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An extension to overpartitions of
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We investigate class of well-poised basic hypergeometric series ~Jk;i(a;x; q), interpreting these series as generating functions
for overpartitions defined by multiplicity conditions. We also show how to interpret the~Jk;i(a; 1; q) as generating functions for
overpartitions whose successive ranks are bounded, for overpartitions that are invariant under a certain class of conjugations, and
for special restricted lattice paths. We highlight the cases (a; q)! (1=q; q); (1=q; q2); and(0; q), where some of the functions~Jk;i(a;x; q) become infinite products. The latter case corresponds to Bressoud’s family of Rogers-Ramanujan identities for
even moduli.
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1 Introduction
Over the years, a great number of combinatorial identities [1, 2, 3, 4, 8, 10, 19, 23, 25] have been extracted from
Andrews’ functions [7, Ch. 7]Jk;i(a;x; q), which are defined byJk;i(a;x; q) = Hk;i(a;xq; q) + axqHk;i�1(a;xq; q); (1.1)

where Hk;i(a;x; q) =Xn�0 (�a)nqkn2+n�inxkn(1� xiq2ni)(�1=a)n(�axqn+1)1(q)n(xqn)1 : (1.2)

Here we have employed the usual basic hypergeometric seriesnotation [21]. Most recently [19], the first and
third authors made a thorough combinatorial study of these functions, providing an interpretation of the generalJk;i(a;x; q) in terms of overpartitions, which unified work of Andrews [4], Gordon [22], and the second author
[23]. Moreover, it was shown that theJk;i(a; 1; q) can be interpreted as generating functions for overpartitions
with bounded successive ranks, for overpartitions with a specified Durfee dissection, and for certain restricted
lattice paths. All of these interpretations generalized work of Andrews, Bressoud, and Burge on ordinary partitions
[5, 6, 14, 15, 16].

In this paper we study a similar class of functions, which we call ~Jk;i(a;x; q) and define by~Jk;i(a;x; q) = ~Hk;i(a;xq; q) + axq ~Hk;i�1(a;xq; q); (1.3)

where ~Hk;i(a;x; q) =Xn�0 (�a)nqkn2�(n2)+n�inx(k�1)n(1� xiq2ni)(�x;�1=a)n(�axqn+1)1(q2; q2)n(xqn)1 : (1.4)

The ~Jk;i(a;x; q) are the functionsF1;k;i(�q;1;�1=a;x; q) in [11, eq. (2.1)]. Again the most natural combina-
torial setting is that of overpartitions. We recall that an overpartition is a partition where the final occurrence of a
part can be overlined [17]. For example there exist 8 overpartitions of 3:(3); (3); (2; 1); (2; 1); (2; 1); (2; 1); (1; 1; 1); (1; 1; 1):
Given an overpartition�, let f`(�) (f`(�)) denote the number of occurrences of` non-overlined (overlined) in�. Let V�(`) denote the number of overlined parts in� less than or equal tò. The following combinatorial
interpretation of the general~Jk;i(a;x; q) is the principal result of the first half of this paper:
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Theorem 1.1 For 1 � i � k andj � m define the function
k;i(j;m; n) to be the number of overpartitions� ofn
withm parts,j of which are overlined, such that(i) f1(�)+f1(�) � i�1, (ii) f`(�)+f`+1(�)+f`+1(�) � k�1,
and(iii) if � is saturated at̀ , that is, if the maximum in(ii) is achieved, theǹf`(�) + (` + 1)f`+1(�) + (` +1)f`+1(�) � i� 1 + V�(`) (mod 2). Then~Jk;i(a;x; q) = Xj;m;n�0 
k;i(j;m; n)ajxmqn: (1.5)

It turns out that the~Jk;i(a; 1; q) are infinite products for(a; q) ! (0; q) and(1=q; q2), as well as for(a; q) !(1=q; q) wheni = 1, and hence we can deduce partition theorems from Theorem 1.1. In the case(a; q) ! (0; q),
the product is ~Jk;i(0; 1; q) = (qi; q2k�i; q2k; q2k)1(q)1 ;
and we have a new proof of Bressoud’s Rogers-Ramanujan identities for even moduli [10]:

Corollary 1.2 (Bressoud) For k � 2 and1 � i � k�1, let ~Ak;i(n) denote the number of partitions ofn into parts
not congruent to0;�i modulo2k. Let ~Bk;i(n) denote the number of partitions� ofn such that(i) f1(�) � i� 1,(ii) f`(�) + f`+1(�) � k � 1, and (iii) if f`(�) + f`+1(�) = k � 1, then`f`(�) + (` + 1)f`+1(�) � i � 1(mod 2). Then ~Ak;i(n) = ~Bk;i(n).
When(a; q)! (1=q; q2), the product is~Jk;i(1=q; 1; q2) = (�q; q2)1(q2i�1; q4k�2i�1; q4k�2; q4k�2)1(q2; q2)1 ;
and the result is Bressoud’s [11, eq. (3.9) and Theorem 2] mod4k � 2 companion to Andrews’ generalization of
the Göllnitz-Gordon identities [4]:

Corollary 1.3 For 1 � i � k� 1, let ~A2k;i(n) denote the number of partitions ofn where even parts are multiples
of 4 not divisible by8k � 4 and odd parts are not congruent to�(2i � 1) modulo4k � 2, with parts congruent
to 2k � 1 modulo4k � 2 not repeatable. Let~B2k;i(n) denote the number of partitions� of n such that(i)f1(�) + f2(�) � i� 1, (ii) f2`(�) + f2`+1(�) + f2`+2(�) � k � 1, and(iii) if the maximum in(ii) is achieved
at `, then`f2`(�) + (`+1)f2`+2(�) + (`+1)f2`+1(�) � i� 1+ V o� (`) (mod 2). (HereV o� (`) is the number of
odd parts of� less than2`). Then ~A2k;i(n) = ~B2k;i(n).

Finally, when(a; q)! (1=q; q) andi = 1, the product is~Jk;1(1=q; 1; q) = (�q)1(q; q2k�2; q2k�1; q2k�1)1(q)1 ;
and the result is an odd modulus companion to Theorem 1.2 of [23].

Corollary 1.4 For k � 2, let ~A3k(n) denote the number of overpartitions whose non-overlined parts are not
congruent to0;�1 modulo2k � 1. Let ~B3k(n) denote the number of overpartitions� of n such that(i) f1(�) =0, (ii) f`(�) + f`(�) + f`+1(�) � k � 1, and (iii) if the maximum in condition(ii) is achieved at̀ , then`f`(�) + `f`(�) + (`+ 1)f`+1(�) � V�(`) (mod 2). Then ~A3k(n) = ~B3k(n).

In the second half of the paper, we discuss three more combinatorial interpretations of the~Jk;i(a; 1; q): one
involving the theory of successive ranks for overpartitions as developed in [19], one involving a two-parameter
generalization to overpartitions of Garvan’sk-conjugation for partitions [20], and one involving a generalization
of some lattice paths of Bressoud and Burge [14, 15, 16]. The following is the main theorem of this part, the
combinatorial concepts being necessarily fully defined later in the paper. Whena = 0 andX = C, D, orE, we
recover some of the main results of [14, 15, 16].

Theorem 1.5

Let ~Bk;i(n; j) denote the number of overpartitions� of n counted by
k;i(j; `(�); n) where`(�) is the number
of parts in� (we thus have~Bk;i(n; j) =Pm�j 
k;i(j;m; n)).

Let ~Ck;i(n; j) denote the number of overpartitions ofn with j overlined parts whose successive ranks lie in[�i+ 2; 2k � i� 2℄.
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Let ~Dk;i(n; j) denote the number of self-(k; i)-conjugate overpartitions ofn with j overlined parts.

Let ~Ek;i(n; j) denote the number of special lattice paths of major indexn with j South steps which start atk� i,
whose height is less thank and where the peaks of coordinates(x; k� 1) are such thatx�u is congruent toi� 1
modulo2 (u is the number of South steps to the left of the peak).
Then forX = B, C, D, or E,Xn;j�0 ~Xk;i(n; j)ajqn = (�aq)1(q)1 Xn2Z(�1=a)n(�1)nanq(2k�1)(n+12 )�in+n(�aq)n : (1.6)

Again, the right-hand side of (1.6) is in many cases an infinite product, and hence there are results like Corollaries
1.2 - 1.4 involving the functions~C, ~D and ~E. However, we shall not highlight these corollaries.

The paper is organized as follows. In the next section we study the basic properties of the~Jk;i(a;x; q) and give
proofs of Theorem 1.1 and Corollaries 1.2 - 1.4. In Section 3,we compute the generating function for the paths
counted by~Ek;i(n; j) to show that they are in bijection with the overpartitions counted by~Bk;i(n; j). In Section 4,
we present a direct bijection between the paths counted by~Ek;i(n; j) and the overpartitions counted by~Ck;i(n; j).
In Section 5, we compute the generating function for the overpartitions counted by~Dk;i(n; j) to show that they
are in bijection with the paths counted by~Ek;i(n; j). The techniques used in Sections 3,4, and 5 are very similar
to [19]. We conclude in Section 6 with some suggestions for future research.

2 The ~Jk;i(a;x; q) and the multiplicities
We begin by stating some facts about the functions~Hk;i(a;x; q) and ~Jk;i(a;x; q) defined in the introduction.

Lemma 2.1 ~Hk;0(a;x; q) = 0 (2.7)~Hk;�i(a;x; q) = �x�i ~Hk;i(a;x; q) (2.8)~Hk;i(a;x; q)� ~Hk;i�2(a;x; q) = xi�2(1 + x) ~Jk;k�i+1(a;x; q): (2.9)

Now assume that1 � i � k. The following recurrences for the~Jk;i(a;x; q) are fundamental.

Theorem 2.2 ~Jk;1(a;x; q) = ~Jk;k(a;xq; q) (2.10)~Jk;2(a;x; q) = (1 + xq) ~Jk;k�1(a;xq; q) + axq ~Jk;k(a;xq; q) (2.11)~Jk;i(a;x; q)� ~Jk;i�2(a;x; q) = (xq)i�2(1 + xq) ~Jk;k�i+1(a;xq; q) (2.12)+ a(xq)i�2(1 + xq) ~Jk;k�i+2(a;xq; q) (3 � i � k):
See [18] for a proof of these results.
We now turn to the proof of Theorem 1.1. If we write~Jk;i(a;x; q) = Xj;m;n�0 bk;i(j;m; n)ajxmqn;

then the recurrences in Theorem 2.2 imply thatbk;1(j;m; n) = bk;k(j;m; n�m); (2.13)bk;2(j;m; n) = bk;k�1(j;m; n�m) + bk;k�1(j;m� 1; n�m) + bk;k(j � 1;m� 1; n�m); (2.14)bk;i(j;m; n)� bk;i�2(j;m; n) = bk;k�i+1(j;m� i+ 2; n�m) + bk;k�i+1(j;m� i+ 1; n�m) (2.15)+ bk;k�i+2(j � 1;m� i+ 2; n�m) + bk;k�i+2(j � 1;m� i+ 1; n�m):
We shall demonstrate that the
k;i(j;m; n) also satisfy these recurrences. In what follows we shall repeatedly

employ a mapping� ! b�, whereb� is obtained by removing the first column of the Ferrers diagram of �. Before
continuing, we make a couple of observations regarding thismapping. First, if� satisfies condition(ii) in the
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statement of the theorem, so doesb�. Second, if� is an overpartition counted by
k;i(j;m; n) andb� is saturated at`, then� was saturated at̀+ 1, so we have`f`(b�) + (`+ 1)f`+1(b�) + (`+ 1)f`+1(b�) = `f`+1(�) + (`+ 1)f`+2(�) + (`+ 1)f`+2(�)= (`+ 1)f`+1(�) + (`+ 2)f`+2(�) + (`+ 2)f`+2(�) � (f`(b�) + f`+1(b�) + f`+1(b�)) (2.16)� i� 1 + V�(`+ 1)� (f`(b�) + f`+1(b�) + f`+1(b�)) (mod 2)� V�(`+ 1) + k � i (mod 2)
Finally, it is clear that Vb�(`) � (V�(`+ 1) (mod 2); if 1 =2 �V�(`+ 1) + 1 (mod 2); if 1 2 � (2.17)

We begin with (2.13). Given an overpartition� counted by
k;1(j;m; n), b� is an overpartition ofn �m withm parts,j of which are overlined. Since� could have had at mostk � 1 twos,b� has at mostk � 1 ones. Ifb� is
saturated at̀, then from (2.16) and (2.17) we have`f`(b�) + (` + 1)f`+1(b�) + (` + 1)f`+1(b�) � k � 1 + Vb�(`)(mod 2). Thusb� is an overpartition counted by
k;k(j;m; n �m). Since the mapping from� to b� is reversible,
we have the recurrence (2.13) for the functions
k;i(j;m; n).

We turn to (2.14). Suppose now that� is an overpartition counted by
k;2(j;m; n). Then� has at most one1.
We consider three cases.

First, if � has no ones, then it can have at mostk � 2 twos. For if� hadk � 1 twos, then1f1(�) + 2f2(�) +2f2(�) � 0 (mod 2) violates condition(iii) in the definition of the
k;2(j;m; n). Henceb� is an overpartition ofn � m into m parts,` of which are overlined, and having at mostk � 2 ones. Ifb� is saturated at̀, then from
(2.16) and (2.17) we havèf`(b�) + (` + 1)f`+1(b�) + (` + 1)f`+1(b�) � k � 2 + Vb�(`) (mod 2). Henceb� is an
overpartition counted by
k;k�1(j;m; n�m).

Second, if1 occurs (non-overlined) in�, then there can be up tok� 2 twos, sob� has at mostk� 2 ones. Ifb� is
saturated at̀, then from (2.16) and (2.17) we have`f`(b�) + (` + 1)f`+1(b�) + (` + 1)f`+1(b�) � k � 2 + Vb�(`)(mod 2). Henceb� is an overpartition counted by
k;k�1(j;m� 1; n�m).

Third and finally, if1 occurs in�, then there can be at mostk � 1 twos, sob� has at mostk � 1 ones. Ifb� is
saturated at̀, then from (2.16) and (2.17) we have`f`(b�) + (` + 1)f`+1(b�) + (` + 1)f`+1(b�) � k � 1 + Vb�(`)(mod 2). Henceb� is an overpartition counted by
k;k(j � 1;m� 1; n�m).

Since the mappings are reversible, we have the recurrence (2.14) for the functions
k;i(j;m; n).
The proof of the recurrence (2.15) is very similar to those of(2.13) and (2.14). See [18] for details.
To finalize the claim that the two families of functions are equal, we note thatbk;i(j;m; n) = (0; if j < 0, m � 0 or n � 0, and(j;m; n) 6= (0; 0; 0)1; if (j;m; n) = (0; 0; 0); (2.18)

which is indeed also true for the
k;i(j;m; n). 2
Before deducing Corollaries 1.2 - 1.4 we state a propositionwhich is a piece of Theorem 1.5 and from which it

follows that several instances of the~Jk;i(a; 1; q) are infinite products.

Proposition 2.3 We have~Jk;i(a; 1; q) = (�aq)1(q)1 Xn2Z(�1=a)n(�1)nanq(2k�1)(n+12 )�in+n(�aq)n : (2.19)

Corollary 2.4 We have ~Jk;i(0; 1; q) = (qi; q2k�i; q2k; q2k)1(q)1 ; (2.20)~Jk;i(1=q; 1; q2) = (�q; q2)1(q2i�1; q4k�2i�1; q4k�2; q4k�2)1(q2; q2)1 ; (2.21)

and ~Jk;1(1=q; 1; q) = (�q)1(q; q2k�2; q2k�1; q2k�1)1(q)1 : (2.22)
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We are now ready to prove Corollaries 1.2 - 1.4. In the following, we consider that� is an overpartition ofn
with j overlined parts, hence it is counted in the coefficient ofqnaj of ~Jk;i(a; 1; q). This overpartition is such that(i) f1(�) + f1(�) � i� 1, (ii) f`(�) + f`+1(�) + f`+1(�) � k � 1, and(iii) if � is saturated at̀, that is, if the
maximum in(ii) is achieved, theǹf`(�) + (`+ 1)f`+1(�) + (`+ 1)f`+1(�) � i� 1 + V�(`) (mod 2).

For Corollary 1.2, we consider the functions~Jk;i(0; 1; q). From Theorem 1.1 we easily see that the coefficient
of qn in Jk;i(0; 1; q) is ~Bk;i(n). On the other hand, from (2.20) , this coefficient is also~Ak;i(n). 2

For Corollary 1.3, we use the functions~Jk;i(1=q; 1; q2). A little thought reveals that the coefficient ofqn in~Jk;i(1=q; 1; q2) is ~B2k;i(n). Rewriting of the product in (2.21) as(q2; q4)1(q8k�4; q8k�4)1(q2i�1; q4k�2i�1; q4k�2)1(�q2k�1; q4k�2)1 Yn6�2k�1 (mod 4k�2) 1(1� qn)
shows that this coefficient is also~A2k;i(n). 2

Finally, for Corollary 1.4, we use the functions~Jk;1(1=q; 1; q). Again it may readily be seen that the coefficient
of qn therein is ~B3k(n). On the other hand, from (2.22), this coefficient is also~A3k(n). 2
3 Lattice Paths
We study paths in the first quadrant that use four kinds of unitary steps:� North-EastNE : (x; y)! (x+ 1; y + 1),� South-EastSE : (x; y)! (x+ 1; y � 1),� SouthS : (x; y)! (x; y � 1),� EastE : (x; 0)! (x + 1; 0).
Theheightof a vertex corresponds to itsy-coordinate. A South step can only appear after a North-Eaststep and
an East step can only appear at height 0. The paths must end with a North-East or South step. Apeakis a vertex
preceded by a North-East step and followed by a South step (inwhich case it will be called aNES peak) or by
a South-East step (in which case it will be called aNESE peak). If the path ends with a North-East step, its last
vertex is also a NESE peak. Themajor indexof a path is the sum of thex-coordinates of its peaks (see Figure 1
for an example). When the paths have no South steps, this is the definition of the paths in [14].

Fig. 1: This path has four peaks : two NES peaks (located at(2; 2) and(6; 1)) and two NESE peaks (located at(4; 1) and(7; 1)). Its major index is2 + 4 + 6 + 7 = 19.

Let k andi be positive integers withi � k. Let ~Ek;i(n; j) be the number of paths of major indexn with j South
steps which satisfy the followingspecial(k; i)-conditions: (i) the paths start at heightk� i, (ii) their height is less
thank, (iii) every peak of coordinates(x; k � 1) satisfiesx� u � i� 1 (mod 2) whereu is the number of South
steps to the left of the peak.

Let ~Ek;i(a; q) be the generating function for those paths, that is~Ek;i(a; q) =Pn;j ~Ek;i(n; j)ajqn. Let ~Ek;i(N)
be the generating function for paths counted by~Ek;i(a; q) which haveN peaks. Moreover, for0 � i < k, let~�k;i(N) be the generating function for paths obtained by deleting the first NE step of a path which is counted in~Ek;i+1(N) and begins with a NE step. Then

Proposition 3.1 ~Ek;i(N) = qN ~Ek;i+1(N) + qN ~�k;i�1(N); 1 � i < k (3.23)~�k;i(N) = qN ~�k;i�1(N) + (a+ qN�1) ~Ek;i+1(N � 1); 0 < i < k (3.24)~Ek;k(N) = qN ~Ek;k�1(N) + qN ~�k;k�1(N) (3.25)~Ek;i(0) = 1 ~�k;0(N) = 0 (3.26)



146 Sylvie Corteel, Jeremy Lovejoy and Olivier Mallet

Proof: We prove that result by induction on the length of the path. Ifthe path is not empty, then we take off its
first step. When we do this, we increase or decreasei by 1 and thus change the parity ofi � 1 ; moreover, all the
peaks are shifted by 1, so the parity ofx�u� i is not changed (if the step we remove is a South step, the peaksare
not shifted butu decreases by 1 for all peaks, so the result is the same). The casei = k needs further explanation.
For these paths the fact that every peak of coordinates(x; k � 1) satisfiesx� u � k � 1 (mod 2) is equivalent to
the fact that every peak of coordinates(x; k � 1) has an even number of East steps to its left. Therefore the paths
counted in~Ek;k(N) that start with an East step where this step is deleted are in bijection with the paths counted
in ~Ek;k�1(N) (see [18] for details). Moreover it is easy to see that the paths counted in~Ek;k(N) that start with a
North-East step where this step is deleted are the paths counted in~�k;k�1(N). 2

These recurrences uniquely define the series~Ek;i(N) and~�k;i(N). We get that

Theorem 3.2 ~Ek;i(N) = aNq(N+12 )(�1=a)N NXn=�N(�1)n q(k�1)n2+(k�i)n(q)N�n(q)N+n (3.27)~�k;i(N) = aNq(N2 )(�1=a)N N�1Xn=�N(�1)n q(k�1)n2+(k�i�1)n(q)N�n�1(q)N+n (3.28)

The proof is omitted. It uses simple algebraic manipulationto prove that these generating functions satisfy the
recurrence relations of Proposition 3.1.

We recall a proposition proved in [19] that will enable us to compute~Ek;i(a; q) from the recurrences:

Proposition 3.3 For anyn 2 ZXN�jnj (�aq)n(�qn=a)N�nq(N+12 )�(n+12 )aN�n(q)N+n(q)N�n = (�aq)1(q)1 :
From (3.27), summing onN using Proposition 3.3 (see [19] for details), we get Equation (1.6) and Theorem 1.5

for X = E.
For the work in Section 5, we’ll need the definition of the relative height of a peak. This notion was defined by

Bressoud in [14]. The definition we use is a simpler version taken from [9].

Definition 3.4 ([9]) The relative height of a peak(x; y) is the largest integerh for which we can find two vertices
on the path,(x0; y�h) and(x00; y�h), such thatx0 < x < x00 and such that between these two vertices there are
no peaks of height> y and every peak of heighty has weight� x.

For the paths corresponding to overpartitions, i.e. the paths counted by~Ek;i(n; j), we have to modify the
definition of the relative height a little bit to take into account the NES peaks, for which we can havex00 = x.

Definition 3.5 The relative height of a peak(x; y) is the largest integerh for which we can find two vertices on
the path,(x0; y�h) and(x00; y�h), such thatx0 < x � x00 and such that between these two vertices there are no
peaks of height> y and every peak of heighty has weight� x.

See [19] for examples.

Proposition 3.6 For n1 � n2 � � � � � nk�1,q(n1+12 )+n22+���+n2k�1+ni+���+nk�1(�1=a)n1an1(q)n1�n2 : : : (q)nk�2�nk�1(q2; q2)nk�1
is the generating function for the paths (counted by major index and number of south steps) satisfying the special(k; i)-conditions and havingnj peaks of relative height� j for 1 � j � k � 1.

Proof: It is similar to that of Proposition 6.1 of [19]. See [18] for details. 2
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4 Successive Ranks

The Frobenius representation of an overpartition [17, 24] of n is a two-rowed array

�a1 a2 ::: aNb1 b2 ::: bN� where(a1; : : : ; aN ) is a partition into distinct nonnegative parts and(b1; : : : ; bN) is an overpartition into nonnegative
parts where the first occurrence of a part can be overlined andN +P(ai + bi) = n.

We call that the Frobenius representation of an overpartition because it is in bijection with overpartitions. We say
that thegeneralized Durfee squareof an overpartition has sizeN if N is the largest integer such that the number
of overlined parts plus the number of non-overlined parts greater or equal toN is greater than or equal toN .

We now define the successive ranks.

Definition 4.1 [19] The successive ranksof an overpartition can be defined from its Frobenius representation.

If an overpartition has Frobenius representation

�a1 a2 � � � aNb1 b2 � � � bN� then itsith successive rankri is ai � bi
minus the number of non-overlined parts infbi+1; : : : ; bNg.
For example, the successive ranks of

�7 4 2 03 3 1 0� are(2; 0; 1; 0).
We now state the main result of this section, which implies Theorem 1.5 forX = C.

Proposition 4.2 There exists a one-to-one correspondence between the pathsof major indexn with j South steps,
counted by~Ek;i(n; j) and the overpartitions ofn with j non-overlined parts in the bottom line of their Frobenius
representation and whose successive ranks lie in[�i+2; 2k� i� 2℄, counted by~Ck;i(n; j). This correspondence
is such that the paths haveN peaks if and only if the Frobenius representation of the overpartition hasN columns.

See [18] for the proof.

5 Generalized self-conjugate overpartitions
In this section we prove Theorem 1.5 forX = D. We define an operation for overpartitions calledk-conjugation,
wherek � 2 is an integer. From the Frobenius representation of an overpartition�, we use Algorithm III of [24]
to get three partitions�1, �2 and� as described in the following paragraph.

Let N be the number of columns of the Frobenius representation. Weget �1, which is a partition intoN
nonnegative parts, by removing a staircase from the top row (i.e. we remove 0 from the smallest part, 1 from the
next smallest, and so on). We get�2 (which is a partition intoN nonnegative parts) and� (which is a partition into
distinct nonnegative parts less thanN ) as follows. First, we initialize�2 to the bottom row. Then, if themth part
of the bottom row is overlined, we remove the overlining of themth part of�2, we decrease them � 1 first parts
of �2 by one and we add a partm� 1 to � (see [18] for an example).

Let �01 (resp.�02) be the conjugate of�1 (resp. of�2). �01 and�02 are thus partitions into parts less than or equal
to N . We now consider two regions. The first region is the portion of �02 below its(k � 2)-th Durfee square (fork = 2, this region is�02). Recall that the Durfee square of a partition is the largestsquare contained in its diagram
and that theith Durfee square is the Durfee square of the partition that is under the(i�1)st Durfee square [6]. The
second region consists of the parts of�01 which are less than or equal to the size of the(k � 2)-th Durfee square of�02 (for k = 2, this region is�01).
Definition 5.1 Thek-conjugationconsists of interchanging these two regions (if�02 has less thank � 2 Durfee
squares, thek-conjugation is the identity).

Remark 5.2 For k = 2, we just swap�01 and �02 (which boils down to swapping�1 and �2) and we get theF -conjugation defined by Lovejoy [24].

Remark 5.3 If there are no overlined parts, we get thek-conjugation for partitions defined by Garvan [20].

Definition 5.4 We say that an overpartition isself-k-conjugateif it is fixed byk-conjugation.

Proposition 5.5 The generating function for self-k-conjugate overpartitions isXn1�n2�:::�nk�1�0 q(n1+12 )+n22+���+n2k�1(�1=a)n1an1(q)n1�n2 : : : (q)nk�2�nk�1(q2; q2)nk�1
wheren1 is the number of columns of the Frobenius symbol andn2; : : : ; nk�1 are the sizes of thek � 2 first
successive Durfee squares of�02.
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Proof: We decompose a self-k-conjugate overpartition in the following way :� � (region IV in Figure 2), which is counted byan1(�1=a)n1 ;� the staircase of the top row and the partn1 (region III), which are counted byq(n1+12 );� thek � 2 Durfee squares of�02 (region V), which are counted byqn22+���+n2k�1 ;� the regions between the Durfee squares of�02 (region VI), which are counted by

�n1n2�q � � � �nk�2nk�1�q ;� the parts in�01 which are> nk�1 and of course� n1 (region I): they are counted by1(1� qnk�1+1) � � � (1� qn1) = (q)nk�1(q)n1 ;� the two identical regions (regions II and VII), which are counted by 1(q2;q2)nk�1 .

Summing onn1; n2; : : : ; nk�1, we get the generating function :Xn1�n2�:::�nk�1�0(�1=a)n1an1q(n1+12 )qn22+���+n2k�1 �n1n2�q � � � �nk�2nk�1�q (q)nk�1(q)n1 1(q2; q2)nk�1= Xn1�n2�:::�nk�1�0 q(n1+12 )+n22+���+n2k�1(�1=a)n1an1(q)n1�n2 : : : (q)nk�2�nk�1(q2; q2)nk�1 2
�01I

II
III �IV �02

V

V VI

VII

Fig. 2: Decomposition of a self-k-conjugate overpartition (in this example,k = 4).

Corollary 5.6 When there are no overlined parts,a ! 0 and we get the generating function for self-k-conjugate
partitions [20].

Definition 5.7 Let i andk be integers with1 � i � k. We say that an overpartition isself-(k; i)-conjugateif it is
obtained by taking a self-k-conjugate overpartition and adding a partnj (nj is the size of the(j�1)-th successive
Durfee square of�02) to �02 for i � j � k � 1 (if i = k, no parts are added).

Remember that we denote by~Dk;i(n; j) the number of self-(k; i)-conjugate overpartitions withj overlined
parts (or, equivalently, the number of self-(k; i)-conjugate overpartitions whose Frobenius representation hasj
non-overlined parts in its bottom row).

Proposition 5.8 ~Ek;i(a; q) =Xn;j ~Dk;i(n; j)ajqn:
See [18] for the proof.
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6 Concluding Remarks
We would like to mention that theJk;i(a;x; q) and ~Jk;i(a;x; q) can be embedded in a family of functions that
satisfy recurrences like those in Lemma 2.1 and are sometimes infinite products whenx = 1. Form � 1 we defineJk;i;m(a;x; q) = Hk;i;m(a;xq; q) + axqHk;i�1;m(a;xq; q); (6.29)

whereHk;i;m(a;x; q) =Xn�0 (�a)nqkn2+n�in�(m�1)(n2)xn(k�m�1)(1� xiq2ni)(�1=a)n(�axqn+1)1(xm; qm)n(qm; qm)n(x)1 :
(6.30)

The casem = 1 gives theJk;i(a;x; q) andm = 2 corresponds to the~Jk;i(a;x; q). Equations (2.7) and (2.8) of
Lemma 2.1 are true for theHk;i;m(a;x; q), and following the proof of (2.9), one may show thatHk;i;m(a;x; q)�Hk;i�m;m(a;x; q) = xi�m(1 + x+ x2 + � � �+ xm�1)Jk;k�i+1;m(a;x; q):
It would certainly be worth investigating what kinds of combinatorial identities are stored in these general series.

References
[1] G.E. Andrews, An analytic proof of the Rogers-Ramanujan-Gordon identities,Amer. J. Math.88 (1966),

844–846.

[2] G.E. Andrews, Some new partition theorems,J. Combin. Theory2 (1967), 431–436.

[3] G.E. Andrews, Partition theorems related to the Rogers-Ramanujan identitites,J. Combin. Theory2 (1967),
422–430.
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