zP (1)

cY
i=1

(1− ui(z))

Mn ∼ µ0
P (1)n
√

πn
(zero drift)

Mn ∼ µ−0
P (τ)n
√

πn3 (negative drift)

Mn ∼ µ+
0 P (1)n + µ−0

P (τ)n
√

πn3 (positive drift)

excursion (E)

E(z) =
(−1)c−1

p−cz

cY
i=1

ui(z)

En ∼ ε0
P (τ)n
√

πn3

Fig. 2: The four types of paths: walks, bridges, meanders, and excursions and the corresponding generating functions.
The ui’s are such that 1 − zP (ui(z)) = 0 and the constants ε0, β0, and the µ0’s are algebraic numbers which can be
made explicit. In the rest of this paper, we want to analyse the area enclosed between a constrained path and the y = 0
line. For the meander drawn here, the area is 27, and the area of the excursion is 34.

3 Generating function for the area
Taking the unit square of Z2 as unit of area, it is convenient to consider the generating function of the
“doubled” area (i.e., area multiplied by 2): it precludes a mathematically equivalent but practically boring
use of Puiseux series in our context.

Definition 1 (Area Generating Function) Let fnkm denote the number of walks of length n with final
altitude k and area m/2 and

F (z, u, q) =
∑

n,k,m

fnmkznukqm =
∑
k≥0

Fk(z, q)uk .

Theorem 1 (Fundamental Functional Equation for F (z, u, q)) The area generating function satisfies the
following recursive definition:

F (z, u, q) = 1 + zP (uq)F (z, uq2, q)− z

c−1∑
k=0

rk(uq)Fk(z, q)qk , (1)
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where the rk’s are Laurent polynomial defined by rk(u) := {u<0}
(
P (u)uk

)
≡

∑−k−1
j=−c pju

j+k .

Proof: If at time n, one is at altitude k with doubled-area r, and if one makes a jump j, then at time n + 1
one is at altitude and doubled-area encoded by uk+jqr+2k+j . This transformation can be encoded with
some linear operators: fn+1(u, q) = {u≥0}P (uq)fn(uq2, q). This leads to

F (z, u, q) = 1 + zP (uq)F (z, uq2, q)− {u<0}zP (uq)F (z, uq2, q) .

We get the theorem by noting that

{u<0}P (uq)F (z, uq2, q) =
c−1∑
k=0

Fk(z, q)q2k{u<0}P (uq)uk . 2

In some cases (mainly for walks with jumps +1, 0, and −1, which are related to the combinatorics of
continued fractions), it is possible to get q-analog expressions for F0(z, q). It is also related to the fact
that one then has a simpler functional equation, which is possible to iterate, and from which it is also
possible to pump moments, and a recurrence for them which leads to an Airy distribution for the area. For
the more general case that we consider here, there is no hope to get such expressions, and the mixture of
addition/subtractions, prevents us from using the same “pumping moment” approach. However, we will see
that we can get nice results for the moments. For this, we will apply ∂n

q on both sides of our fundamental
functional equation, and this is why we need now the following theorem.

Theorem 2 (Bivariate Faà di Bruno Formula (Most, 1870)) Consider f(u, q) (and note ∂u for d
du ), then

∂n
x f(g1(x), g2(x)) =

n∑
λ1=0

n−λ1∑
λ2=0

(∂λ1
u ∂λ2

q f)(g1(x), g2(x))
∑
K

n!
n∏

j=1

(∂j
xg1)k1j (∂j

xg2)k2j

k1j !k2j !j!k1j+k2j
,

where the last summation runs over the set K defined by

K := {k11, . . . , k1n, k21, . . . , k2n : k1j + k2j ≥ 0,

n∑
j=1

k1j = λ1,

n∑
j=1

k2j = λ2,

n∑
j=1

(k1j + k2j)j = n} .

Proof: See [10]. 2

Nota bene: This huge sum has in fact a lot of 0 terms. It is possible to write more complicated expressions
(by adding a nested sum) with less 0 terms; however this new expression would even not be more efficient
(while trying to use it on a computer algebra system like Maple(i)).

Proposition 1 (Application of Faà di Bruno to ∂n
q F (z, uq2, q))

∂n
q F (z, uq2, q) =

n∑
λ=0

(∂λ
u∂n−λ

q F )(z, uq2, q)
(2uq)λn!
(n− λ)!λ!

+ (∂n/2
u F )(z, uq2, q)

n!un/2

(n/2)!

+
n−2∑
λ1=1

n−λ1−1∑
λ2=max(1,n−2λ1)

(∂λ1
u ∂λ2

q F )(z, uq2, q)
n!uλ1(2q)2λ1+λ2−n

(2λ1 + λ2 − n)!(n− λ1 − λ2)!λ2!

+
n−1∑

λ1=bn/2c+1

(∂λ1
u F )(z, uq2, q)

n!uλ1(2q)2λ1−n

(2λ1 − n)!(n− λ1)!
.

Proof: Bivariate Faà di Bruno formula with f = F (z, u, q), g1(q) = uq2, g2(q) = q, and f(g1, g2) =
F (z, uq2, q) (z is considered here as a parameter). 2

The following result was stated in [1], but the proof was just sketched.

(i) Note that Maple needs to be “human-helped” a lot, when dealing with this kind of formulae. This “pleasant” fact
is due to bugs in Maple: Indeed Maple is sometimes converting its diff function into its D function without warning
the user (which could miss this fact, cancelled after simplifications), and the D function is buggy while dealing with
Faà di Bruno like differentiation. Another Maple trouble that we encounter is mul(x, i = 3..1) = 1 (which is
fine) whereas product(x, i = 3..1) = 1/x (sic!). The interested reader can check all our computations with the file
http://www-lipn.univ-paris13.fr/∼banderier/Papers/area.mw. At this occasion, we would like to adver-
tise Salvy and Zimmermann’s Gfun package, which allowed us to get automatic proofs for some of our generating functions.
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Theorem 3 (Algebraicity of moments) The moments of the area are algebraic, i.e. (∂n
q F )(z, u, 1) is an

algebraic generating function. Furthermore, it can be expressed as a rational function in terms of the roots
of the kernel, i.e. (∂n

q F )(z, u, 1) ∈ Q(z, u, u1, . . . , uc).

Comments: this field is in fact Q(z, u, u1, . . . , uc, p−c, . . . , pd) if the Laurent polynomial P (u) of the walk
has non-rational coefficients. Note that the platypus trick (sic) presented in [4] implies that coefficients
∂r

qfn(u, 1) can be computed in linear time.

Proof: We make a proof by induction. Our claim is true for n = 0: in this case (∂n
q F )(z, u, 1) = F (z, u, 1),

which is algebraic and in Q(z, u, u1, . . . , uc) (see [4] for a detailed proof). Now, let us assume that the
induction hypothesis is true for all λ2 < n (which implies(ii) that (∂k

u∂λ2
q F )(z, u, 1) is algebraic and in

Q(z, u, u1, . . . , uc) for all k), then we will show that ∂n
q F (z, u, 1) is algebraic and in Q(z, u, u1, . . . , uc).

To this aim, consider the nth derivative of the fundamental functional equation 1, using Leibniz rule and
setting Gk(z, q) := Fk(z, q)qk gives:

(∂n
q F )(z, u, q) = zP (uq)∂n

q F (z, uq2, q) + z

n−1∑
j=0

(
n

j

)
∂n−j

q P (uq)∂j
qF (z, uq2, q)

− z

c−1∑
k=0

n∑
j=0

(
n

j

)
∂n−j

q (rk(uq))∂j
qGk(z, q) .

Define Rn(z, u, q) as the “known” part (by induction, once one sets q = 1) of the right hand side, that is

Rn(z, u, q) := zP (uq)
(
∂n

q F (z, uq2, q)− ∂n
q (F )(z, uq2, q)

)
+ z

n−1∑
j=0

(
n

j

)
∂n−j

q P (uq)∂j
qF (z, uq2, q)− z

c−1∑
k=0

n−1∑
j=0

(
n

j

)
∂n−j

q (rk(uq))∂j
qGk(z, q) .

Setting q = 1, the equation is then simply:

(1− zP (u))(∂n
q F )(z, u, 1) = Rn(z, u, 1)− z

c−1∑
k=0

rk(u)∂n
q Gk(z, 1) .

Rn contains only derivatives of order < n and therefore (by induction, see the previous footnote) is alge-
braic and belongs to Q(z, u, u1, . . . , uc). Plugging the c roots of the kernel in this equation (this substitution
is analytically legitimate) and, taking all small branches into account, provides a system of c equations in
the unknown functions ∂n

q G0, . . . , ∂
n
q Gc−1:

Rn(z, u1, 1)− z
∑c−1

k=0(rk(u1))∂n
q Gk(z, 1) = 0 ,

...
Rn(z, uc, 1)− z

∑c−1
k=0(rk(uc))∂n

q Gk(z, 1) = 0.

One has M.
−−−−−→
(∂n

q Gi)i =
−−−−−−−−→
(Rn(ui)/z)i where the matrix M of this system has the following shape:

M :=

 (p−cu
−c
1 + u−c+1

1 + . . . + u−1
1 ) . . . p−cu

−2
1 + p−c+1u

−1
1 ) (p−cu

−1
1 )

...
...

...
...

(p−cu
−c
c + u−c+1

c + . . . + u−1
c ) . . . (p−cu

−2
c + p−c+1u

−1
c ) (p−cu

−1
c )


The determinant of M is unchanged if we add/subtract rows between them. Then, subtracting iteratively a
multiple of the i-th row to the (i− 1)-th row gives a classical Vandermonde matrix V , multiplied by p−c

V :=

 p−cu
−c
1 . . . p−cu

−2
1 p−cu

−1
1

...
...

...
...

p−cu
−c
c . . . p−cu

−2
c p−cu

−1
c


(ii) If F (z, u) is algebraic, then F (z, 0) is algebraic. If F (z, u) is algebraic, then ∂uF (z, u) is algebraic (this can be proven by a

resultant with the derivative of the algebraic equation of F ). From this, it is easy to get that if F (z, u) =
P

ukFk(z) is algebraic,
then each Fk(z) is algebraic.
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we can use the classical formula to get its determinant, and it gives

det M = detV = p c
−c

c∏
i=1

u−c
i

∏
1≤i<j≤n

(uj(z)− ui(z))

which is nonzero as p−c 6= 0 (the multiplicity of the largest negative jump) and as all the roots are distinct
(by Fact 1 in Section 2). Therefore our system has a unique solution, and all the unknowns are algebraic as
they can be expressed thanks to the Cràmer formula as a fraction in the ui’s:

∂n
q Gk(z, 1) =

det Mk

det M
.

Nota bene: it is in fact possible to express det Mk as a polynomial involving homogeneous symmetric
functions. But this involves positive and negative integer coefficients, and therefore it seems hopeless to get
a general asymptotic theory of the area from such a formula. 2

In order to get a nicer expression for ∂qF (z, u, 1), we need some intermediate computations, e.g. for
computing P ′(uk), P ′′(uk) and other such expressions, for sake of simplicity, we simply include here the
following Proposition, the other proofs having the same flavour.

Proposition 2 (Computations of ∂uF (z, u, 1)) Writing uk for uk(z), one has:

∂uF (z, uk, 1) =
Π′(uk)
A′(uk)

∑
i=1..c, 6=k

1
uk − ui

− Π′(uk)A′′(uk)
2A′(uk)2

= −1
2
(
Π′

A′
)′

where Π(u) =
∏

i=1..c(u− ui) and A(u) = uc(1− zP (u)).

Proof: With Π(u) and A(u) defined as above, derivating F (z, u, 1) = Π(u)
A(u) leads to

∂uF (z, u, 1) =
Π′(u)
A(u)

− A′(u)
A2(u)

Π(u)

=
Π(u)

u− uk(z)
u− uk(z)

A(u)

 ∑
i=1..c, 6=k

1
u− ui(z)

+
A(u)−A′(u)(u− uk(z))

A(u)(u− uk(z))

 .

Dividing numerator and denominator of the last fraction by (u− uk(z))2 leads to

∂uF (z, u, 1) =
Π(u)−Π(uk)

u− uk(z)
u− uk(z)

A(u)−A(uk)
(

∑
i=1..c, 6=k

1
u− ui(z)

+
A(u)/(u−uk(z))−A′(u)

u−uk(z)

A(u)/(u− uk(z))
) .

Taking limit when u goes to uk on both sides gives

∂uF (z, uk(z), 1) = Π′(uk(z))
1

A′(uk)
(

∑
i=1..c, 6=k

1
uk − ui(z)

+ lim
u→uk

A(u)/(u−uk(z))−A′(u)
u−uk(z)

A′(uk(z))
) .

Using the Taylor expansion of A(u) up to O((u− uk)3) and of A′(u) up to O((u− uk)2) gives :

∂uF (z, uk(z), 1) = Π′(uk(z))
1

A′(uk)
(

∑
i=1..c, 6=k

1
uk − ui(z)

+
−A′′(uk)
2A′(uk)

) . 2

4 Average area for simple family of lattice paths
We call “simple family of lattice paths” or “Łukasiewicz walks” the important family of walks correspond-
ing to the case c = 1 (there is only one jump of length 1 to the left). Note that we could allow d = +∞,
which means that P (u) could be a Laurent series (this would correspond to càdlàg processes in probability
theory); our formula would then be derived in the same way (and for asymptotics several subcases have to
be considered, see [1, 2, 3]).
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Łukasiewicz excursions with jumps in S correspond to trees whose node degrees are constrained to lie
in 1 + S. This holds by virtue of the Łukasiewicz encoding, a well-known correspondence. (Traverse the
tree in preorder and output a step of d − 1 when a node of outdegree d is encountered.) In this way, it is
seen that the equation 1− zP (u) = 0 gives the GF of “simple families of trees”counted according to their
number of nodes, an otherwise classical result [21]. By Lagrange inversion, the number of trees comprised
of n nodes is Tn = 1

n [un−1]φ(u)n, where φ = uP (u) can be directly interpreted as the characteristic
polynomial of the allowed node (out)degrees. The rich combinatorics of these structures suggests that we
could also get rather explicit formulae for the area of such walks. This is indeed the case, as shown in the
next three theorems.

Theorem 4 The generating function of the moments of the area below Łukasiewicz walks (i.e., c = 1)
simplify to:

(∂n
q F )(z, u, 1) =

1
1− zP (u)

(
Rn(z, u, 1)− u1

Rn(z, u1, 1)
u

)
. (2)

The generating function of the first moment is:

(∂qF )(z, u, 1) =
uz(1 + zP (u))P ′(u)(u− u1)

(1− zP (u))3
+

2zP (u)u1

(1− zP (u))2
−

u1 + zu1u′′1
u′1

− zu′1

1− zP (u)
.

Proof: Propositions 2 and 3 allow to get the following expressions:

R1(z, u, 1) = 2zP (u)∂uF (z, u, 1) + zuP ′(u)F (z, u, 1) +
zp−1

u
E(z) , (3)

R1(z, u1, 1) = 2 +
zu′′1
u′1

− zu′1
u1

. (4)

Using the expressions for F0(z, 1) = E(z) and F (z, u, 1) given in Section 2, and plugging this in Eq. 2
(for n = 1) gives the first moment. 2

Theorem 5 The generating function of the average area below Łukasiewicz excursions is given by

∂qF0(z, 1) =
2

zp−1
u1 +

u1u
′′
1

p−1u′1
− 2

p−1
u′1 = 2E′ + EΘ ln(zE)′ (5)

where E is the GF of excursions and Θ stands for z∂z , the pointing operator(iii). The average area below
an excursion is asymptotically:

τ
√

πP (τ)
ρp−1

√
2P ′′(τ)

n3/2 − 3
ρp−1

n−
3τ

√
πP (τ)

8p−1ρ
√

2P ′′(τ)

√
n +

7
2ρp−1

+ O(
1√
n

) .

Proof: Plugging u = 0 in Theorem 4 and using several Taylor expansions gives

∂qF0(z, 1) =
2

zp−1
u1 +

u1u
′′
1

p−1u′1
− 2

p−1
u′1 .

Then, we know by Fact 5 from Section 2 that u1(z) = τ + K
√

1− z/ρ + . . . (with K = 2P (τ)/P ′′(τ)).
Using singularity analysis, this leads to

∂qF0(z, 1) =
−K√

1− z/ρρp−1

+ 2
τ −K

√
1− z/ρ

zp−1
+

τ −K
√

1− z/ρ

2((1− z/ρ)ρp−1
.

The average is then the quotient

[zn]∂qF0(z, 1)
[zn]F0(z, 1)

=
τ
√

πP (τ)
ρp−1

√
2P ′′(τ)

n3/2 − 3
ρp−1

n−
3τ

√
πP (τ)

8p−1ρ
√

2P ′′(τ)

√
n +

7
2ρp−1

+ O(
1√
n

)

(iii) Using the notations of symbolic combinatorics used in [15], note that we have both for EGF and OGF that Θ ln E = EΘA
whenever E = SeqA. For generating functions, this translates in z∂z ln E(z) = E(z)z∂zA(z). There is therefore a natural
meaning for logarithms, also for non-labelled combinatorial structures: this is nothing else than another formulation of the cycle
lemma (also known as Dvoretsky/Motzkin/Raney/Spitzer/Sparre Andersen principles). To give a bijective proof of our formula 5 is
an interesting problem.
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from which we can get as many terms as one wishes in the asymptotic expansion (note that the denominators
are well defined: P ′′(τ) > 0 as P has ≥ 0 coefficients). 2

Morality: whatever the drift of the excursion is, we have universality of the n3/2 result for average area
below an excursion.

Theorem 6 The average area below Łukasiewicz meanders is given by

(∂qF )(z, 1, 1) =
δz(1 + zP (1))(1− u1)

(1− zP (1))3
+

2zP (1)u1

(1− zP (1))2
−

u1 + zu1u′′1
u′1

− zu′1

1− zP (1)
.

Asymptotics of the average depend on the drift δ := P ′(1) of the walk :

negative drift (δ < 0) : τ
√

P ′′(τ)
P (τ)

√
2πn3/2 − 2n + O(

√
n) ,

zero drift (δ = 0) : 3
4

√
P ′′(1)
P (1)

√
2πn3/2 − 2

√
πn + O(

√
n) ,

positive drift (δ > 0) : δ
P (1)n

2 + O(n3/2) .

Comments: it is quite striking that a meander with a negative drift has the “same” area (up to an asymptotic
factor of 3/(4τ)) as a meander with 0 drift. The universality of this Θ(n3/2) area also proves the paradoxical
Ω(
√

n) height for meanders with a drift ≤ 0. It is often the case for Brownian properties (see e.g. [8]) that
the antagonist constraints of reflecting border and negative drift, or of positive drift and absorbing border,
compensate each other *exactly* (with respect to the critical exponent), giving the same asymptotics as
the zero drift case. We are however not aware of any general rigorous theorem proving this fact (for PGF,
shifting the mean gives a partial explanation). It is quite nice that analytic combinatorics allows to make
explicit the two different multiplicative constants of these “brother behaviours”.

Proof: Plugging u = 1 in Theorem 5 gives

(∂n
q F )(z, u, 1) =

1
1− zP (1)

(Rn(z, 1, 1)− u1Rn(z, u1, 1))

where R1(z, u1, 1) is given by Eq. 4, while plugging u = 1 in Eq. 3 gives

R1(z, 1, 1) =
(1 + zP (1))P ′(1)z(1− u1)

(1− zP (1))2
+

2zP (1)u1

(1− zP (1))
+ u1 .

Using the square behaviour of u1 (see [4]) gives the asymptotics. 2

Nota bene : The expression for ∂qF (z, 1, 1) was also obtained by Merlini [23] with a Riordan array
approach.

5 Links between area and number of points below the paths
As a direct byproduct of our formula, we get a rational generating function for the number of points below
weighted Motzkin path, thus generalising previous results of G. Kreweras and B. Sulanke et al. [17, 26].

Theorem 7 (Rationality for weighted Motzkin excursions) This corresponds to the walks encoded by a
polynomial P (u) = p−1

u + p0 + p1u. The number Gn of points (with integer coordinates) below walks of
length n satisfies

Gn =
(p0 + 2√p1p−1)n+1 − (p0 − 2√p1p−1)n+1

4√p1p−1

Gn+2 = 2p0Gn+1 + (4p1p−1 − p2
0)Gn, G0 = 1, G1 = 2p0

or equivalently, the GF is given by G(z) =
1

1− ((p2
0 − 4p1p−1)z2 + 2p0z)

.

Proof: The number of points below a path is
∑n

i=0(1 + altitude at time(i)) and summing over all paths
gives G(z) = ∂qF0(z, 1)/2 + (zE(z))′. Then, it follows directly from our previous theorems that G(z) =
u1(z)
p−1z + u1(z)u′′1 (z)

2p−1u′1(z) which gives the theorem above, using the closed form expression of u1. 2
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This results can still be extended by dilatation (in x or y) of the 0 or +1 and −1 jumps. Note that, for
c > 1 or d > 1 (that is, if one has a jump of amplitude larger than 1), it is no more the case that the generating
function is always rational. For example, excursions with jumps −1 and +2 lead to G(z) = 1+z−z

√
1−4z2

(1+2z)(1−2z)2 ,
which is algebraic but not rational. For meanders, even in the simplest case (like Dyck, weighted Motzkin,
...), the GF is also a pure algebraic function. However, even if it is quite unlikely, it could be the case that
for a given P (u), the GF G(z) is rational; it would correspond to a kind of “miracle” (a factorisation of the
characteristic polynomial in a linear factor cancelling our G(z)).

6 Links with area of Dyck paths below a line of rational slope.

x

y

y=2x/3

y

x

Fig. 3: A walk with below the line y = 2x/3 is mapped to an excursion: Each jump (1, 0) (resp. (0, 1)) is mapped to
a jump (1, 2) (resp. (1,−3)).

In [12], P. Duchon considered Dyck paths (with a Northeastbound representation, see Figure 3) below a
line of rational slope: walks on N2 with jumps (+1,+0) or (+0,+1), beginning in (0, 0) and constrained
to stay below a line of rational slope, y = α

β x (α, β ∈ N and coprimes). Note that there are some links with
Faber polynomials.

The case α
β = 2

3 is EIS A060941 (where EIS refers to the on-line encyclopedia of integer sequences,
http://www.research.att.com/˜njas/sequences/). P. Duchon also gave nice formulae for the case β = 1. It
is a nice fact, that a more general model of walks below a line of rational slope can be solved with our
approach. The key is the following bijection:

Theorem 8 (Bijection between directed walks on N and walks below y = α/βx) Take a finite set of jumps
S̃ := {(x1, y1), . . . , (xm, ym)}, where the xi’s and the yi’s are integers ≥ 0. Consider walks, which starts
at the origin (0, 0), which are only making jumps from S̃, and which are constraint to stay below a line of
rational slope, e.g. y = α

β x (“below” means here “this can touch, but not cross this line”).

Note M̃(z) the generating function of such walks. Note Ẽ(z) the generating function of such walks
ending exactly on the line y = α

β x. Note Ã(z, q) the generating function of the area between the path and
the line y = α

β x. Note M(z), E(z), and A(z, q) the generating functions of meanders/excursions/area of
the walk on N with jumps (xi + yi, αxi − βyi).

Then, one has M̃(z) = M(z), Ẽ(z) = E(z), and Ã(z, q) = A(z, q)/(α + β).

Proof: All jumps are modified by the matrix
(

1 1
α −β

)
, the determinant of which is −α− β, therefore

the volume (i.e., the area) is multiplied by α + β. What is more, one easily checks that the constraint to be
below (resp. on) the line y = α/β is mapped to the constraint of being positive (resp. on zero). 2

Here again, it is nice to have a direct generalisation to any kind of jumps. This extends previous re-
sults [22]. E.g., Motzkin paths under the line y = x are giving Schröder lattice paths, etc. In the full version
of our article, we will give more examples (thus solving an old open problem: average size of a queue in
Duchon’s clubs [12, 4]).

7 Conclusion and Perspectives
For enumeration and asymptotics, symbolic and analytic combinatorics are here again a successful ap-
proach. It is a nice surprise that the kernel method strikes again, for a parameter like area. We think we give
here an approach which is pleasant, because of its generality.

There are numerous possible extensions of our work: taking into account an infinite number of possi-
ble jumps, considering real 2-dimensional directed lattice paths, assuming higher temporal dependencies,
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counting “signed” area, counting other cumulative parameters... All these extensions are indeed suitable
with the kernel method, via the approach presented in this article. For sake of simplicity, we preferred to
stay here within the framework of a Laurent polynomial P (u) whereas more general results can be written
while using a Laurent series P (z, x, y) (series in z and x, Laurent series in y).

For simple directed walks, we can also possible to compute the variance. In the Dyck case, the first
asymptotic term of each moment follows from Louchard’s result: the Airy distribution for area of Brownian
excursions. Beyond the Dyck case, it is not known if discrete excursions are weakly converging towards
the Brownian excursion. Tying down a random walk is not a continuous operation and therefore Donsker’s
theorem for unconstrained walks is not sufficient (note that the Brownian positivity constraint could – with
respect to finite dimensional densities – also be realized by a o(

√
n) region constraint in the discrete case).

So, in conclusion, for the general case (c ≥ 2), the situation remains open: our computations become messy,
and it is right now not clear if the symmetric functions we got are not hiding some tricky (asymptotical)
cancellations. But we believe the pumping method should again lead to the Airy recurrence for the first
asymptotic term of moments, and then to the Airy distribution in all cases.
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[5] Mireille Bousquet-Mélou and Marko Petkovšek. Linear recurrences with constant coefficients: The
multivariate case. Discrete Math., 225(1-3):51–75, 2000.

[6] P. Chassaing and G. Louchard. Phase transition for parking blocks, Brownian excursion and coales-
cence. Random Struct. Algorithms, 21(1):76–119, 2002.

[7] Philippe Chassaing and Philippe Flajolet. Hashing, trees, walks and graphs. (Hachage, arbres, chemins
& graphes). Gaz. Math., Soc. Math. Fr., 95:29–49, 2003.

[8] Philippe Chassaing and Guy Louchard. Reflected Brownian bridge area conditioned on its local time
at the origin. J. Algorithms, 44(1):29–51, 2002.

[9] Fan Chung, Ron Graham, John Morrison, and Andrew Odlyzko. Peppling a chessboard. Am. Math.
Mon., 102(2):113–123, 1995.

[10] G.M. Constantine and T.H. Savits. A multivariate Faa di Bruno formula with applications. Trans. Am.
Math. Soc., 348(2):503–520, 1996.

[11] Philippe Duchon. Q-grammars and wall polyominoes. Ann. Comb., 3(2-4):311–321, 1999.

[12] Philippe Duchon. On the enumeration and generation of generalized Dyck words. Discrete Math.,
225(1-3):121–135, 2000.



Enumeration and Asymptotics for the Area of Lattice Paths 355

[13] Guy Fayolle, Roudolf Iasnogorodski, and Vadim Malyshev. Random walks in the quarter-plane.
Algebraic methods, boundary value problems and applications. Applications of Mathematics. 40.
Berlin: Springer. xvi, 160 p. , 1999.

[14] P. Flajolet, P. Poblete, and A. Viola. On the analysis of linear probing hashing. Algorithmica,
22(4):490–515, 1998.

[15] Philippe Flajolet and Robert Sedgewick. Analytic Combinatorics.
http://algo.inria.fr/flajolet/Publications/books.html, 2006.

[16] Donald Ervin Knuth. The Art of Computer Programming, volume 1. Addison-Wesley, third edition,
1997.

[17] Germain Kreweras. Aires des chemins surdiagonal et application à un problème économique. Cahiers
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