
Discrete Mathematics and Theoretical Computer Science 7, 2005, 217–230

Karp-Miller Trees for a Branching Extension

of VASS

Kumar Neeraj Verma1† and Jean Goubault-Larrecq2

1 Institut für Informatik, TU München, Germany verma@in.tum.de
2 LSV/ UMR 8643 CNRS & ENS Cachan; INRIA Futurs projet SECSI, France goubault@lsv.ens-cachan.fr

received Jun 29, 2004, accepted Oct 19, 2005.

We study BVASS (Branching VASS) which extend VASS (Vector Addition Systems with States) by allowing addition

transitions that merge two configurations. Runs in BVASS are tree-like structures instead of linear ones as for VASS.

We show that the construction of Karp-Miller trees for VASS can be extended to BVASS. This entails that the cov-

erability set for BVASS is computable. This allows us to obtain decidability results for certain classes of equational

tree automata with an associative-commutative symbol. Recent independent work by de Groote et al. implies that

decidability of reachability in BVASS is equivalent to decidability of provability in MELL (multiplicative exponential

linear logic), which is still an open problem. Hence our results are also a step towards answering this question in the

affirmative.

Keywords: branching vector addition systems, Karp-Miller trees, coverability, multiplicative exponential linear logic,

equational tree automata.

1 Introduction

The purpose of this paper is to study Branching VASS (BVASS), a natural extension of both vector addi-

tion systems with states (VASS) and Parikh images of context-free grammars, and to show that emptiness,

coverability and boundedness are decidable for this common extension, by extending the usual Karp-

Miller tree construction. This allows us to obtain decidability results for certain classes of two-way equa-

tional tree automata modulo the theory AC of one associative-commutative symbol [Ver03a], which arise

naturally from the study of certain cryptographic protocols, and which were the initial motivation behind

our extension. However recent independent work by de Groote et al. [dGGS04] also implies that decid-

ability of reachability of configurations in BVASS is equivalent to decidability of provability in MELL

(multiplicative exponential linear logic), which is still an open problem. Hence our results are a step

towards a positive answer to this question.

For the time being, let us introduce semi-linear sets, VASS, Petri nets, and Parikh images of context-

free grammars, so as to explain what our extension is about. We apologize in advance for the length of

the exposition, but we feel it is better to understand the concepts before we build on them.

†Work done while PhD student at LSV, and partially supported by the ACI VERNAM, the RNTL project EVA and the ACI

jeunes chercheurs “Sécurité informatique, protocoles cryptographiques et détection d’intrusions”.

1365–8050 c© 2005 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

http://dmtcs.loria.fr/
http://dmtcs.loria.fr/volumes/

218 Kumar Neeraj Verma and Jean Goubault-Larrecq

Notation. We use a Prolog-like notation: although this is not standard, this will have several advantages,

one being uniformity of notation. Fix a natural number p. We shall consider definite clauses of the form

P(t) ⇐ P1(t1), . . . ,Pn(tn), where n ∈ N, P, P1, . . . , Pn are so-called predicates (a.k.a., states), and t, t1, . . . ,

tn are terms built from constants ν ∈ N
p, variables x, y, z, . . . (denoting p-tuples of natural numbers), and

the symbol + denoting componentwise addition of p-tuples of natural numbers. An instance of such a

clause is obtained by replacing all variables by actual p-tuples of natural numbers and doing the obvious

simplifications. An integer program P is any finite set of definite clauses of the above format. A fact

is any atom P(ν) with ν ∈ N
p. Derivations (of P(ν)) from P are inductively defined so that, given any

instance P(ν) ⇐ P1(ν1), . . . ,Pn(νn) of a definite clause in P , given any derivations ∆i of Pi(νi) from P ,

1 ≤ i ≤ n, the following is a derivation:

·
·
·

∆1

P1(ν1) . . .

·
·
·

∆n

Pn(νn)

P(ν)

(The base cases are when n = 0, in which case the chosen instance is the fact P(ν).) A fact is derivable

from P iff there is a derivation of it from P . The language LP (P) of the predicate (or state) P in P is the

set of p-tuples ν ∈ N
p such that P(ν) is derivable from P . We say that ν ∈ N

p is recognized at P in P iff

P(ν) ∈ LP (P).

Semilinear sets. Recall that a linear set L of p-tuples of natural numbers is any set of the form Lν0,B =
{ν0 + ν1 + . . .+ νk | k ∈ N and ν1, . . . ,νk ∈ B} for some finite set B ⊆ N

p. A semilinear set is any finite

union of linear sets. Semilinear sets are one of the fundamentals of automated verification systems, and are

closed under union, intersection, complement, and projection; they are exactly the Presburger-definable

subsets of N
p [GS66]. Now, given ν0,∈ N

p and some finite B ⊆ N
p, consider the following set of Horn

clauses:

P(ν0) (1)

P(x+ν) ⇐ P(x) (ν ∈ B) (2)

It is easy to see that the set of p-tuples recognized at P in this program is exactly Lν0,B. Given any

semilinear set L, written as a union
Sn

i=1 Lνi
0,Bi , we can as easily write the set of all clauses Pi(ν

i
0), 1≤ i≤ n

and Pi(x + ν) ⇐ Pi(x), 1 ≤ i ≤ n,ν ∈ Bi, where P1, . . . , Pn are pairwise distinct predicates. The union of

the sets of tuples recognized at each Pi is L. In particular, any semilinear set can be represented as LP (R)
for some R and some finite set P of definite clauses of the form (1) or

P(x+ν) ⇐ Q(x), (where ν ∈ N
p) (3)

Conversely, for every finite set P of what we shall call base/period clauses (of the form (1) or (3)), the

languages LP (P) are semilinear, for every predicate P; this is a consequence of Parikh’s Theorem, to be

stated below.

Note that derivations from such integer programs are just sequences of applications of clauses (3)

ending in one clause (1).

Karp-Miller Trees for a Branching Extension of VASS 219

Parikh images. What about allowing for more complex clause formats? One possibility is to replace

clauses (3) by the more general addition clauses:

P(x+ y) ⇐ Q(x),R(y) (4)

(x and y being distinct variables) and keep the above clauses (1). (Clauses (3) are easily seen to be

implementable through these two.) Addition clauses state that given any p-tuple recognized at Q, and

given any p-tuple recognized at R, their sum is recognized at P. It turns out that these clause formats

encode naturally Parikh images of context-free languages; this has been used in one form or another by

several authors, we take our presentation from [Ver03c]. Recall that the Parikh image of a set L of words

over the finite alphabet A = {a1, . . . ,ap} is the set of all p-tuples |w| = (|w|1, . . . , |w|p), where w ranges

over L, and |w|i is by convention the number of occurrences of ai in the word w. The construction goes

as follows. Take any context-free grammar in Chomsky normal form, i.e., with productions of the form

P → ai, or P → ε, or P → QR (where P, Q, R are non-terminals, and ε denotes the empty word). For

each production P → ai, generate the clause P((0, . . . ,0,1,0, . . . ,0)), where the only ‘1’ is at position

i; for each production P → ε, generate the clause P((0, . . . ,0)); for each production P → QR, generate

P(x + y) ⇐ Q(x),R(y). Then the language of P is the Parikh image of the language generated by the

grammar with start symbol P [Ver03c].

Parikh’s Theorem [Par66], once recast in our setting (see [Ver03c]), states that given any program

P consisting of clauses of the form (1), (3) and (4), the languages LP (P) are all semilinear sets, and

effectively so. So there is a procedure that computes a set of base/period clauses (1), (2) from any such

program P , in such a way that the languages of P are preserved, for each P in P . (A nice, generalized

version of this appears in [AÉI02].)

Note that, while derivations in base/period programs are just sequences, derivations in the presence of

addition clauses (4) exhibit a branching behavior. In a sense, Parikh’s Theorem states that branching can

be eliminated while preserving languages.

Petri nets and VASS. If, instead of allowing addition clauses (4), we allow two-way clauses of the form

P(x+ν•) ⇐ Q(x+ •ν) (5)

as another extension of base/period clauses, where ν• and •ν are elements of N
p, then we get so-called

vector addition systems with states (VASS) [HP79]‡. The languages LP (P) are called reachability sets

(for state P) in this context. To simplify matters, we shall assume that min(ν•,•ν) = 0, meaning that

for every index i, either the ith component of ν• or the ith component of •ν is zero. This entails no

loss of generality as far as reachability, or coverability, or boundedness, is concerned [Reu89]. E.g.,

P(x+(2,3))⇐ Q(x+(4,1))) can be replaced by P(x+(2,3))⇐ R(x) and R(x)⇐ Q(x+(4,1)) for those

purposes, with R a fresh state. In this case, there is no loss of generality either in abbreviating (5) as

P(x+δ) ⇐ Q(x) (6)

where δ ∈ Z
p is a vector of integers, negative or positive, equal to ν•− •ν. Then, any derivation ending

in an instance P(ν+δ) ⇐ Q(ν) of (6) simply infers P(ν+δ) from Q(ν), provided ν+δ is a non-negative

tuple (in N
p).

‡ Up to the fact that VASS contain only one fact, the initial marking. This is inessential here.

220 Kumar Neeraj Verma and Jean Goubault-Larrecq

Contrarily to Parikh images of context-free languages, two-way clauses strictly extend semilinear sets

(provided p ≥ 3), as there are VASS P and predicates P whose reachability set LP (P) is not semilinear

as soon as p ≥ 3 [HP79]. VASS with just one state P are called Petri nets, and are as expressive as

general VASS, as far as reachability sets are concerned [HP79]. Note that reachability of a fixed p-tuple

in a given VASS is decidable [May84, Kos82, Mül84, Lam92, Reu89], but hard, both conceptually and

complexity-wise (it is EXPSPACE-hard, and probably much higher).

A first step in deciding reachability of VASS is to construct the Karp-Miller coverability tree of the

VASS P [KM69]. The construction is easier conceptually, although not primitive recursive. Karp-Miller

trees compute all approximants of finite and infinite derivations, which we call covering derivations in

this paper; the point is that there are only finitely many covering derivations, and this allows one to decide

coverability and boundedness in VASS, in addition to being instrumental in deciding reachability.

This work: Branching VASS. The purpose of the present paper is to show that the Karp-Miller con-

struction extends to the case of so-called branching VASS, or BVASS, which extend both Parikh images of

context-free languages (sets of facts (1) and addition clauses (4)) and VASS (sets of facts (1) and two-way

clauses (6)), by allowing all three kinds of clauses. I.e. BVASS are defined to consist of facts (1), addition

clauses (4), and two-way clauses (6). BVASS exhibit both two-wayness and a branching behavior:

base/vector

programs

Parikh images

of context−free

languages

VASS,

Petri nets

Add both branching

and two−wayness

This work:
branching VASS

Add branching

Add two−wayness

semi−linear sets richer than semi−linear sets

BVASS are clearly at least as expressive as Petri nets and VASS. At the moment, it is unknown whether

we can effectively transform any BVASS into a VASS with the same reachability sets. (I.e., can we elimi-

nate branching?) In fact, we do not know whether BVASS are strictly more expressive or just as expressive

as VASS. An analogue of Parikh’s Theorem would be needed here, but all known proof techniques for

the latter that we know of fail on BVASS. Another extension to Petri nets that has been studied in the

literature is ground rewrite systems modulo AC [MR98], which builds on the aforementioned decidability

results for reachability in Petri nets. The latter do not seem to bear any relationship with BVASS.

Outline. Instead, we concentrate on generalizing the Karp-Miller construction to BVASS. While most

of our arguments will look like the usual Karp-Miller construction, there is one difference. Remember

that derivations in Petri nets are sequences of rule applications. The usual Karp-Miller construction orga-

nizes (approximants of) finite and infinite derivations, which we call the covering derivations, into a tree

branching downwards, by sharing common prefixes; this Karp-Miller tree is finite by König’s Lemma.

With BVASS, derivations are trees branching upwards. There is little hope to organize such trees in a

common structure (with both upward and downward branches, should it be called a jungle?). In particu-

lar, we lose the ability to use König’s Lemma and conclude anything interesting this way. We show in this

paper how König’s Lemma can still be used, by building a special forest of covering derivations instead of

Karp-Miller Trees for a Branching Extension of VASS 221

burrowing our way through a jungle, to show that there are only finitely many covering derivations. The

construction of covering derivations and their properties is set out in Section 2, the termination argument

in Section 3.

We then apply this result to show that the emptiness, coverability and the boundedness problems for

branching VASS are decidable, just like they are for VASS. Another consequence, which we briefly ex-

plain in Section 4, is that standard-two-way constant-only AC tree automata (extending the constant-only

restriction of [Ver03c, Ver03b] with so-called standard + push clauses) have a decidable intersection-

emptiness problem. Currently we know no alternative proof of this result, which is a justification of the

usefulness of BVASS. We demonstrate a further extension of BVASS in Section 5, on which we basi-

cally know nothing, motivated by a more general notion of two-way constant-only AC tree automata. We

conclude in Section 6.

Related work. While equational tree automata may have been the initial motivation behind this study,

the interest of BVASS is however not limited to the narrow realm of equational tree automata. Recently

de Groote et al. have independently defined vector addition tree automata (VATA), which are essentially

BVASS, and shown that decidability of provability in MELL (multiplicative exponential linear logic) is

equivalent to decidability of reachability in VATA (see [dGGS04] for details)§. In other words, decidabil-

ity of provability in MELL is equivalent to decidability of reachability in BVASS. No decidability ques-

tions are answered in [dGGS04]. Hence our Karp-Miller construction for BVASS can be seen as a step

towards a positive answer to this open question. The fact that BVASS are a natural common generaliza-

tion of two already well-established tools in computer science – Parikh images of context free languages,

and VASS – and that they are useful in domains as diverse as equational tree automata and linear logic,

confirms that BVASS are interesting objects to study. This connection between MELL and VATA (hence

BVASS) generalizes the already known connection between ordinary VASS and the !-Horn fragment of

MELL, which was used to obtain decidability result for the latter [Kan95]. See also [Kan94, Kan96] for

connections between different fragments of linear logic and VASS.

For related work on equational tree automata, see [Ohs01, Lug03]. While these deal mainly with one-

way variants, we have introduced two-way variants in order to deal with cryptographic protocols [GLRV05,

GLV02, Ver03c, Ver03b, Ver03a]. Our study of BVASS was initially prompted by certain classes of these

automata.

2 Covering Derivations

Covering derivations for branching VASS are defined in much the same way as for VASS. Definition 1

below should therefore not surprise the cognoscenti. The only new item of the definition, compared to

VASS, would be item 3, which is due to the presence of addition clauses. If this were removed, we would

get a definition of something very similar to the individual (finite prefixes of) paths in Karp-Miller trees

of ordinary VASS. As we have said earlier, defining the Karp-Miller tree (jungle?) would be impossible,

or at least obscure, in our extended setting.

We check all needed properties of covering derivations here. The challenge will be to show that there

are only finitely many covering derivations, see Section 3.

§ However ‘BVASS’ is not a new name that we have invented, and appears already in [VGL04]. This extension of VASS first appears

in print in [Ver03a] where it is simply called extended VASS.

222 Kumar Neeraj Verma and Jean Goubault-Larrecq

Definition 1 (Covering Derivation) A generalized fact is any atom P(ν), where ν is in (N∪{∞})p
. Ad-

dition, comparison are defined componentwise, with the convention that ∞+n = n+∞ = ∞+∞ = ∞ for

every n ∈ Z∪{∞} and n < ∞ for every n ∈ Z. For every i, 1 ≤ i ≤ p, let ν[i] denote the ith component of

ν. We write ν1 <i ν2 to mean that ν1 ≤ ν2 and ν1[i] < ν2[i].
Assume fixed a branching VASS V . A covering derivation ∆ is a finite tree, each of whose nodes is

labeled with a generalized fact and a clause, constructed using the following rules:

1. Whenever P(ν) is a clause in V , the following is a covering derivation:

P(ν)
P(ν)

2. For every covering derivation
·
·
·

∆1

P1(ν
′
1)

such that P1(ν
′
1) only occurs once (namely, at the bottom) in ∆1, for every transition P(x+δ) ⇐ P1(x)

in V such that ν′1 +δ ≥ 0,
·
·
·

∆1

P1(ν
′
1)

P(x+δ) ⇐ P1(x)
P(ν′)

is a covering derivation, where ν′ is defined as the vector whose ith component is:

∞ if there is a generalized fact P(ν′′) in ∆1 (that is, at or above P1(ν
′
1)) such that ν′′ <i ν′1 +δ;

ν′1[i]+δ[i] otherwise.

3. For every covering derivations
·
·
·

∆1

P1(ν
′
1)

·
·
·

∆2

P2(ν
′
2)

such that P1(ν
′
1) only occurs once in ∆1 and P2(ν

′
2) only occurs once in ∆2, for every addition clause

P(x+ y) ⇐ P1(x),P2(y) in V ,

·
·
·

∆1

P1(ν
′
1)

·
·
·

∆2

P2(ν
′
2)

P(x+ y) ⇐ P1(x),P2(y)
P(ν′)

is a covering derivation, where ν′ is defined as the vector whose ith component is:

∞ if there is a generalized fact P(ν′′) in ∆1 or ∆2 such that ν′′ <i ν′1 +ν′2;

ν′1[i]+ν′2[i] otherwise.

Intuitively, covering derivations compute “limits” of facts derivable in a branching VASS. This is made

precise by Propositions 1 and 2 below.

Karp-Miller Trees for a Branching Extension of VASS 223

C1
P1(2,5)

C2
P2(3,4)

C3
P3(5,9)

C4
P1(∞,5)

C1
P1(2,5)

C2
P2(3,4)

C3
P3(5,9)

C5
P2(∞,4)

C3
P3(∞,9)

C4
P1(∞,5)

Fig. 1: A covering derivation for the BVASS in Example 1

Example 1 Consider a branching VASS with the following set of clauses

C1 = P1(2,5) C2 = P2(3,4) C4 = P1(x+(−2,−4)) ⇐ P3(x)
C3 = P3(x+ y) ⇐ P1(x),P2(y) C5 = P2(x+(2,−5)) ⇐ P3(x)

Some facts derivable in this branching VASS are P1(2,5), P2(3,4), P3(5,9), P1(2 + n,5), P3(5 + n,9),
P2(3+4n,4) for all n ≥ 0. Figure 1 shows an example of a covering derivation for this branching VASS.

This covering derivation cannot be extended further, because the final fact P1(∞,5) also occurs higher

in the derivation, so items 2 and 3 of the definition do not apply. Intuitively, the meaning of P1(∞,5) is

that P1(n,5) is derivable from C1–C5 for arbitrarily high values of n ∈ N. This will be made precise in

Proposition 2.

Proposition 1 Let V be a branching VASS. If a fact P(ν) is derivable, then there is a covering derivation

∆ of some generalized fact P(ν′) such that for all 1 ≤ i ≤ p, if ν′[i] < ∞ then ν′[i] = ν[i].

Proof: We do induction on the size of the derivation of P(ν). We have the following cases:

(i) If P(ν) is derivable using the clause P(ν), then use Rule 1 of Definition 1; this satisfies the require-

ments.

(ii) Suppose P(ν1 +δ) is derivable from the derivation ∆1 of P1(ν1) using the clause P(x+δ) ⇐ P1(x).
By induction hypothesis we have a covering derivation ∆1 of some generalized fact P1(ν

′
1), such that

if ν′1[i] < ∞ then ν′1[i] = ν1[i]. We pick a minimal such ∆1. Consequently P1(ν
′
1) does not occur

except as conclusion in ∆1. Clearly we have ν1 + δ ≥ 0 and hence ν′1 + δ ≥ 0. By using Rule 2

of Definition 1, we get a covering derivation ∆ with root labeled by a generalized fact P(ν′) with

the property that if ν′[i] < ∞ then ν′[i] = ν′1[i]+ δ[i]. But then if ν′[i] < ∞ then ν′1[i] < ∞ and hence

ν′1[i] = ν1[i], so ν′[i] = ν1[i]+δ[i]. Hence ∆ is the required covering derivation.

(iii) Suppose P(ν1 + ν2) is derivable from the derivations of P1(ν1) and P2(ν2) using the clause P(x +
y) ⇐ P1(x),P2(y). By induction hypothesis, we have covering derivations ∆1 and ∆2 of P1(ν

′
1) and

P2(ν
′
2) respectively such that for all i, if ν′1[i] < ∞ then ν′1[i] = ν1[i], and if ν′2[i] < ∞ then ν′2[i] = ν2[i].

As in the previous case we may assume that P1(ν
′
1) only occurs in ∆1 as the conclusion, and P2(ν

′
2)

only occurs in ∆2 as the conclusion. By using Rule 3 of Definition 1, we get a covering derivation ∆

of some P(ν′) with the property that if ν′[i] < ∞, then ν′[i] = ν′1[i]+ν′2[i]. But then if ν′[i] < ∞, then

ν′1[i],ν
′
2[i] < ∞, and hence ν′1[i] = ν1[i] and ν′2[i] = ν2[i], implying that ν′[i] = ν1[i]+ν2[i]. Hence ∆

is the required covering derivation. ✷

224 Kumar Neeraj Verma and Jean Goubault-Larrecq

Definition 2 (Linear Path) Given a branching VASS V , the linear paths π of V are the sequences

P1

e1
// P2

e2
// . . .Pn−1

en−1
// Pn , where n ≥ 1, P1, . . . , Pn are states (predicates) of V , and for each i,

1 ≤ i < n:

• either ei is a two-way clause Pi+1(x+δ) ⇐ Pi(x);

• or ei is a pair 〈C;Q(ν)〉 of an addition clause C = Pi+1(x+y)⇐ Pi(x),Q(y), and of a fact Q(ν) that

is derivable from V . Here it is understood that the order of atoms in the body of an addition clause

is irrelevant.

We also say that π is a linear path from P1 to Pn. The elements ei are called edges. In the first case,

the valuation v(ei) of ei is δ; in the second case, it is ν. The valuation v(π) of the linear path π is

v(π) = Σ1≤i<nv(ei).

If π1 is the linear path P1

e1
// P2

e2
// . . .Pn−1

en−1
// Pn and π2 is the linear path

Pn
en

// Pn+1

en+1
// . . .Pn+m−1

en+m−1
// Pn+m then their concatenation π1π2 is defined as the linear path

P1

e1
// P2

e2
// . . .Pn−1

en−1
// Pn

en
// Pn+1

en+1
// . . .Pn+m−1

en+m−1
// Pn+m

Note that π1π2 is defined only when the last predicate of π1 is equal to the first predicate of π2. Clearly

we have v(π1π2) = v(π1)+ v(π2).

Definition 3 (Admissible Linear Path) Given ν ∈ (N∪{∞})p
, the linear path π is said to be admissible

for ν if and only if, for each prefix π′ of π, we have ν + v(π′) ≥ 0. π is admissible for ν with respect

to I ⊆ {1, . . . , p} if and only if ν[I] + v(π′)[I] ≥ 0 for all prefixes π′ of π, where ν[I] denotes the tuple

consisting of components ν[i] with i ∈ I.

It is easy to see that if π is admissible for ν and P1(ν) is derivable in V (in which case ν would have no

infinite coordinate,) then Pn(ν+ v(π)) is derivable. Also if π1 is admissible for ν and π2 is admissible for

ν+ v(π1), then π1π2 is admissible for ν.

Example 2 The following is an example of a linear path.

P1

〈C3;P2(3,4)〉
// P3

C4
// P2

〈C3;P1(50,5)〉
// P3

Note that the facts P2(3,4) and P1(50,5) are derivable in the branching VASS of Example 1. Its valuation

is (3,4)+(−2,−4)+(50,5) = (1,0)+(50,5) = (51,5). This linear path is admissible for every valuation

ν. The linear path

P3
C4

// P2

〈C3;P1(50,5)〉
// P3

which is a suffix of the previous one, has valuation (−2,−4)+ (50,5) = (48,1), but is admissible for ν

only when ν ≥ (2,4).

We require the following auxiliary lemma to prove Proposition 2, which is the most crucial result of

our discussion on branching VASS.

Karp-Miller Trees for a Branching Extension of VASS 225

Lemma 1 Let V be a branching VASS. Let ∆ be a covering derivation with the property that, given any

generalized fact P(ν′) occurring in this derivation, we can find a (non-generalized) fact ν such that

• P(ν) is derivable from V ,

• and for every i, if ν′[i] 6= ∞, then ν[i] = ν′[i].

Suppose that ∆2 is a subderivation of P2(ν
′
2) in ∆ of the following form, containing a (not necessarily

proper) subderivation ∆1 (of P1(ν
′
1)).

·
·
·

∆1

P1(ν
′
1)

·
·
·

P2(ν
′
2)

Let J be a subset of {1, . . . , p} such that ν′2[i] 6= ∞ for all i ∈ J. Then we can find a linear path π from P1

to P2 such that π is admissible for ν′1 with respect to J, and ν′1[J]+ v(π)[J] = ν′2[J].

Proof: We induct on the distance (number of steps) between P1(ν
′
1) and P2(ν

′
2) in ∆.

Suppose the distance is 0, i.e., ∆2 = ∆1, in particular P2(ν
′
2) = P1(ν

′
1). Then the trivial linear path P1

suffices. Otherwise, look at the last rule used in ∆2.

• If ∆2 is of the form
·
·
·

∆1

P1(ν
′
1)

·
·
·

P3(ν
′
3)

P2(x+δ) ⇐ P3(x)
P2(ν

′
2)

Clearly ν′3[J]+δ[J] = ν′2[J]. Also, for all i ∈ J, ν′3[i] 6= ∞. By induction hypothesis there is a linear

path π′ from P1 to P3 which is admissible for ν′1 with respect to J, and such that ν′1[J]+ v(π′)[J] =

ν′3[J]. Let the required linear path π be the concatenation of π′ with P3

P2(x+δ)⇐P3(x)
// P2 . We have

ν′1[J]+v(π)[J] = ν′1[J]+v(π′)[J]+δ[J] = ν′3[J]+δ[J] = ν′2[J]. In particular ν′1[J]+v(π)[J]≥ 0 and

hence π is admissible for ν′1 with respect to J.

• If ∆2 is of the form
·
·
·

∆1

P1(ν
′
1)

·
·
·

P3(ν
′
3)

·
·
·

∆4

P4(ν
′
4)

P2(x+ y) ⇐ P3(x),P4(y)
P2(ν

′
2)

where, without loss of generality, ∆1 is contained in the subderivation leading to the left premise.

Clearly ν′2[J] = ν′3[J]+ ν′4[J]. Also for all i ∈ J, ν′3[i] 6= ∞ and ν′4[i] 6= ∞. By induction hypothesis

226 Kumar Neeraj Verma and Jean Goubault-Larrecq

we get a linear path π′ from P1 to P3 which is admissible for ν′1 with respect to J, and such that

ν′1[J]+ v(π′)[J] = ν′3[J]. By assumption (this is where we need it!), P(ν4) is derivable from V for

some vector ν4 such that, for all i such that ν′4[i] 6= ∞, ν4[i] = ν′4[i]. In particular ν4[J] = ν′4[J]. Let the

required linear path π be the concatenation of π′ with P3

〈P2(x+y)⇐P3(x),P4(x);P4(ν4)〉
// P2 . This

is a well-defined linear path. We have ν′1[J]+ v(π)[J] = ν′1[J]+ v(π′)[J]+ ν4[J] = ν′3[J]+ ν4[J] =
ν′3[J]+ν′4[J] = ν′2[J]. In particular ν′1[J]+v(π)[J]≥ 0 and hence π is admissible for ν′1 with respect

to J. ✷

Example 3 Let us look at Example 1 again. Looking at Figure 1, take ∆2 to be the whole covering

derivation (of P1(∞,5)), and ∆1 to be the one on the left ending on P3(5,9). Take J = {2}.

The linear path P3
C4

// P1

〈C3;P2(3,4)〉
// P3

C4
// P1

fits the bill. The corresponding facts in a derivation in the BVASS are P3(5,9), P1(3,5), P3(6,9) and

P1(4,5). This linear path is probably the one you expected; another one is

P3
C4

// P1

〈C3;P2(3,4)〉
// P3

C4
// P1

〈C3;P2(7,4)〉
// P3

C4
// P1

with the corresponding facts P3(5,9), P1(3,5), P3(6,9), P1(4,5), P3(11,9) and P1(9,5). The latter is

meant to dispel the wrong intuition that linear paths (even admissible ones) should just correspond in

some way to paths inside the covering derivation: this one jumps back from the P3 node P3(∞,9) to the

P1 node just above (P1(∞,5)). A similar phenomenon occurs in ordinary Karp-Miller trees [Reu89]. The

new thing here is that linear paths can actually jump in a different branch. For example, the following

linear path starts from the upper-left P3 node, goes down to the bottom P3, jumps back to the P2 node just

above, then goes down again to the bottom P3 and to P1.

P3
C4

// P1

〈C3;P2(3,4)〉
// P3

C5
// P2

〈C3;P1(2,5)〉
// P3

C4
// P1

The corresponding facts in this case are P3(5,9), P1(3,5), P3(6,9), P2(8,4), P3(10,9) and P1(8,5). We let

the reader ponder about these examples.

Now we are ready to prove the required result:

Proposition 2 Let V be a branching VASS. For every covering derivation ∆ of some generalized fact

P(ν′), and for any K ≥ 0 there is a tuple ν ∈ N
p such that

• for every i such that ν′[i] = ∞, ν[i] ≥ K;

• for every i such that ν′[i] 6= ∞, ν[i] = ν′[i];

• P(ν) is derivable from V .

Proof: By induction on ∆. If P(ν′) is a fact in V (rule 1 of Definition 1), then ν = ν′ satisfies the

requirements. Otherwise, look at the last rule in ∆:

Karp-Miller Trees for a Branching Extension of VASS 227

• If ∆ is constructed using rule 2 of Definition 1:

·
·
·

∆1

P1(ν
′
1)

P(x+δ) ⇐ P1(x)
P(ν′)

then let I be the set of indices i such that ν′[i] = ∞, J be the set of all other indices, let I1 be the set

of indices i such that ν′1[i] = ∞ and J1 the set of all other indices. Clearly I1 ⊆ I, hence J ⊆ J1; let Ia

be the set I \ I1 of additional indices that are infinite in I compared to I1. The following picture may

help:

ν

ν

’

’
1

I J

JI

1 1

I
a

∞ ∞ ∞ ∞ ∞

∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ − − − − − − −

− − − − − − − − − − − −

In the sequel, for any integer N, write N the vector (N,N, . . . ,N). The number of components in N

will always be clear from context.

Buildings paths πi for all i ∈ Ia. By definition of Ia, for each i ∈ Ia there is a subderivation ∆i

of ∆1 that derives P(ν′i) for some generalized fact ν′
i

such that: (a) ν′
i ≤ ν′1 + δ and: (b) ν′

i[i] <
ν′1[i]+δ[i]. By induction hypothesis the assumptions of Lemma 1 are satisfied of ∆1 and the set of

indices J1. From this lemma we get a linear path π′
i from P to P1 which is admissible for ν′

i
with

respect to J1 and such that: (c) ν′
i[J1]+ v(π′

i)[J1] = ν′1[J1]. Let πi be the path from P to P obtained

by concatenating π′
i with P1

P(x+δ)⇐P1(x)
// P .

·
·
·

∆i

P(ν′i)
·
·
·

P1(ν
′
1)

P(x+δ) ⇐ P1(x)
P(ν′)

πi = P // . . .π′
i . . .

// P1

P(x+δ)⇐P1(x)
// P

Then: (d) ν′
i[J1]+v(πi)[J1] = ν′1[J1]+δ[J1]. Indeed ν′

i[J1]+v(πi)[J1] = ν′
i[J1]+v(π′

i)[J1]+δ[J1] =

ν′1[J1]+δ[J1] by (c). By (d), and since ν′1 +δ ≥ 0, it follows that ν′
i[J1]+v(πi)[J1] ≥ 0. Hence πi is

admissible for ν′
i

with respect to J1. By (a) above, ν′
i ≤ ν′1 +δ, so πi is admissible for ν′1 +δ with

respect to J1.

We now observe that: (e) for every j ∈ J1, ν′
i[j] is finite. Indeed, otherwise, by (a) ν′1[j] would be

infinite, contradicting the fact that j is in J1.

228 Kumar Neeraj Verma and Jean Goubault-Larrecq

We also observe that: (f) v(πi)[J] = 0. Indeed, by (a) ν′
i ≤ ν′1 +δ, and if we had ν′

i[j] < ν′1[j]+δ[j]
for some j ∈ J, then by definition of rule 2 of Definition 1 ν′[j] would be ∞, contradicting the fact

that j ∈ J. So ν′
i[j] = ν′1[j]+ δ[j] for all j ∈ J, i.e., ν′

i[J] = ν′1[J]+ δ[J]. By (d) and since J ⊆ J1,

ν′
i[J]+ v(πi)[J] = ν′1[J]+ δ[J], so ν′

i[J]+ v(πi)[J] = ν′
i[J]. But ν′

i[j] is finite for every j ∈ J ⊆ J1

by (e), so v(πi)[J] = 0, as claimed.

Next: (g) v(πi)[J1] ≥ 0. The argument is similar. By (a) ν′
i ≤ ν′1 + δ, so ν′

i[J1] ≤ ν′1[J1] + δ[J1].

Using (d), ν′
i[J1]+v(πi)[J1]≥ ν′

i[J1]. Claim (g) follows, since ν′
i[j] is finite for every j ∈ J1 by (e).

Finally: (h) v(πi)[i] ≥ 1. Indeed, since i is in Ia = I \ I1 = I ∩ J1, i is in J1, so (d) applies, hence

ν′
i[i] + v(πi)[i] = ν′1[i] + δ[i]. By (b) ν′

i[i] < ν′1[i] + δ[i], so ν′
i[i] + v(πi)[i] > ν′

i[i]. Since ν′
i[i] is

finite by (e) and the fact that i ∈ J1, (h) obtains.

Building the path π. Let π be the concatenation of all linear paths πi when i ranges over Ia, in

any order. Since each πi is a linear path from P to P, π is well-defined and is a linear path from P to

P, too. Since v(πi)[J1] ≥ 0 by (g), and each πi is admissible for ν′1 +δ with respect to J1, it is easy

to see that π is admissible for ν′1 +δ with respect to J1. Then, by (f), v(π)[J] = 0. Since v(πi)[i] ≥ 1

by (h) for all i ∈ Ia and v(πi)[Ia] ≥ 0 by (g) and the fact that Ia ⊆ J1, we obtain that v(π)[Ia] ≥ 1.

Letting πK be the concatenation of K copies of π, we can again see that the path πK is admissible for

ν′1 +δ with respect to J1, v(πK)[J] = 0 and v(πK)[Ia] ≥ K. Choose some K1 ∈ N such that for each

prefix π′ of πK , K1 +v(π′)[I1]≥ 0 and K1 +v(πK)[I1]≥K. Choose K2 ∈N such that K2 +δ[I1]≥K1.

By induction hypothesis there is a vector ν1 such that P1(ν1) is derivable from V , ν1[I1] ≥ K2, and

ν1[J1] = ν′1[J1].

Since ν′1 + δ ≥ 0 (by the simple fact that rule 2 of Definition 1 was applicable at all) and ν1[J1] =
ν′1[J1], we obtain ν1[J1] + δ[J1] ≥ 0. On the other hand, ν1[I1] + δ[I1] ≥ K2 + δ[I1] ≥ K1 ≥ 0. So

ν1 +δ ≥ 0, therefore P(ν1 +δ) is derivable from P1(ν1) and the transition P(x+δ) ⇐ P1(x).

Since ν1[I1] ≥ K2 and K2 +δ[I1] ≥ K1, ν1[I1]+δ[I1] ≥ K1. By the definition of K1, this entails that

ν1[I1]+δ[I1]+ v(π′)[I1] ≥ 0 for every prefix π′ of πK , so πK is admissible for ν1 +δ with respect to

I1.

Since ν1[J1] = ν′1[J1] and πK is admissible for ν′1 + δ with respect to J1, πK is also admissible for

ν1 +δ with respect to J1.

Since I1 ∪ J1 is the set of all indices {1, . . . , p}, and πK is admissible for ν1 +δ with respect to both

I1 and J1, πK is admissible for ν1 +δ.

This implies that P(ν1 +δ+ v(πK)) is derivable from V .

Building the fact ν from π. Let therefore ν be ν1 + δ + v(πK). It remains to show that ν[I] ≥ K

and ν[J] = ν′[J].

The second claim follows from the fact that v(π)[J] = 0, from which we infer v(πK)[J] = 0, hence

ν[J] = ν1[J] + δ[J] + v(πK)[J] = ν1[J] + δ[J] = ν′1[J] + δ[J] (since ν1[J1] = ν′1[J1] and J ⊆ J1) =
ν′[J] (since ν′[J] has only finite components, and by definition finite components of ν′ are sums of

corresponding components of ν′1 and δ).

The first claim will follow from the two sub-claims ν[I1] ≥ K and ν[Ia] ≥ K, since I = I1 ∪ Ia. For

the first sub-claim, recall that ν1[I1] ≥ K2 and K2 + δ[I1] ≥ K1, so ν1[I1] + δ[I1] ≥ K1, and by the

Karp-Miller Trees for a Branching Extension of VASS 229

definition of K1, this entails that ν1[I1]+ δ[I1]+ v(πK)[I1] ≥ K, i.e., ν[I1] ≥ K. For the second sub-

claim, recall that v(πK)[Ia] ≥ K, and ν1[J1] = ν′1[J1] (in particular, ν1[Ia] = ν′1[Ia], since Ia ⊆ J1); so

ν[Ia] = ν1[Ia]+δ[Ia]+ v(πK)[Ia] ≥ ν′1[Ia]+δ[Ia]+K ≥ K, since ν′1 +δ ≥ 0.

• Suppose ∆ is constructed using rule 3 of Definition 1:

·
·
·

∆1

P1(ν
′
1)

·
·
·

∆2

P2(ν
′
2)

P(x+ y) ⇐ P1(x),P2(y)
P(ν′)

then let I be the set of indices i such that ν′[i] = ∞, J its complement, I1 the set of indices i such that

ν′1[i] = ∞, J1 its complement, I2 the set of indices i such that ν′2[i] = ∞, and J2 its complement. Let

Ia be I \ (I1 ∪ I2). The picture is now:

ν ’
1

ν ’

JI

I
a

∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ − − − − − − −

− − − − − − − − − − − −

I J
2 2

∞ ∞ ∞ ∞ ∞
ν ’
2

I J
1 1

∞ ∞ ∞ ∞ ∞ ∞ − − − − − − − − − − −

Buildings paths πi for all i ∈ Ia. By induction hypothesis there are vectors ν1 and ν2 such that

P1(ν1) and P2(ν2) are derivable, ν1[J1] = ν′1[J1] and ν2[J2] = ν′2[J2].

As in the previous case, define a linear path πi for each i ∈ Ia, as follows. Contrarily to the previous

case, πi will depend on ν1 and ν2.

Since i ∈ Ia, there is a subderivation ∆i of ∆bi
, for some bi ∈ {1,2}, that derives P(ν′i) for some

generalized fact ν′
i

such that: (a) ν′
i ≤ ν′1 + ν′2, and: (b) ν′

i[i] < ν′1[i]+ ν′2[i]. By Lemma 1 there

is a linear path π′
i from P to Pbi

which is admissible for ν′
i

with respect to Jbi
and such that: (c)

ν′
i[Jbi

]+v(π′
i)[Jbi

] = ν′bi
[Jbi

]. Let bi be 2 if bi = 1, and 1 if bi = 2. Then let πi be the path from P to P

obtained by concatenating π′
i with Pbi

〈C;δ〉
// P , where C is the clause P(x+y) ⇐ P1(x),P2(y),

and δ = νbi
.

·
·
·

∆i

P(ν′i)
·
·
·

Pbi
(ν′bi

) Pbi
(ν′

bi
)

P(x+ y) ⇐ P1(x),P2(y)
P(ν′)

πi = P // . . .π′
i . . .

// Pbi

〈P(x+y)⇐P1(x),P2(y);ν
bi
〉
// P

230 Kumar Neeraj Verma and Jean Goubault-Larrecq

The reasoning is then similar to the previous case; there are many slight differences, though.

We first show that: (d) ν′
i[Jbi

]+ v(πi)[Jbi
] = ν′bi

[Jbi
]+δ[Jbi

]. This is by (c).

By (d), and since ν′bi
+δ ≥ 0 as a sum of vectors in N

p, we have ν′
i[Jbi

]+ v(πi)[Jbi
] ≥ 0. Hence πi

is admissible for ν′
i

with respect to Jbi
. By (a), ν′

i ≤ ν′1 + ν′2, so πi is admissible for ν′1 + ν′2 with

respect to Jbi
.

We now have: (e) for every j ∈ J1 ∩ J2, ν′
i[j] is finite. This is because by (a) ν′

i ≤ ν′1 + ν′2, and

ν′1[j] 6= ∞ since j ∈ J1, ν′2[j] 6= ∞ since j ∈ J2.

Then: (f) v(πi)[J] = 0. Indeed by (a) ν′
i ≤ ν′1 + ν′2. For every j ∈ J, by the definition of covering

derivation ν′[j] would be infinite if ν′i[j] < ν′1[j]+ ν′2[j], and this would contradict the fact that j

is in J. So ν′
i[J] = ν′1[J]+ ν′2[J]. Since J ⊆ Jbi

, δ = νbi
and νbi

[Jbi
] = ν′

bi
[Jbi

] by definition of Jbi
,

δ[J] = ν′
bi
[J]. Using (d) and J ⊆ Jbi

, we obtain ν′
i[J]+ v(πi)[J] = ν′bi

[J]+ δ[J] = ν′bi
[J]+ ν′

bi
[J] =

ν′1[J]+ν′2[J] = ν′
i[J]. Since J ⊆ J1 ∩ J2, by (e) ν′

i[j] is finite for every j ∈ J, so (f) obtains.

Next: (g) v(πi)[J1 ∩ J2] ≥ 0. Indeed, since δ ∈ N
p, by (d) ν′

i[Jbi
]+ v(πi)[Jbi

] ≥ ν′
i[Jbi

]. So ν′
i[J1 ∩

J2]+v(πi)[J1 ∩J2] ≥ ν′
i[J1 ∩J2]. Claim (g) follows, since ν′

i[j] is finite for every j ∈ J1 ∩J2 by (e).

Finally: (h) v(πi)[i]≥ 1. Indeed, by (b) ν′
i[i] < ν′bi

[i]+ν′
bi
[i]. Since i ∈ Ia ⊆ Jbi

, ν′
bi
[i] is finite, hence

equal to νbi
[i] = δ[i], so ν′

i[i] < ν′bi
[i]+δ[i]. Since i ∈ Ia ⊆ Jbi

, (d) applies, hence ν′
i[i]+ v(πi)[i] =

ν′bi
[i]+δ[i] > ν′

i[i]. Since ν′
i[i] is finite by (e) and the fact that i ∈ J1 ∩ J2, (h) obtains.

Building the path π. Let π be the concatenation of all linear paths πi when i ranges over Ia, in

any order. This is a linear path from P to P, too. Since v(πi)[J1 ∩ J2] ≥ 0 by (g), and each πi is

admissible for ν′1 + ν′2 with respect to Jbi
, it is easy to see that π is admissible for ν′1 + ν′2 with

respect to J1 ∩ J2. Then, by (f), v(π)[J] = 0. Since v(πi)[i] ≥ 1 by (h) for all i ∈ Ia and v(πi)[Ia] ≥ 0

by (g) and the fact that Ia ⊆ J1 ∩ J2, we obtain that v(π)[Ia] ≥ 1.

Letting πK be the concatenation of K copies of π, we can again see that the path πK is admissible

for ν′1 +ν′2 with respect to J1 ∩ J2, v(πK)[J] = 0 and v(πK)[Ia] ≥ K. Choose K1 ∈ N so that for each

prefix π′ of πK , K1 + v(π′)[I1 ∪ I2] ≥ 0 and K1 + v(πK)[I1 ∪ I2] ≥ K.

Recall we have already obtained vectors ν1 and ν2 such that P1(ν1) and P2(ν2) are derivable,

ν1[J1] = ν′1[J1] and ν2[J2] = ν′2[J2], using the induction hypothesis. We would like to enforce

ν1[I1] ≥ K1 and ν2[I2] ≥ K1 to proceed. However the constant K1 depends on π, which depends

on πi, i ∈ Ia, which we built by concatenating π′
i with some edge labeled by νbi

: each new choice of

ν1, ν2 may lead to a different constant K1, so that we cannot assume that ν1[I1]≥K1 and ν2[I2]≥K1.

Instead, we invoke the induction hypothesis again, and find two new vectors ν1
1 and ν1

2 such that

P1(ν
1
1) and P2(ν

1
2) are derivable, ν1

1[J1] = ν′1[J1] and ν1
1[I1]≥K1, and ν1

2[J2] = ν′2[J2] and ν1
2[I2]≥K1.

Clearly P(ν1
1 +ν1

2) is derivable from P1(ν
1
1), P2(ν

1
2), and the clause P(x+ y) ⇐ P1(x),P2(y).

Since ν1
1[I1] ≥ K1 and ν1

2[I2] ≥ K1, we infer ν1
1[I1 ∪ I2]+ ν1

2[I1 ∪ I2] ≥ K1. By the definition of K1,

for every prefix π′ of πK , ν1
1[I1 ∪ I2]+ν1

2[I1 ∪ I2]+v(π′)[I1 ∪ I2] ≥ 0, so πK is admissible for ν1
1 +ν1

2

with respect to I1 ∪ I2.

Karp-Miller Trees for a Branching Extension of VASS 231

Since ν1
1[J1] = ν′1[J1], ν1

2[J2] = ν′2[J2], and πK is admissible for ν′1 +ν′2 with respect to J1 ∩J2, πK is

also admissible for ν1
1 +ν1

2 with respect to J1 ∩ J2.

Since the union of I1∪I2 and J1∩J2 is the set of all indices {1, . . . , p}, it follows that πK is admissible

for ν1
1 +ν1

2.

This implies that P(ν1
1 +ν1

2 + v(πK)) is derivable from V .

Building the fact ν from π. Let therefore ν be ν1
1 +ν1

2 + v(πK). It remains to show that ν[I] ≥ K

and ν[J] = ν′[J].

The second claim follows from the fact that v(π)[J] = 0, from which we infer v(πK)[J] = 0, hence

ν[J] = ν1
1[J]+ν1

2[J]+v(πK)[J] = ν1
1[J]+ν1

2[J] = ν′1[J]+ν′2[J] (since ν1
1[J1] = ν′1[J1] and J ⊆ J1, and

ν1
2[J2] = ν′2[J2] and J ⊆ J2) = ν′[J] (since ν′[J] has only finite components, and by definition finite

components of ν′ are sums of corresponding components of ν′1 and ν′2).

The first claim will follow from the two sub-claims ν[I1 ∪ I2] ≥ K and ν[Ia] ≥ K, since I = I1 ∪
I2 ∪ Ia. For the first sub-claim, recall that ν1

1[I1 ∪ I2] + ν1
2[I1 ∪ I2] ≥ K1. By the definition of K1,

ν1
1[I1 ∪ I2]+ν1

2[I1 ∪ I2]+v(πK)[I1 ∪ I2]≥ K, i.e., ν[I1 ∪ I2]≥ K. For the second sub-claim, recall that

v(πK)[Ia] ≥ K, and ν1
1[J1] = ν′1[J1] (in particular, ν1

1[Ia] = ν′1[Ia], since Ia ⊆ J1), and ν1
2[J2] = ν′2[J2]

(so ν1
2[Ia] = ν′2[Ia], since Ia ⊆ J2); so ν[Ia] = ν1

1[Ia] + ν1
2[Ia] + v(πK)[Ia] ≥ ν′1[Ia] + ν′2[Ia] + K ≥ K,

since ν′1 +ν′2 = ν′ ≥ 0. ✷

3 Termination

Now we are left to prove that there are only finitely many covering derivations. This is Theorem 1 below.

Remark 1 Let V be a branching VASS, ∆ a covering derivation. Suppose that ∆2 is a subderivation of ∆

of the form
·
·
·

∆1

P1(ν
′
1)

·
·
·

P2(ν
′
2)

containing a (not necessarily proper) subderivation ∆1. For any index i, if ν′1[i] = ∞, then ν′2[i] = ∞. We

say that ν′2 has at least as many infinite coordinates as ν′1. In case additionally ν′1[i] 6= ∞ and ν′2[i] = ∞ for

some i, we say that ν′2 has more infinite coordinates than ν′1. Otherwise, ν′1 and ν′2 have the same infinite

coordinates.

Lemma 2 Let V be a branching VASS. Let ∆ be a covering derivation of the form

·
·
·

∆0

P(ν′0)
·
·
·

P(ν′)

with the same P, and such that ν′ > ν′0, by which we mean that ν′[i] ≥ ν′0[i] for all i and ν′[i] > ν′0[i] for

some i. Then ν′ has more infinite coordinates than ν′0.

232 Kumar Neeraj Verma and Jean Goubault-Larrecq

Proof: Assume the contrary. From Remark 1, ν′ and ν′0 have the same infinite coordinates. Clearly ∆

must have been constructed by using Rule 2 or Rule 3 of Definition 1. Accordingly we have the following

two cases:

• ∆ is of the form
·
·
·

∆1

P1(ν
′
1)

P(x+δ) ⇐ P1(x)
P(ν′)

Again from Remark 1, ν′1 has the same infinite coordinates as ν′. Then from the construction in

Rule 2 of Definition 1, we must have ν′ = ν′1 +δ. Since ν′ > ν′0, it follows that ν′1 +δ ≥ ν′0 and for

some i, ν′1[i]+ δ[i] > ν′0[i]. But Rule 2 of Definition 1 entails that ν′[i] = ∞, while ν′0[i] 6= ∞ since

ν′0[i] < ν′1[i]+δ[i], contradicting the fact that ν′ and ν′0 have the same infinite coordinates.

• ∆ is of the form
·
·
·

∆1

P1(ν
′
1)

·
·
·

∆2

P2(ν
′
2)

P(x+ y) ⇐ P1(x),P2(y)
P(ν′)

where we may assume without loss of generality that ∆0 is a subderivation of ∆1. From Remark 1,

ν′ and ν′0 have the same infinite coordinates. Then from the construction in rule 3 of Definition 1,

ν′ = ν′1 + ν′2. Since ν′ > ν′0, it follows that ν′1 + ν′2 ≥ ν′0 and ν′1[i]+ ν′2[i] > ν′0[i] for some i, so by

rule 3 of Definition 1 ν′[i] = ∞. As above, ν′0[i] 6= ∞, leading to a contradiction. ✷

Define the height H(∆) of the covering derivation ∆ as the height of the corresponding tree. Formally:

Definition 4 (Height) Taking the notations of Definition 1, the height H(∆) of the covering derivation ∆

is 1 if ∆ was created by rule 1, 1+H(∆1) if by rule 2, and 1+max(H(∆1),H(∆2)) if by rule 3.

Given a branching VASS V , we define a total ordering on covering derivations, based on height, as

follows. For every n ≥ 1, there are only finitely many, say kn, covering derivations of height n. Let us

enumerate them without repetition, arbitrarily as ∆n1, . . . , ∆nkn
. Then define ⊑ by ∆mi ⊑ ∆n j if and only if

m < n, or m = n and i ≤ j.

Lemma 3 For a branching VASS V , the total ordering ⊑ on covering derivations has the properties that:

1. if H(∆1) < H(∆2) then ∆1 ⊑ ∆2;

2. given any covering derivation ∆, there are only finitely many covering derivations ∆1 such that

∆1 ⊑ ∆.

Theorem 1 Every branching VASS V has only finitely many covering derivations. Furthermore, the set

of covering derivations of V can be effectively computed.

Proof: We will construct a forest of all possible derivations; be aware that each node in this forest will be

a whole derivation, not just a fact. Recall also that a forest is just a set of trees, which we shall call the

component trees of the forest. This forest is constructed iteratively by adding one node at a time, using

the following rules:

Karp-Miller Trees for a Branching Extension of VASS 233

1. Each covering derivation constructed using rule 1 of Definition 1 is a root node. These are the only

root nodes, so that there will be only finitely many component trees in the forest.

2. Suppose ∆ is constructed using the derivation ∆1 as defined in Rule 2 of Definition 1, and ∆1 has

been added in the forest, and ∆ has not been added. Then we add ∆ as a child of ∆1.

3. Suppose ∆1 and ∆2 have been added in the forest, and ∆ is constructed using them as defined in

Rule 3 of Definition 1 and has not been added in the forest. Since ⊑ is total (see Lemma 3), either

∆1 ⊑ ∆2 or ∆2 ⊑ ∆1. Let ∆′ be the greater of ∆1 and ∆2 in ⊑. Then we add ∆ to the forest as a child

of ∆′.

This is the crux of the proof: by choosing exactly one of ∆1, ∆2 here, each node will have at most

one parent, so we are indeed building a forest (not a jungle). The particular choice of ∆′ ensures

that the forest is finitely branching; this used to be trivial in the case of VASS.

It is clear that in this way all the derivations are added in the forest eventually. We claim that this process

ends, i.e., the forest is finite. Assume the contrary. Since the number of component trees is finite, one of

them would be infinite.

We see that the component trees are finitely branching. For any covering derivation ∆, the number of

children created using Rule 2 above is limited by the number of clauses, and the number of children created

using Rule 3 above is limited by the number of clauses times the finite number of covering derivations

∆1 such that ∆1 ⊑ ∆. Then by König’s lemma, there would be an infinite path in the component tree,

consisting of covering derivations

·
·
·

∆1

P1(ν
′
1)

·
·
·

∆2

P2(ν
′
2)

. . .
·
·
·

∆k

Pk(ν
′
k)

. . .

By construction, for every k ≥ 1, Pk(ν
′
k) is one of the premises of the last rule used in deriving

Pk+1(ν
′
k+1) in ∆k+1. In particular, whenever k < k′, ∆k occurs as a subderivation in ∆k′ .

Since there are only finitely many predicate symbols, by the pigeonhole principle there must be some

predicate symbol P such that there is an infinite subsequence P(ν′i1), P(ν′i2), . . . , P(ν′ik), . . . , with 1 ≤ i1 <

i2 < .. . < ik < .. . Since the ordering ≤ on (N∪{∞})p
is a well-quasi ordering (e.g., by a trivial extension

of Dickson’s Lemma), there is an infinite subsequence of the latter, say P(ν′j1), P(ν′j2), . . . , P(ν′jk), . . . ,

with 1 ≤ j1 < j2 < .. . < jk < .. ., such that ν′j1 ≤ ν′j2 ≤ . . . ≤ ν′jk ≤ . . . This sequence cannot stabilize,

that is, there is no k ≥ 1 such that ν′jk = ν′jk+1
. Otherwise ∆ jk+1

would be of the form

·
·
·

∆ jk

P(ν′jk)
·
·
·

P(ν′jk+1
)

where ν′jk = ν′jk+1
. Since P(ν′jk+1

) occurs twice in it, no rule of Definition 1 applies, which entails that

∆ jk+1+1 cannot exist, a contradiction.

234 Kumar Neeraj Verma and Jean Goubault-Larrecq

So ν′jk < ν′jk+1
for every k ≥ 1. ∆ jk+1

is of the form

·
·
·

∆ jk

P(ν′jk)
·
·
·

P(ν′jk+1
)

with ν′jk < ν′jk+1
, so by Lemma 2, ν′jk+1

has more infinite coordinates than ν′jk , for every k ≥ 1. This clearly

contradicts the fact that the sequence (∆ jk)k≥1
is infinite. So the forest constructed at the beginning of this

proof is finite, whence the claim. ✷

Propositions 1, 2, and Theorem 1 entail that the emptiness, coverability and boundedness problems are

decidable for branching VASS, just as they are for VASS, as we show next. Given a set S of predicates

and a subset J of {1, . . . , p}, the branching VASS V is S,J-bounded if and only if {ν[J]|ν ∈ N
p and ∃P ∈

S such that P(ν) is derivable from V } is finite. It is now clear that V is S,J-bounded if and only all its

covering derivations with some conclusion P(ν′), P ∈ S, are such that ν′[i] 6= ∞ for all i ∈ J, and this

is decidable by Theorem 1. The coverability problem for V , tuple ν0, set of states P and subset J of

{1, . . . , p}, asks whether there is a fact P(ν) derivable from V such that P ∈ S and ν[J] ≥ ν0[J]. This is

equivalent to testing whether some covering derivation ends in some generalized fact P(ν′) with P ∈ S and

ν′[J] ≥ ν0[J], which is decidable by Theorem 1. The emptiness problem asks whether there is any tuple ν

and any P ∈ S such that P(ν) is derivable: this is decidable, as a special case of coverability.

4 Application to AC Automata

We apply our results to equational tree automata which were the initial motivation for this work. Given

a signature Σ of function symbols with fixed arities and an equational theory E over terms built using

symbols from Σ, an E-tree automaton P [Ver03c, Ver03a, Ver03b, GLV02] is a set of definite clauses

of the form P(t) ⇐ P1(t1), . . . ,Pn(tn) where P, P1, . . . , Pn are (a.k.a. states), and t, t1, . . . , tn are terms

built from symbols in Σ and variables x, y, z, This is similar to BVASS where predicates represent

states. The difference here is that we are working with terms instead of tuples of natural numbers. See also

[CDG+97] (Chapter 7) which uses clausal notation to represent tree automata (in the absence of equational

theories though). The additional advantage of this notation here is that it clarifies the relationship between

BVASS and equational tree automata. Formally derivable ground atoms are defined using the rules:

P1(t1σ) . . .Pn(tnσ)
(P(t) ⇐ P1(t1), . . . ,Pn(tn) ∈ P)

P(tσ)

P(s)
(s =E t)

P(t)

where σ is a ground substitution, and =E is the congruence on terms induced by the theory E . The

language accepted by P is the set LP (P) of terms t such that P(t) is derivable from P , where P is a

designated final state. Note that the usual notion of tree automata, which accept regular languages, are

conveniently considered [CDG+97] as E-tree automata, by letting E be the empty theory and by suitably

restricting the form of clauses.

Consider a signature Σ containing a binary symbol + and constants a1, . . . ,ap. AC is the theory stating

that + is associative and commutative. We are also interested in the theory ACU which additionally says

Karp-Miller Trees for a Branching Extension of VASS 235

that 0 is unit of +, where 0 is a new constant added to the signature. Terms modulo ACU are exactly

summations ∑
p
i=1 niai, equivalently, tuples from N

p. Terms modulo AC are exactly non-zero such tuples.

The constant-only AC and ACU automata are built from the following clauses exclusively [Ver03c,

Ver03b]:

P(x+ y) ⇐ P1(x),P2(y) (7)

P(x) ⇐ P1(x) (8)

P(a) where a is a constant (9)

P(0) (10)
where clause (10) is present only in the ACU case. Considering terms as vectors, it is then natural to think

of these automata as BVASS. P(ai) corresponds to the clause P(0, . . . ,0,1,0, . . . ,0) where the only ‘1’ is

at position i. We don’t require any two-way clause. The languages accepted in the ACU (resp. AC) case

are then exactly L (resp. L \{(0, . . . ,0)}) where L is a semilinear set.

Now let’s add standard + push clauses:

P(x) ⇐ P1(x+ y) (11)

Similar push clauses were considered in [Ver03c, Ver03b], except they were of the form

P(xi) ⇐ Q(f (x1, . . . ,xn)),P1(x1), . . . ,Pi−1(xi−1),Pi+1(xi+1), . . . ,Pn(xn)

where f is a free, i.e., non-equational symbol (in particular, not +). Standard + push clauses are a timid

attempt at allowing equational (AC, ACU) symbols in the body of clauses. In Section 5, we make an

attempt at being a bit less shy. We shall remain in the constant-only case throughout here (where all free

function symbols are constants a), for simplicity.

Clause (11) says that P should accept all the subterms (strict subterms in the AC case) of terms accepted

at P1. Such clauses can be added to constant only ACU automata without increasing expressiveness, and

the following table gives a linear time procedure for eliminating clauses (11):

Clause of input automaton Clauses of output automaton

P(0) P(0) P†(0)

P(a) P(a) P†(a) P†(0)

P(x) ⇐ P1(x) P(x) ⇐ P1(x) P†(x) ⇐ P
†
1 (x)

P(x+ y) ⇐ P1(x),P2(y) P(x+ y) ⇐ P1(x),P2(y) P†(x+ y) ⇐ P
†
1 (x),P†

2 (x)

P(x) ⇐ Q(x+ y) P(x) ⇐ Q†(x) P†(x) ⇐ Q†(x)

where the new states P† accept all terms s such that s + u = t for some ground term t accepted at P and

for some ground term u.

Unfortunately this procedure, or its simple variants, fail in the AC case, as the reader may verify.

To solve this problem, we realize that this new clause (11) can also be translated to BVASS. The idea

is that applying a standard +-push clause involves going through loops involving clauses of the form

R(x +(0, . . . ,0,−1,0, . . . ,0)) ⇐ R′(x) which remove constants from the term. This gives us a procedure

for eliminating standard +-push clauses. For that we first make the following observation:

Remark 2 Given any ν ∈ (N∪{∞})p, the set L<(ν) = {ν′ ∈ N
p | (0, . . . ,0) < ν′ < ν} is Presburger-

definable, hence semilinear. We will use L′
<(ν) to denote the corresponding set {∑

p
i=1 niai | (n1, ...,np) ∈

L<(ν)}.

236 Kumar Neeraj Verma and Jean Goubault-Larrecq

Call a standard-two-way constant-only AC-automaton any set of constant-only AC automata clauses

and standard +-push clauses.

Lemma 4 Given any standard-two-way constant-only AC-automaton P , we can compute a constant-only

AC automaton accepting the same language.

Proof: We construct a BVASS V such that each state P in P accepts exactly the terms ∑
p
i=1 niai such that

P(n1, . . . ,np) is derivable in V . From Propositions 1 and 2, if P(x) ⇐ Q(x + y) is any clause then the set

of terms accepted at P using this clause is L
Q
< =

S

L′
<(ν) where the union is taken for all ν such that there

is some covering derivation for V , with root labeled by generalized fact Q(ν). From Theorem 1, since

the number of such ν’s is finite, L
Q
< is semilinear, and can be accepted at a new state Q† using other new

states, and only clauses of constant-only AC automata. Then we can replace the clause P(x) ⇐ Q(x + y)
by the clause P(x) ⇐ Q†(x). ✷

However note that while in the ACU case we are able to do this in linear time, in the AC case this

algorithm is non-primitive recursive because the Karp-Miller construction (even for VASS) is not primitive

recursive. The question whether the algorithm in the AC case can be improved is open.

Theorem 2 The standard-two-way constant-only AC-automata accept exactly those semilinear sets which

don’t contain the term 0.

5 Perspectives: A Further Extension of BVASS

We presented standard + push clauses in Section 4. However we would really like to be able to deal

with (not necessarily standard) +-push clauses of the form P(x) ⇐ P1(x + y),P2(y) modulo AC or ACU .

The same reduction as in Section 4 leads us to a further extension of BVASS by adding new clauses

(interpreted over N
p) of the form P(x − y) ⇐ P1(x),P2(y), called subtraction clauses. The semantics

of this clause is: “if facts P1(ν1) and P2(ν2) are derivable and ν1 − ν2 ≥ 0 then the fact P(ν1 − ν2) is

derivable”. However we don’t know whether the construction of Karp-Miller trees can be further extended

to deal with subtraction clauses.

Note that our extension of Karp-Miller trees gives us decidability of emptiness for BVASS. However

the question of decidability of intersection-emptiness of BVASS (is there a tuple ν recognized at each of

the states P1, . . . , Pn?) is still open. Clearly this problem subsumes the reachability problem for BVASS

as well the reachability problem for VASS. As an aside, observe also that the reachability problem for

BVASS subsumes the intersection-emptiness problem for BVASS. The idea is as follows. To decide

whether some common tuple is accepted at states P1 and P2 in BVASS V1 and V2 respectively on p-

tuples, we construct BVASS V ′
1 and V ′

2 on 2p-tuples (with disjoint sets of states) such that in V ′
1, P1

accepts exactly the tuples (n1, . . . ,np,0, . . . ,0) where P1 accepts (n1, . . . ,np) in V1, and in V ′
2, P2 accepts

exactly the tuples (0, . . . ,0,n1, . . . ,np) where P2 accepts (n1, . . . ,np) in V2. We define V to contain the

clauses of V ′
1 and V ′

2, as well as the clauses P(x + y) ⇐ P1(x),P2(y) and P(x + δi) ⇐ P(x) for some

fresh P and for 1 ≤ i ≤ p, where δi[i] = δi[i + p] = −1 and δi[j] = 0 for j /∈ {i, i + p}. Then P accepts

the tuple (0, . . . ,0) in V iff P1 and P2 accept some common tuple in V1 and V2 respectively. Similarly the

reachability problem for VASS also subsumes the intersection-emptiness problem for VASS: we let the

reader figure out the corresponding argument.

As we said in the introduction, decidability of the reachability problem for VASS is a difficult result

and uses the Karp-Miller construction as an auxiliary result. On the other hand in the presence of sub-

traction clauses, the intersection-emptiness problem can actually be reduced to the emptiness problem, so

Karp-Miller Trees for a Branching Extension of VASS 237

emptiness is no longer easier than reachability! Here is the idea. To test whether two states P1 and P2

accept at least one common tuple, add the following clauses where P0, P3, P are fresh predicates:

P3(x− y) ⇐ P1(x),P2(y)
P0((0, . . . ,0))
P(x− y) ⇐ P0(x),P3(y)

Then there is some common tuple accepted at both P1 and P2 iff there is some tuple accepted at P.

This result shows the power of subtraction clauses since now doing the Karp-Miller construction already

involves solving a problem at least as difficult as that of VASS reachability.

6 Conclusion

We have studied a natural generalization of both Parikh images of context-free languages and of vector

addition systems with states (VASS, special case: Petri nets), where derivations are both two-way (as in

the latter) and branching (as in the former). For these so-called branching VASS, we have constructed an

analogue of the Karp-Miller coverability tree construction for Petri nets. This allows us to conclude, like

in the ordinary coverability tree construction, that emptiness, coverability, and boundedness are decidable

for the class of branching VASS. The construction for branching VASS differs from the simpler case of

VASS in that we construct covering derivations (analogues of finite prefixes of paths in ordinary Karp-

Miller trees) in isolation (Section 2). Doing this, we lose the possibility to appeal directly to König’s

Lemma; we nonetheless managed to show that there are only finitely many covering derivations from a

given branching VASS (Section 3), by a more technical argument that builds a forest whose nodes are

covering derivations, with a subtle selection of the (necessarily unique) parent of each non-root node.

We have shown (Section 4) how this produced a simple proof that a natural extension of the constant-

only AC automata considered in [Ver03c, Ver03b] with so-called standard +-push clauses actually reduce

to the case without standard +-push clauses. This seems to require non-primitive-recursive time, however,

contrarily to the ACU case, which reduces also, but in linear time. In [Ver03a], this result on the constant-

only case has also been used to deal with the general case (extending the automata of [Ver03c, Ver03b]

with standard +-push clauses, not just the constant-only automata).

In turn, the results of Section 4 prod us to explore further extensions of branching VASS. We have

explained what challenges this entailed (Section 5).

Besides arising as a natural common generalization of two already well-established tools in computer

science – Parikh images of context-free languages, and VASS – and having application in equational tree

automata, branching VASS are also useful in the completely different domain of linear logic, since de-

cidability of reachability in branching BVASS is equivalent to decidability of provability in multiplicative

exponential linear logic, which is still an open problem. This confirms that branching VASS are interesting

objects to study.

The result that there are only finitely many covering derivations can also be seen as a first step towards a

positive answer to the question whether the reachability problem for branching VASS, and hence whether

provability in MELL, is decidable or not. This is deferred to a later paper; additional difficulties lurk

ahead, though, and notably there are no such things as Kirchoff’s laws [Lam92] in the extended context.

238 Kumar Neeraj Verma and Jean Goubault-Larrecq

References

[AÉI02] Luca Aceto, Zoltán Ésik, and Anna Ingólfsdóttir. A fully equational proof of Parikh’s theo-

rem. RAIRO, Theoretical Informatics and Applications, 36:129–153, 2002.

[CDG+97] Hubert Comon, Max Dauchet, Rémi Gilleron, Florent Jacquemard, Denis Lugiez, Sophie

Tison, and Marc Tommasi. Tree automata techniques and applications. http://www.

grappa.univ-lille3.fr/tata, 1997.

[dGGS04] Philippe de Groote, Bruno Guillaume, and Sylvain Salvati. Vector addition tree automata.

In 19th Annual IEEE Symposium on Logic in Computer Science (LICS 2004), pages 64–73,

Turku, Finland, July 2004. IEEE Computer Society Press.

[GLRV05] Jean Goubault-Larrecq, Muriel Roger, and Kumar Neeraj Verma. Abstraction and resolution

modulo AC: How to verify Diffie-Hellman-like protocols automatically. Journal of Logic and

Algebraic Programming, 64(2):219–251, August 2005.

[GLV02] Jean Goubault-Larrecq and Kumar Neeraj Verma. Alternating two-way AC-tree automata.

Research Report LSV-02-11, LSV, ENS Cachan, Cachan, France, September 2002.

[GS66] Seymour Ginsburg and Edwin H. Spanier. Semigroups, Presburger formulas and languages.

Pacific Journal of Mathematic, 16(2):285–296, 1966.

[HP79] J. Hopcroft and J. J. Pansiot. On the reachability problem for 5-dimensional vector addition

systems. Theoretical Computer Science, 8:135–159, 1979.

[Kan94] Max I. Kanovich. Linear logic as a logic of computations. Annals of Pure and Applied Logic,

67:183–212, 1994.

[Kan95] Max I. Kanovich. Petri nets, Horn programs, linear logic and vector games. Annals of Pure

and Applied Logic, 75:107–135, 1995.

[Kan96] Max I. Kanovich. Linear logic automata. Annals of Pure and Applied Logic, 78:147–188,

1996.

[KM69] R. M. Karp and R. E. Miller. Parallel program schemata. Journal of Computer and System

Sciences, 3(2):147–195, 1969.

[Kos82] S. R. Kosaraju. Decidability of reachability in vector addition systems. In Proc. 14th Symp.

Theory of Computing, pages 267–281. ACM, 1982.

[Lam92] Jean-Luc Lambert. A structure to decide reachability in Petri nets. Theoretical Computer

Science, 99:79–104, 1992.

[Lug03] Denis Lugiez. Counting and equality constraints for multitree automata. In Andrew D. Gor-

don, editor, 6th International Conference on Foundations of Software Science and Compu-

tational Structures (FoSSaCS’03), volume 2620 of LNCS, pages 328–342, Warsaw, Poland,

2003. Springer-Verlag.

http://www.grappa.univ-lille3.fr/tata
http://www.grappa.univ-lille3.fr/tata

Karp-Miller Trees for a Branching Extension of VASS 239

[May84] E. W. Mayr. An algorithm for the general Petri net reachability problem. SIAM Journal of

Computing, 13:441–460, 1984.

[MR98] Richard Mayr and Michaël Rusinowitch. Reachability is decidable for ground AC rewrite

systems. In Proceedings of the 3rd INFINITY Workshop, Aalborg, Denmark, 1998.

[Mül84] H. Müller. The reachability problem for VAS. In Advances in Petri nets. Springer-Verlag

LNCS 188, 1984.

[Ohs01] Hitoshi Ohsaki. Beyond regularity: Equational tree automata for associative and commutative

theories. In Laurent Fribourg, editor, 10th Annual Conference of the European Association

for Computer Science Logic (CSL’01), volume 2142 of LNCS, pages 539–553, Paris, France,

September 2001. Springer-Verlag.

[Par66] Rohit J. Parikh. On context-free languages. Journal of the ACM, 13(4):570–581, October

1966.

[Reu89] Christophe Reutenauer. Aspects Mathématiques des Réseaux de Pétri. Masson, 1989.

[Ver03a] Kumar Neeraj Verma. Automates d’arbres bidirectionnels modulo théories équationnelles.

PhD thesis, ENS Cachan, 2003.

[Ver03b] Kumar Neeraj Verma. On closure under complementation of equational tree automata for

theories extending AC. In Moshe Vardi and Andrei Voronkov, editors, 10th International

Conference on Logic for Programming Artificial Intelligence and Reasoning (LPAR’03), vol-

ume 2850 of LNAI, pages 183–197, Almaty, Kazakhstan, September 2003. Springer-Verlag.

[Ver03c] Kumar Neeraj Verma. Two-way equational tree automata for AC-like theories: Decidability

and closure properties. In Robert Nieuwenhuis, editor, 14th International Conference on

Rewriting Techniques and Applications (RTA’03), volume 2706 of LNCS, pages 180–196,

Valencia, Spain, June 2003. Springer-Verlag.

[VGL04] Kumar Neeraj Verma and Jean Goubault-Larrecq. Karp-Miller trees for a branching

extension of VASS. Research Report LSV-04-3, LSV, ENS Cachan, France, January

2004. Available at http://www.lsv.ens-cachan.fr/Publis/RAPPORTS LSV/

PS/rr-lsv-2004-3.rr.ps.

240 Kumar Neeraj Verma and Jean Goubault-Larrecq

	Introduction
	Covering Derivations
	Termination
	Application to AC Automata
	Perspectives: A Further Extension of BVASS
	Conclusion

