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Around the root of random multidimensional
quadtrees
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We analyse the distribution of the root pattern of randomly grown multidimensional point quadtrees. In particular,
exact, recursive and asymptotic formulas are given for the expected arity of the root.
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1 Introduction
A random quadtree is a data structure for multidimensional data access (5). More precisely, in dimension d,
a sequence P = (P1, P2, ..., Pn) of points Pi in the unit cube [0, 1]d ⊆ Rd is represented by a d-dimensional
quadtree T constructed recursively by the following rules :

• If n = 0, (P = ∅), then T is empty.

• If n > 0, then the first point P1 is made the root of the tree. The 2d root subtrees are then constructed
recursively from the 2d sublists of points

P00...0, P00...1, . . . , Pε1ε2...εd
, . . . , P11...1, ε = ε1ε2 . . . εd ∈ {0, 1}d, (1.1)

defined by restricting P \ P1 to the 2d hyperoctants indexed by the binary words ε = ε1ε2...εd of
length d that are determined by the root node P1.

The hyperoctant indexed by the word ε = ε1ε2 . . . εd is, by convention, the one which contains the
vertex (ε1, ε2, . . . , εd) of the unit cube [0, 1]d. Each subtree is numbered by the decimal equivalent of the
corresponding hyperoctant’s index. For each node, the subtrees are drawn, from left to right, in ascending
order. In the case of usual quadtrees (d = 2) the quadrants are indexed as in Figure 1(a). A sequence of
random points and associated quadtree are given in Figure 1(b) and (c).

We define the root pattern of a d-dimensional quadtree T by the set R of binary words ε1ε2 . . . εd for
which Pε1ε2...εd

is not empty. Obviously, the cardinality of R is the arity of the root of T. From example
illustrated in Figure 1(b) and (c), one easily sees that the root pattern is

{00, 01, 10}. (1.2)

We are interested here in the analysis of the root pattern of randomly grown quadtrees built from n
uniformly distributed independent random points of the unit hypercube [0, 1]d in d-dimensional space.

Let Qn[R] be the probability that such a randomly grown quadtree T has a given root pattern R. Using
inclusion-exclusion principle and d-dimensional integrals we have established in (10) that

Qn[R] =
∑
S⊆R

(−1)|R|−|S|Jn[S] (1.3)

where Jn[S] is the probability that the root pattern is a subset of S which is given by

Jn[S] =
∫ 1

0

· · ·
∫ 1

0

(fS(t1, t2, . . . , td))n−1dt1dt2 . . . dtd (1.4)
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Fig. 1: (a) Quadrants (b) Sequence of random points (c) Associated quadtree.

where
fS(t1, t2, . . . , td) =

∑
ε∈S

t<ε1>
1 t<ε2>

2 · · · t<εd>
d (1.5)

is a polynomial linear in each variable t1, t2, . . . , td for which the notation t<εi>
i means

t<εi>
i =

{
ti if εi = 0,
(1− ti) if εi = 1. (1.6)

In fact, fS(t1, t2, . . . , td) is the probability that an independent uniformly distributed random point
(t1, t2, . . . , td) ∈ [0, 1]d belongs to one of the hyperoctants encoded by the binary words of S.

In the next section, we give an algorithm for the computation of Jn[S] as finite combinatorial sums with
inputs S and d. In fact, using the Maple package gfun (4), it can be seen that for dimensions 2 and 3 the
Jn[S] are polynomially recursive sequences.

We present in Section 3 compact integral formulas for Jn[S] which can be asymptotically evaluated using
Laplace transforms and the classical Watson’s Lemma (3). In Section 4, explicit, recursive and asymptotic
expressions are given for the expected arity of the root of randomly grown multidimensional quadtrees
following a suggestion by Flajolet et al. in (7).

Our results are related to the study of maxima in hypercubes (see (1), (2)). See also (8), (12), (13) and
(15) for other kinds of random trees.

The structure of our recursive trees is given by the underlying independant uniform random points added
successively to the tree (6), (9), (11) and (14). And instead of studying degree of vertices, we study what
we call the root pattern of the tree which leads us some results about the arity (or number of children) of
the root.

2 Combinatorial sums for root pattern probabilities
In this section, we first develop an explicit formula and an algorithm to compute the Jn[S] probabilities.

Theorem 2.1 Probabilities Jn[S] can be expressed explicitly with multiple sums :

Jn[S] =
1

n(n!)d−1

∑
P

ε∈S kε=n−1

∏d
i=1

(
(
∑

εi=0 kε)!(
∑

εi=1 kε)!
)

∏
ε∈S kε!

. (2.1)

Proof. Using multinomial formula, we get, considering the expression for fS(t1, t2, . . . , td) :

Jn[S] =
∫ 1

0

∫ 1

0

· · ·
∫ 1

0

(
fS(t1, t2, . . . , td)

)n−1

dt1dt2 . . . dtd (2.2)

=
∑

P
ε∈S kε=n−1

(n− 1)!∏
ε∈S kε!

∫ 1

0

∫ 1

0

· · ·
∫ 1

0

∏
ε∈S

(
t〈ε〉
)kε

dt1dt2 . . . dtd (2.3)
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where

∏
ε∈S

(
t〈ε〉
)kε

=
∏
ε∈S

(
t
〈ε1〉
1 t

〈ε2〉
2 · · · t〈εd〉

d

)kε

(2.4)

=
∏
ε∈S

(
t〈ε1〉

)kε ∏
ε∈S

(
t〈ε2〉

)kε

· · ·
∏
ε∈S

(
t〈εd〉

)kε

. (2.5)

Each of these products can be written in the following form

∏
ε∈S

(
t
〈εi〉
i

)kεi

= t

P
εi=0 kε

i (1− ti)
P

εi=1 kε . (2.6)

We can thus rewrite the Jn[S] probabilities and evaluate them using Beta functions as follows

Jn[S] =
∑

P
ε∈S kε=n−1

(n− 1)!∏
ε∈S kε!

∫ 1

0

· · ·
∫ 1

0

d∏
i=1

(
t

P
εi=0 kε

i (1− ti)
P

εi=1 kε

)
dt1 . . . dtd (2.7)

=
∑

P
ε∈S kε=n−1

(n− 1)!∏
ε∈S kε!

d∏
i=1

∫ 1

0

t

P
εi=0 kε

i (1− ti)
P

εi=1 kεdti (2.8)

=
∑

P
ε∈S kε=n−1

(n− 1)!∏
ε∈S kε!

d∏
i=1

(
∑

εi=0 kε)!(
∑

εi=1 kε)!
n!

(2.9)

=
(n− 1)!
(n!)d

∑
P

ε∈S kε=n−1

∏d
i=1

(
(
∑

εi=0 kε)!(
∑

εi=1 kε)!
)

∏
ε∈S kε!

(2.10)

=
1

n(n!)d−1

∑
P

ε∈S kε=n−1

∏d
i=1

(
(
∑

εi=0 kε)!(
∑

εi=1 kε)!
)

∏
ε∈S kε!

. (2.11)

We are now able to describe our algorithm.

Algorithm - Formula for Jn[S] with binomial coefficients

Input dimension d, number of points n, set S of binary words

Output formula to compute Jn[S]

Step 1 : Build a table with, on the first line, i followed by each kε of S. Let the last two columns be∑
εi=0 kε and

∑
εi=1 kε. There will be d others lines, each of them numbered from 1 to d (which constitutes

the column below i). Below the first kε, write down the sequence of 0 and 1 (including leading 0’s if any)
that forms the binary representation of ε. Do the same for each others kε.

Step 2 : Fill the last column in the following way : for each line, write down the binomial coefficient(
n−1

α

)
where α =

∑
εi=0 kε or α =

∑
εi=1 kε.

Step 3 : Form the following fractional expression : The numerator will be the multinomial coefficient(
n−1

(kε)ε∈S

)
where (kε)ε∈S denotes the sequence of all kε where ε runs through S and the denominator will be

the product of the binomial coefficients in the last column. To obtain Jn[S], make the sum of each fractional
expression obtained when

∑
ε∈S kε = n− 1 and divide the result by nd.

Example. Calculation of Jn[S] for d = 6 and S = {1, 7, 25} = {000001, 000111, 011001}, we get
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i k1 k7 k25

∑
εi=0 kε

∑
εi=1 kε binomial coefficient

1 0 0 0 k1 + k7 + k25 0
(
n−1

0

)
2 0 0 1 k1 + k7 k25

(
n−1
k25

)
3 0 0 1 k1 + k7 k25

(
n−1
k25

)
4 0 1 0 k1 + k25 k7

(
n−1
k7

)
5 0 1 0 k1 + k25 k7

(
n−1
k7

)
6 1 1 1 0 k1 + k7 + k25

(
n−1

0

)
If we rename k1 by i, k7 by j and k25 by k for more readability, we obtain

Jn[S] =
1
n6

∑
i+j+k=n−1

(
n−1
i,j,k

)(
n−1

k

)2(n−1
j

)2 =
1
n6

n−1∑
i=0

n−1−i∑
j=0

(
i+j

i

)(
n−1
i+j

)(
n−1

j

) . (2.12)

Note that for large S the computation of Jn[S] can be simplified using the following duality formula
which involves Jk[{S], where {S denotes the complement of the set S,

Jn[S] =
n∑

k=1

(−1)k−1

(
n− 1
k − 1

)
Jk[{S]. (2.13)

This follows from (1.4) using the fact that fS = 1 − f{S . Section 5 contains complete tables for Jn[S] in
dimension d = 2 and d = 3 computed using our Algorithm and the above duality.

3 Compact integrals and asymptotic forms for root pattern proba-
bilities

The multidimensional integral (given by equation (1.4)) for the probability Jn[S] can be rewritten as a
simple definite integral (see (10) for more details)

Jn[S] =
∫ 1

0

(1− x)n−1ω(x)dx =
∫ ∞

0

e−ntϕ(t)dt, (3.1)

where

ω(x) =
dµ(MS(x))

dx
, ϕ(t) = ω(1− e−t), (3.2)

MS(x) = {(t1, . . . , td) ∈ [0, 1]d | fS(t1, . . . , td) > 1− x} ⊆ [0, 1]d. (3.3)

In (3.2), µ denotes the usual Lebesgue measure. This shows that Jn[S] can be expressed as a Laplace
transform (

Lϕ
)
(n) (3.4)

and from which asymptotic expressions for Jn[S] can be deduced using classical Watson Lemma (3) :

Theorem 3.1 Consider sequence (an)n≥0 defined by integrals of the form

an =
∫ T

0

e−ntϕ(t)dt, 0 < T ≤ ∞ (3.5)

where function ϕ(t) admits a convergent expansion

ϕ(t) = c0t
β0 + c1t

β1 + c2t
β2 + · · · , −1 < β0 < β1 < β2 < · · · . (3.6)

valid for all positive t small enough. Suppose also that there exists an integer n0 ≥ 0 such that∫ T

0

e−n0t|ϕ(t)|dt < ∞. (3.7)
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Then we have the following asymptotic expansion

an ∼ c0
Γ(β0 + 1)

nβ0+1
+ c1

Γ(β1 + 1)
nβ1+1

+ c2
Γ(β2 + 1)

nβ2+1
+ · · · , n →∞. (3.8)

Taking the formal sum of the Laplace transform of individual terms in function ϕ(t),

L[cktβk ](n) = ck

∫ ∞

0

e−nttβkdt = ck
Γ(βk + 1)

nβk+1
, (3.9)

one obtains the terms of asymptotic expansion for an. In particular, this asymptotic expansion is indepen-
dent of the bound T and depends only on the behaviour of ϕ(t) for small values of t.

More generaly, if the function ω(x) in (3.1) contains logarithmic terms, for example

ω(x) =
∑
k≥0

akxk +
∑
k≥0

bkxk lnx +
∑
k≥0

ckxk(lnx)2 + · · · (3.10)

then the corresponding function ϕ(t) will also be of the form

ϕ(t) =
∑
k≥0

αktk +
∑
k≥0

βktk ln t +
∑
k≥0

γktk(ln t)2 + · · · (3.11)

with suitable constants αk, βk, γk . . . The asymptotic expansion of Jn[S] can be computed by taking term
by term Laplace transforms as above using series expansion of ϕ(t) in (3.1). For example, in dimension 3
for S = {1, 2, 3, 4, 5, 6, 7} we get

µ(M{1,2,3,4,5,6,7}(x)) = x− x ln(x) +
1
2
x ln(x)2, (3.12)

ω(x) =
1
2

ln(x)2, (3.13)

and the corresponding asymptotic expansion is

Jn[{1, 2, 3, 4, 5, 6, 7}] ∼ π2 + 6 γ2 + 12 γ ln (n) + 6 (ln (n))2

12n
+
−1 + γ + ln (n)

2n2

+
9− 2 γ − 2 ln (n)

24n3
− 1

8n4
+

5 + 12 γ + 12 ln (n)
1440n5

+
1

48n6
+ · · · ,

(3.14)

where γ denotes the Euler’s constant. Complete tables of the asymptotic expansions of Jn[S] for dimensions
2 and 3 will appear in an expanded form of the paper.

4 Distribution of the arity of the root and its mean value
We have already established in a previous paper the following lemma (10).

Lemma 4.1 The probability pn,k,d that the root of a random quadtree of dimension d of n points has exactly
k children is given by

pn,k,d =
k∑

ν=0

(−1)k−ν

(
2d − ν

k − ν

) ∑
|S|=ν

Jn[S], 0 ≤ k ≤ 2d. (4.1)

Theorem 4.1 For fixed n and d, the generating series (polynomial in fact) of the arity of the root of a
random d-dimensional quadtree of n points is given by

fn,d(x) =
2d∑

k=0

pn,k,dx
k =

2d∑
ν=0

σn,ν,dx
ν(1− x)2

d−ν (4.2)

where
σn,ν,d =

∑
|S|=ν

Jn[S]. (4.3)
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Proof. Use Lemma 4.1.

The following corollaries are closely related to similar results concerning maxima in a random set of
samples from [0, 1]d (see, for example, (1) and (2)).

Corollary 4.1 The expected arity En,d of the root of a random quadtree of dimension d of n points are
given by

En,d = 2d
(
1− Jn[{1, 2, . . . , 2d − 1}]

)
(4.4)

= 2d

((
n− 1

1

)
1
2d

−
(

n− 1
2

)
1
3d

+ · · ·+ (−1)k

(
n− 1

k

)
1
kd

+ (−1)n 1
nd

)
(4.5)

Proof. For (4.4) use the fact that

En,d =
2d∑

k=0

kpn,k,d = f
′

n,d(1) (4.6)

and compute the derivative using the right hand side of (4.2). Only the terms corresponding to ν = 2d and
ν = 2d − 1 will survive. Using the fact that

Jn[{1, 2, . . . , 2d − 1}] =
∫ 1

0

∫ 1

0

· · ·
∫ 1

0

(
1− t1t2 . . . td

)n−1

dt1dt2 . . . dtd, (4.7)

(4.5) follows immediately by expansion of the integrand.

Corollary 4.2 The probabilities Jn[{1, 2, . . . , 2d − 1}] can be written in the form

Jn[{1, 2, . . . , 2d − 1}] =
∫ 1

0

(1− x)n−1 (− lnx)d−1

(d− 1)!
dx. (4.8)

Moreover, ∑
d≥1

Jn[{1, 2, . . . , 2d − 1}]zd−1 =
1
n(

1− z
1

) (
1− z

2

)
. . .
(
1− z

n

) . (4.9)

Sketch of the proof. The first equation, (4.8) follows from (4.7) using appropriate change of variables. The
second one (4.9) is obtained this way

∑
d≥1

Jn[{1, 2, . . . , 2d − 1}]zd−1 =
∑
d≥1

∫ 1

0

(1− x)n−1 (− lnx)d−1

(d− 1)!
zd−1dx,

=
∫ 1

0

(1− x)n−1x−zdx,

= B(n, 1− z),

=
Γ(n)Γ(1− z)
Γ(n + 1− z)

,

=
1
n(

1− z
1

) (
1− z

2

)
. . .
(
1− z

n

) .

Corollary 4.3 The expected value En,d can be expressed as the following finite sum involving generalized
harmonic numbers.

En,d = 2d

(
1− 1

n

∑
λ`d−1

Hλ(n)
zλ

)
, (4.10)

where, λ = (λ1, λ2, . . . ) ` d− 1 denotes a partition of d− 1 and then, let ki be the number of parts of size
i in λ,

zλ = 1k1k1!2k2k2!3k3k3! . . .

Hλ(n) = Hλ1(n)Hλ2(n)Hλ3(n) · · · =
∏
i≥1

(Hi(n))ki , (4.11)
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and, for k ≥ 1, the generalized harmonic number Hk(n) is given by the sum,

Hk(n) =
1
1k

+
1
2k

+
1
3k

+ · · ·+ 1
nk

. (4.12)

Proof. From (4.9) we have∑
d≥1

Jn,dz
d−1 =

1
n

exp
(
− ln(1− z

1
)− ln(1− z

2
)− · · · − ln(1− z

n
)
)

=
1
n

exp

(
n∑

i=1

(
z

i
+

1
2

(z

i

)2

+
1
3

(z

i

)3

+ . . .

))

=
1
n

exp
(

H1(n)z +
1
2
H2(n)z2 +

1
3
H3(n)z3 + . . .

)
=

1
n

∑
d≥1

( ∑
λ`d−1

Hλ(n)
zλ

)
zd−1.

(4.13)

In particular, for d = 2,

En,2 = 4
(

1− 1
n

(
H1,1(n)

z1,1
+

H2(n)
z2

))
= 4− 4

n

(
(1 + 1

2 + 1
3 + · · ·+ 1

n )2

1!2!
+

(1 + 1
22 + 1

32 + · · ·+ 1
n2 )

2!1!

)
= 4− 2

n

(
H1(n)2 + H2(n)

)
.

(4.14)

To get asymptotic expressions for the En,d we can also use Laplace’s transform of (4.8) or the explicit
expression from (4.10) using Euler-MacLaurin sommation formula to get the asymptotic of Hk(n). We
obtain

En,1 = 2− 2 n−1

En,2 ∼ 4− 4
ln (n) + γ

n
− 2 n−2 + · · ·

En,3 ∼ 8− 2/3
6 (ln (n))2 + π2 + 12 γ ln (n) + 6 γ2

n
− 4

ln (n) + γ − 1
n2

+ · · ·

En,4 ∼ 16− 4/3
2 (ln (n))3 + 2 γ3 + 6 γ2 ln (n) + π2 ln (n) + 6 γ (ln (n))2 + π2γ + 4 ζ (3)

n

− 2/3
6 (ln (n))2 − 12 γ + 6 γ2 + 12 γ ln (n) + π2 − 12 ln (n)

n2
+ · · ·

(4.15)

Using gfun we compute the following recurrence for En,d, d = 2, 3 :

E1,2 = 0, E2,2 = 1,

(n− 2)n2En,2 = (n− 1)(2n2 − 4 n + 1)En−1,2 − (n− 1)2(n− 2)En−2,2

(4.16)

E1,3 = 0, E2,3 = 1, E3,3 =
46
27

,

(n− 2)n3En,3 = (n− 3)(n− 2)(n− 1)2En−3,3 − (n− 1)(n− 2)(3n2 − 7 n + 3)En−2,3

+ (n− 1)(3n3 − 8 n2 + 5 n− 1)En−1,3

(4.17)

Longer tables will appear in an extended form of this paper including the probabilities Qn[R] and an
analysis of the variance of the expected arity.

We can partition the set of all sets S with a given cardinality and a given root pattern (up to rotations and
mirror transformations) into orbits. Every set S in a fixed orbit gives the same value of Jn[S]. This leads us
to use an orbit’s representative S and multiply Jn[S] by the cardinality of this orbit.
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5 Explicit tables for dimensions 2 and 3
When two sets of hyperoctants S and S′ are equivalent under rotation and reflection (that is, are in the
same orbit under the action of the hyperoctahedral group) we have Jn[S] = Jn[S′]. Formula (1.3) for the
root pattern probabilities can be simplified using sums over orbit’s representative. If we collect, for a given
dimension and a given cardinality, all sets S which are equivalent under rotations and reflections in a set
called an orbit, we can simplify formula (4.1) for the root pattern probability using an orbit’s representative
multiplied by the cardinality of the orbit. This leads to the following tables.

5.1 Bidimensional case
Orbit’s representative Size Jn[S]

{} 1 0

{0} 4 1
n2

{0, 1} 4 1
n

{0, 3} 2 1
n2

∑n−1
i=0

1

(n−1
i )

{0, 1, 2} 4 1
nn!

∑
i+j+k=n−1

(i+j)!(i+k)!
i! = Hn

n

{0, 1, 2, 3} 1 1

5.2 Tridimensional case
Orbit’s

representative Size Jn[S]

{} 1 0

{0} 8 1
n3

{0, 1} 12
1
n2

{0, 3} 12 1
n3

∑n−1
i=0

1

(n−1
i ) = 1

nn!2

∑
i+j=n−1 i!j!

{0, 7} 4 1
n3

∑n−1
i=0

1

(n−1
i )2 = 1

nn!2

∑
i+j=n−1 i!2j!2

{0, 1, 2} 24 1
nn!2

∑
i+j+k=n−1

(i+j)!(i+k)!
i! = Hn

n2

{0, 1, 6} 24 1
nn!2

∑
i+j+k=n−1

(i+j)!2(i+k)!k!
i!

{0, 3, 5} 8 1
n3

∑
i+j+k=n−1

(n−1
i,j,k)

(n−1
i )(n−1

j )(n−1
k )

{0, 1, 2, 3} 6 1
n

{0, 1, 2, 4} 8 1
n3

∑
i+j+k+l=n−1

( n−1
i,j,k,l)

(n−1
i )(n−1

j )(n−1
k )

{0, 1, 2, 5} 24 1
n3

∑
i+j+k+l=n−1

( n−1
i,j,k,l)

(n−1
i+k)(n−1

k )(n−1
l )

{0, 1, 2, 7} 24 1
n3

∑
i+j+k+l=n−1

( n−1
i,j,k,l)

(n−1
i+j )(n−1

i+k)(n−1
l )

{0, 1, 6, 7} 6 1
n3

∑
i+j+k+l=n−1

( n−1
i,j,k,l)

(n−1
i+j )

2(n−1
i+k)

{0, 3, 5, 6} 2 1
n3

∑
i+j+k+l=n−1

( n−1
i,j,k,l)

(n−1
i+j )(n−1

i+k)(n−1
i+l )

The remaining Jn[S] can be computed using (2.13).
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[15] R. Smythe and H. M. Mahmoud, “A survey of recursive trees”, Theory Probab. Math. Statist. 51. p.
1-27. 1996.



344 Gilbert Labelle, Louise Laforest and Xavier Provençal
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