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Conditioned Galton–Watson trees do not grow
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An example is given which shows that, in general, conditioned Galton–Watson trees cannot be obtained by adding
vertices one by one, while this can be done in some important but special cases, as shown by Luczak and Winkler.
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1 Monotonicity of conditioned Galton–Watson trees?
A conditioned Galton–Watson tree is a random rooted tree that is (or has the same distribution as) the family
tree of a Galton–Watson process with some given offspring distribution, conditioned on the total number of
vertices.

We let ξ be a random variable with the given offspring distribution; i.e., the number of offspring of each
individual in the Galton–Watson process is a copy of ξ.

We let ξ be fixed throughout the paper, and let Tn denote the corresponding conditioned Galton–Watson
tree with n vertices. For simplicity, we consider only ξ such that P(ξ = 0) > 0 and P(ξ = 1) > 0; then
Tn exists for all n ≥ 1. Furthermore, we assume that E ξ = 1 (the Galton–Watson process is critical) and
σ2 := Var(ξ) < ∞.

The importance of this construction lies in that many combinatorially interesting random trees are of this
type, for example the following:

(i) Random plane (= ordered) trees. ξ ∼ Ge(1/2); σ2 = 2.

(ii) Random unordered labelled trees (Cayley trees). ξ ∼ Po(1); σ2 = 1.

(iii) Random binary trees. ξ ∼ Bi(2, 1/2); σ2 = 1/2.

(iv) Random d-ary trees. ξ ∼ Bi(d, 1/d); σ2 = 1− 1/d.

For further examples see e.g. Aldous (1) and Devroye (3); note also that the families of random trees
obtained in this way are the same as the simply generated families of trees defined by Meir and Moon (9).

If we increase n, we get a new random tree that is in some sense larger, but the definition above gives no
relation between, say, Tn and Tn+1, since they are defined by two different conditionings. It is thus natural
to ask whether Tn+1 is stochastically larger than Tn, i.e., whether there exists another construction (with
the same distribution of each Tn) that further yields Tn ⊂ Tn+1, i.e., whether (Tn)n≥1 has the following
property:

Property P1 It is possible to define Tn and Tn+1 on a common probability space such that Tn ⊂ Tn+1.

Equivalently, Property P1 says that it is possible to add a new leaf to Tn by some random procedure (de-
pending on n and Tn) such that the resulting tree has the distribution of Tn+1. It is thus immediately seen
that Property P1 is equivalent to the following:

Property P1′ It is possible to construct T1, T2, T3, . . . as a Markov chain where at each step a new leaf is
added.

This property was investigated by Luczak and Winkler (7), who showed that Properties P1 and P1′ indeed
hold in the case of random binary trees, and more generally, for random d-ary trees, for any d ≥ 2. The
main purpose of this note is to give a simple counterexample (Section 3), showing that Property P1 does
not hold for every ξ.

The question of whether Property P1 (or P1′) holds for all conditioned Galton–Watson trees has been
considered by several people, and has been explicitly stated as an open problem at least in (5, Problem
1.15). The answer to this question is thus negative. The problem can be reformulated as follows.
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Problem 1 For which conditioned Galton–Watson trees (Tn)n does Property P1 (or P1′) hold?

In view of the result of Luczak and Winkler (7) just mentioned, it seems particularly interesting to study
the cases of random plane trees and random labelled trees; as far as we know, the problem is still open for
them.

It is well known that as n →∞, Tn converges in the sense of finite-dimensional distributions (i.e., the
distribution of the first N generations for any fixed N ) to an infinite random tree T∞ that is the family
tree of the corresponding size-biased Galton–Watson process, see e.g. Kennedy (6), Aldous (1), Lyons,
Pemantle and Peres (8). The size-biased Galton–Watson process is the same as the Q-process studied in
(2, Section I.14); it can also be regarded as a branching process with two types: mortals with an offspring
distribution ξ and all children mortals, and immortals with the size-biased offspring distribution ξ̂ with
P(ξ̂ = j) = j P(ξ = j) and exactly one immortal child (in a random position among its siblings); the
process starts with a single immortal. (See also (4).) Note that the infinite random tree T∞ has exactly one
infinite path from the root, with (finite) Galton–Watson trees attached to it.

If ξ is such that Property P1′ holds, we can construct Tn, n ≥ 1, such that T1 ⊂ T2 ⊂ . . . , and then
evidently Tn →

⋃
n Tn in the sense that the first N generations of Tn and

⋃
n Tn coincide for large n; in

particular, Tn →
⋃

n Tn in the sense of finite-dimensional distributions. Thus
⋃

n Tn
d= T∞, and we may

assume that T∞ =
⋃

n Tn. Hence, Property P1 implies the following property:
Property P2 It is, for every n ≥ 1, possible to define Tn and T∞ on a common probability space such that
Tn ⊂ T∞. In other words, each Tn may be constructed by a suitable (random) pruning of T∞.

Thus, by Luczak and Winkler (7), Property P2 holds for random binary and d-ary trees. On the other
hand, our counterexample in Section 3 also fails to satisfy Property P2.

Problem 2 For which conditioned Galton–Watson trees (Tn)n does Property P2 hold?

Again, this problem seems to be open for random plane trees and random labelled trees.

2 Monotonicity of the profile?
Properties P1 and P1′ are not only interesting in themselves, but also technically useful (when valid), For
example, for any rooted tree T , let Wk(T ) denote the number of vertices in T of distance k from the root.
The sequence (Wk(T ))k≥0 is known as the profile of the tree.

It is easy to see from the description of T∞ above that E Wk(T∞) = 1 + kσ2. (Use the fact that the
expected number of mortal children of an immortal individual is E ξ̂ − 1 = E ξ2 − 1 = σ2.) Moreover, as
n →∞, for each fixed k ≥ 0,

E Wk(Tn) → E Wk(T∞) = 1 + kσ2. (2.1)

If Property P1 holds, then also:
Property P3 For every k ≥ 0 and n ≥ 1, E Wk(Tn) ≤ E Wk(Tn+1).
Further, if any of Property P1, Property P2 or Property P3 holds, then, using (2.1), so does the following:
Property P4 For every k ≥ 0 and n ≥ 1, E Wk(Tn) ≤ 1 + kσ2.

A uniform estimate of this order, more precisely

E Wk(Tn) ≤ Ck, k ≥ 1, n ≥ 1. (2.2)

for all k, n ≥ 1 with a constant C depending only on ξ, was needed in (5) and proved there (Theorem 1.13)
by a more complicated argument. We will see that our counterexample in Section 3 fails also Property P4;
thus another argument is indeed needed to prove (2.2) in general.

Our counterexample shows that Properties P3 and P4 fail for a certain ξ and n = 3. An anonymous
referee raised the following problem.
Problem 3 Do Properties P3 and P4 hold for large n?

Note that Meir and Moon (9) gave explicit formulas for E Wk(Tn) for the cases of random labelled trees,
plane trees and binary trees, which show that Properties P3 and P4 hold for these cases. (Actually, the
binary trees considered in (9) are the “strict” or “complete” binary trees where all vertices have outdegree
exactly 0 or 2; these are obtained as a conditioned Galton–Watson tree with P(ξ = 0) = P(ξ = 2) = 1/2.
There is a simple correspondence between such binary trees with 2n + 1 vertices and binary trees with n
vertices in our notation obtained by removing the n + 1 leaves (or external vertices), and it is easily seen
that if the strict binary tree T̃2n+1 corresponds to Tn, then Wk+1(T̃2n+1) = 2Wk(Tn) for all k ≥ 0. Hence
Properties P3 and P4 hold for both types of random binary trees.)
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Fig. 1: The trees with three vertices
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Fig. 2: The trees with four vertices

3 A counterexample
Let ε > 0 be a small number and let the offspring distribution be given by

P(ξ = 0) =
1− ε

2
, P(ξ = 1) = ε, P(ξ = 2) =

1− ε

2
.

We have E ξ = 1 and σ2 := Var ξ = 1 − ε. Let T be the (unconditional) Galton–Watson tree with this
offspring distribution.

For n = 3 we have the two possible trees in Figure 1. The corresponding probabilities are, with pj :=
P(ξ = j),

P(T = t1) = p2
1p0 = ε2 1− ε

2
=

1
2
ε2 + O(ε3),

P(T = t2) = p2p
2
0 =

(1− ε

2

)3

=
1
8

+ O(ε),

and thus, conditioning on |T | = 3, i.e. on T ∈ {t1, t2},

P(T3 = t1) =
P(T = t1)

P(T = t1) + P(T = t2)
= 4ε2 + O(ε3),

P(T3 = t2) = 1− 4ε2 + O(ε3).

For n = 4 we similarly have the four possible trees in Figure 2 and

P(T = t3) = p3
1p0 = ε3 1− ε

2
=

1
2
ε3 + O(ε4),

P(T = t4) = P(T = t5) = P(T = t6) = p1p2p
2
0 = ε

(1− ε

2

)3

=
1
8
ε + O(ε2),

and thus, conditioning on |T | = 4,

P(T4 = t3) = O(ε2)

P(T4 = t4) = P(T4 = t5) = P(T4 = t6) =
1
3

+ O(ε2).

In particular,

E W1(T3) = 2 + O(ε2),

E W1(T4) =
5
3

+ O(ε2),

and thus E W1(T3) > E W1(T4) if ε is small enough, so Property P3 fails. (An exact calculation shows that
0 < ε < 1/3 is enough.)

By (2.1), E W1(T∞) = 1 + σ2 = 2 − ε, and thus Property P4 too fails for k = 1, n = 3 and small ε
(0 < ε < 1/5). Consequently, Properties P1 and P2 too fail.
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