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The first ascent of size d or more in
compositions
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A composition of a positive integer n is a finite sequence of positive integers a1, a2, . . . , ak such that a1 + a2 +
· · · + ak = n . Let d be a fixed nonnegative integer. We say that we have an ascent of size d or more at position i,
if ai+1 ≥ ai + d. We study the average position, initial height and end height of the first ascent of size d or more in
compositions of n as n →∞.
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1 Introduction
A composition of a positive integer n is a finite sequence of positive integers a1, a2, . . . , ak such that
a1 +a2 + · · ·+ak = n . Compositions are basic combinatorial objects which arise in a number of statistical
applications. A comprehensive treatment of compositional data in statistics can be found in Aitchison (1).

Let d be a fixed nonnegative integer. We say that we have an ascent of size d or more at position i if
ai+1 ≥ ai + d. In (3) the present authors found the distribution of the number of ascents of size d or more
in compositions of n. In this paper we study various statistics relating to the first ascent of size d or more in
compositions of n. In particular we find the average initial height, end height and position of the first ascent
of size greater than or equal to d.

For example, consider the following composition 2+3+1+2+1+4+1 of n = 15. Then the first ascent of
size greater than or equal to 2 has initial height 1, end height 4 and (initial) position 5. We assign the value
zero to these parameters if the composition has no such first ascent. We also consider the size of the compo-
sition preceding the first ascent of size d or more. In our example this parameter equals 2+3+1+2+1 = 9.

We show that as n → ∞ the asymptotic mean value of the initial height µI , end height µE , position µP

and size of composition preceding the first ascent µC all tend to certain constant depending on d. The
explicit formulas for these constants which involve complicated sums of q-binomial coefficients are given
in Theorems 1 to 4 in subsequent sections of the paper. In principle the same technique could also be used
to compute higher moments.

For the introduction we will rather present a table of numerical values for the asymptotic statistics µE , µI , µP

and µC , for d = 0 up to 10.
In addition the behaviour of these statistics as d →∞ is fairly simple. We have µI ∼ 4/3, µE ∼ d + 7/3,
µP ∼ 3× 2d−1 and µC ∼ 6× 2d−1.

The case d = 1 is of special interest as it corresponds to the first occurrence of ai+1 > ai in the composition.
An ocurrence of ai+1 > ai is also called a rise in the literature. The number of rises in compositions has
been studied by Carlitz (4) and more recently by Chinn, Heubach and Grimaldi in (5). In particular, they
found generating functions and formulas for the total number of rises in all compositions of n. However,
statistics relating to the first rise have not previously been considered.
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d ΜE ΜI ΜP ΜC
0 2.2661 1.2661 1.3842 2.5024
1 3.168 1.168 2.4627 3.7574
2 4.2553 1.2553 5.2203 8.1853
3 5.3051 1.3051 11.108 18.911
4 6.3241 1.3241 23.054 41.783
5 7.3305 1.3305 47.027 88.723
6 8.3325 1.3325 95.013 183.69
7 9.3331 1.3331 191.01 374.68
8 10.333 1.3333 383. 757.67
9 11.333 1.3333 767. 1524.7
10 12.333 1.3333 1535. 3059.7

Fig. 1: Statistics for the first ascent of size d or more.

2 Compositions of n having no ascents of size d or more
Our approach to the statistics mentioned in Section 1 requires that we first derive the generating function of
compositions that have no ascents of size d or more, which we shall denote by Fd(z).
We use the “adding-the-slice” technique which was originally used by Flajolet and Prodinger in (7) and
more recently, for example, by Knopfmacher and Prodinger in (8).
Let j be the value of the last component of the composition a1 +a2 + · · ·+ak = n, i.e. ak = j. We proceed
from a composition with k parts to a composition with k + 1 parts. We denote by fk(z, u) the generating
function where z counts the size of the composition and u the value of j . In moving from a composition
with k parts to a composition of k + 1 parts, where j is coded by uj , we have no ascent of size d or more,
provided that the new last letter has any value less than j + d. This gives the following rule for adding a
new part (“slice”) to the end of a composition:

uj −→ zu + (zu)2 + (zu)3 + · · ·+ (zu)j+d−1 = zu
1− (zu)j+d−1

1− zu
.

This implies that

fk+1(z, u) =
zu

1− zu
fk(z, 1)− (zu)d

1− zu
fk(z, zu) . (2.1)

Now we set
Fd(z, u) :=

∑
k≥1

fk(z, u).

Summing (2.1) over k ≥ 1:

Fd(z, u)− f1(z, u) =
zu

1− zu
Fd(z, 1)− (zu)d

1− zu
Fd(z, zu) ,

so that

Fd(z, u) =
zu

1− zu
Fd(z, 1) +

zu

1− zu
− (zu)d

1− zu
Fd(z, zu) , (2.2)

since
f1(z, u) = zu + (zu)2 + (zu)3 + · · · = zu

1− zu
.

Now we iterate the functional equation (2.2).

Fd(z, u) =
zu

1− zu
Fd(z, 1) +

zu

1− zu
− (zu)d

1− zu
×

×
{

z2u

1− z2u
Fd(z, 1) +

z2u

1− z2u
− (z2u)d

1− z2u
Fd(z, z2u)

}
=

[
zu

1− zu
− (zu)dz2u

(1− zu)(1− z2u)
+

(zu)d(z2u)dz3u

(1− zu)(1− z2u)(1− z3u)

]
[Fd(z, 1) + 1]

− (zu)d(z2u)d(z3u)d

(1− zu)(1− z2u)(1− z3u)
Fd(z, z3u) .



The first ascent of size d or more in compositions 263

We continue the iterations and then substitute u = 1 to obtain

Fd(z, 1) =
∑
i≥1

(−1)i−1 zd(i
2) zi

(1− z)(1− z2) · · · (1− zi)
[Fd(z, 1) + 1] .

Hence, if we add the term 1 for the empty composition we get the following formula for the generating
function of compositions with no ascents of size d or more,

Fd(z) := 1 + Fd(z, 1) =
1

1− τd(z)
, (2.3)

where

τd(z) :=
∑
i≥1

(−1)i−1zi zd(i
2)

(1− z)(1− z2) · · · (1− zi)
. (2.4)

Remarks If d = 1, then by definition, F1(z) is the generating function for partitions of n, given by
F1(z) =

∏
i≥1

1
1−zi and if d = 0, then F0(z) is the generating function for partitions of n with dis-

tinct parts, given by F0(z) =
∏

i≥1(1 + zi). These product expressions for d = 0 and d = 1 can also be
derived from (2.3) by means of Euler’s partition identities (see e.g. (2)).

As we shall see, all our statistics of interest in the following sections can be expressed in terms of the
special value Fd(1/2) as well as the values of the partial derivatives ∂

∂uFd(1/2, 1/2) and ∂
∂z Fd(1/2, 1/2).

In general, it does not seem possible to express these particular constants in a simpler form.

3 End height of the first ascent of size d or more in compositions
In this section we are interested in finding the average end height of the first ascent of size d or more. To do
this we use the following decomposition for the set of all compositions, where we use h as the value of the
starting letter of the first ascent.

{all compositions} =
⋃
h≥1

{composition with no ascent of size d or more ending with h}

{integer ≥ h + d}{any composition}
∪ {composition with no ascent of size d or more}. (3.1)

In order to translate this decomposition into the appropriate generating function for the end height, we need
to find the generating function Fd(z, u) for a word with no ascent of size d or more, but this time ending
with the letter h. We return to the step just before the iteration in the “adding the slice” technique in Section
2.

Fd(z, u) =
[

zu

1− zu
− z2u(zu)d

(1− zu)(1− z2u)
+

z3u(zu)d(z2u)d

(1− zu)(1− z2u)(1− z3u)

]
Fd(z)

− (zu)d(z2u)d(z3u)d

(1− zu)(1− z2u)(1− z3u)
Fd(z, z3u).

We keep iterating but, this time, we do not set u = 1 as we are interested in the value of the last part. This
gives

Fd(z, u) =
∑
i≥1

(−1)i−1zi+d(i
2)u(i−1)d+1

(1− zu)(1− z2u) · · · (1− ziu)
Fd(z) . (3.2)

Here we are interested in the coefficient of uh in Fd(z, u). For this it is convenient to use the q-series
notation:

(a; q)n := (1− a)(1− aq) · · · (1− aqn−1) .
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Now

[uh]Fd(z, u) = [uh]Fd(z)
∑
i≥1

(−1)i−1zi+d(i
2)u(i−1)d+1

(zu; z)i

= Fd(z)
∑
i≥1

(−1)i−1zi+d(i
2) [uh−(i−1)d−1]

1
(zu; z)i

.

To extract the coefficient of 1
(zu;z)i

we use the q-binomial theorem (see e.g. (2)),

∞∑
k=0

[
N + k − 1

k

]
q

xk =
1

(x; q)N
=

1
(1− x) · · · (1− xqN−1)

, |x| < 1

where the q-binomial coefficient is given by[
n

k

]
q

=
(q; q)n

(q; q)k(q; q)n−k
.

Hence, replacing q by z, N by i, and x by zu:

[uh−(i−1)d−1]
1

(zu; z)i
= [uh−(i−1)d−1]

∞∑
k=0

[
i + k − 1

k

]
z

(zu)k

=
[
i + h− (i− 1)d− 2

h− (i− 1)d− 1

]
z

zh−(i−1)d−1.

So

[uh]Fd(z, u) = Fd(z)
∑
i≥1

(−1)i−1zi+d(i
2)

[
i + h− (i− 1)d− 2

h− (i− 1)d− 1

]
z

zh−(i−1)d−1 ,

or

Fd(z, u) = Fd(z)
∑
h≥1

∑
i≥1

(−1)i−1zi+d(i
2)

[
i + h− (i− 1)d− 2

h− (i− 1)d− 1

]
z

zh−(i−1)d−1 uh . (3.3)

Putting all this together into our decomposition (3.1), we can now derive the probability generating function
Fend(z, u), where z labels the value of n, and u marks the end height of the first ascent of size d or more.

Fend(z, u) =
∑
h≥1

Fd(z)
∑
i≥1

(−1)i−1zi+d(i
2)

[
i + h− (i− 1)d− 2

h− (i− 1)d− 1

]
z

zh−(i−1)d−1 ×

×
∑

j≥h+d

uj zj .
1− z

1− 2z

 + Fd(z)

=
Fd(z)(1− z)

1− 2z

∑
h≥1

∑
i≥1

(−1)i−1zi+d(i
2)

[
i + h− (i− 1)d− 2

h− (i− 1)d− 1

]
z

×

× zh−(i−1)d−1 (uz)h+d

1− uz

}
+ Fd(z) .

For the mean end height of the first ascent we need to compute ∂
∂uFend(z, 1).

∂

∂u
Fend(z, 1)

=
Fd(z)
1− 2z

∑
h≥1

∑
i≥1

(−1)i−1zi+d(i
2)

[
i + h− (i− 1)d− 2

h− (i− 1)d− 1

]
z

zh−(i−1)d−1 ×

× zh+d (1− z)(h + d) + z

1− z

}
=

(1− z)d + z

(1− z)(1− 2z)
zd Fd(z, z) +

z

1− 2z
zd ∂

∂u
Fd(z, u)

∣∣∣∣
u=z

.
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Since this function has a dominant simple pole at z = 1/2 we may apply singularity analysis (see (6)) to
deduce that

[zn]
∂

∂u
Fend(z, 1) ∼ (d + 1) 2n−d Fd

(
1
2
,
1
2

)
+ 2n−d−1 ∂

∂u
Fd

(
1
2
,
1
2

)
. (3.4)

To evaluate Fd

(
1
2 , 1

2

)
we use (2.2) with u = 1 to get

Fd(z, 1) =
z

1− z
Fd(z, 1) +

z

1− z
− zd

1− z
Fd(z, z) .

This, combined with (2.3), gives

Fd(z, z) =
(2z − 1)Fd(z) + 1− z

zd
. (3.5)

Therefore

Fd

(
1
2
,
1
2

)
= 2d−1 .

Thus after dividing (3.3) by 2n−1, the total number of compositions of n, we obtain

Theorem 1 The mean end height of the first ascent of size d or more in compositions of n tends to

µE := d + 1 + 2−d ∂

∂u
Fd

(
1
2
,
1
2

)
as n →∞.

4 Initial height of the first ascent of size d or more in compositions
In this section we are interested in finding the initial height of the first ascent of size d or more. We make
use of the decomposition from the previous section that we used for the end height. The generating function
is very similar; we just shift u which will now mark the initial height, to the first term. This time we want
the initial height to have a value of h. Hence

Finitial(z, u) =
∑
h≥1

Fd(z)
∑
i≥1

(−1)i−1uh zi+d(i
2)

[
i + h− (i− 1)d− 2

h− (i− 1)d− 1

]
z

zh−(i−1)d−1 ×

×
∑

j≥h+d

zj .
1− z

1− 2z

 + Fd(z)

=
Fd(z)
1− 2z

∑
h≥1

∑
i≥1

(−1)i−1uhzi+d(i
2)

[
i + h− (i− 1)d− 2

h− (i− 1)d− 1

]
z

zh−(i−1)d−1 zh+d

 + Fd(z).

For the mean initial height we must compute ∂
∂uFinitial(z, 1). Now

∂

∂u
Finitial(z, 1)

=
Fd(z)
1− 2z

∑
h≥1

∑
i≥1

(−1)i−1 h zi+d(i
2)

[
i + h− (i− 1)d− 2

h− (i− 1)d− 1

]
z

zh−(i−1)d−1 zh+d


=

z

1− 2z
zd ∂

∂u
Fd(z, z) .

We apply singularity analysis to the dominant pole at z = 1/2 to deduce that

[zn]
∂

∂u
Finitial(z, 1) ∼ 2n−d−1 ∂

∂u
Fd

(
1
2
,
1
2

)
.

Again after dividing by 2n−1 we obtain
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Theorem 2 The mean initial height of the first ascent of size d or more in compositions of n tends to

µI := 2−d ∂

∂u
Fd

(
1
2
,
1
2

)
, as n →∞.

The length of the first ascent of size d or more is defined to be the corresponding end height minus the initial
height. From the above results we have

Corollary 1 The mean length of the first ascent of size d or more in compositions of n tends to d + 1 as
n →∞.

5 Position of the first ascent of size d or more in compositions
We return to the enumeration of compositions with no ascents of size d or more in Section 2, but now
introduce a new parameter namely v, which will count the number of parts. The new “adding-a-slice” rule
is

uj −→ zuv + (zu)2v + (zu)3v + · · ·+ (zu)j+d−1v = zuv
1− (zu)j+d−1

1− zu
.

This implies that

fk+1(z, u, v) =
zuv

1− zu
fk(z, 1, v)− (zu)dv

1− zu
fk(z, zu, v) . (5.1)

As before we set

Fd(z, u, v) :=
∑
k≥1

fk(z, u, v).

Summing (5.1) over k ≥ 1:

Fd(z, u, v) =
zuv

1− zu
Fd(z, 1, v) +

zuv

1− zu
− (zu)dv

1− zu
Fd(z, zu, v) , (5.2)

since

f1(z, u, v) = zuv + (zu)2v + (zu)3v + · · · = zuv

1− zu
.

We iterate as in Section 2 and then set u = 1 to find that the bivariate generating function for compositions
with no ascents of size d or more, where v marks the number of parts is

Gd(z, v) := 1 + Fd(z, 1, v) =
1

1− τd(z, v)
, (5.3)

where

τd(z, v) :=
∑
i≥1

(−1)i−1zi zd(i
2) vi

(1− z)(1− z2) · · · (1− zi)
. (5.4)

We also need the corresponding generating function where the last part of the composition is h. Hence if
we do not put u = 1 after iterating, we obtain

Fd(z, u, v) =
∑
i≥1

(−1)i−1zi+d(i
2)u(i−1)d+1 vi

(1− zu)(1− z2u) · · · (1− ziu)
Gd(z, v) . (5.5)

We are interested in the coefficient of uh in Fd(z, u, v). Using results from Section 3, we have

Fd(z, u, v) = Gd(z, v)
∑
h≥1

∑
i≥1

(−1)i−1zi+d(i
2)

[
i + h− (i− 1)d− 2

h− (i− 1)d− 1

]
z

zh−(i−1)d−1 uh vi . (5.6)
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Putting all these results together into our decomposition (3.1), we find the generating function for the
(initial) position of the first ascent is

Fposition(z, v) =
∑
h≥1

Gd(z, v)
∑
i≥1

(−1)i−1 zi+d(i
2)

[
i + h− (i− 1)d− 2

h− (i− 1)d− 1

]
z

(z)h−(i−1)d−1 vi×

×
∑

j≥h+d

zj .
1− z

1− 2z

 + Fd(z)

=
Gd(z, v)
1− 2z

∑
h≥1

∑
i≥1

(−1)i−1 zi+d(i
2)

[
i + h− (i− 1)d− 2

h− (i− 1)d− 1

]
z

zh−(i−1)d−1 zh+d vi

 + Fd(z) .

For the mean position we need to compute ∂
∂v Fposition(z, v)

∣∣∣
v=1

.

∂

∂v
Fposition(z, v)

∣∣∣
v=1

=
Gd(z, v)
1− 2z

∑
h≥1

∑
i≥1

(−1)i−1 zi+d(i
2)

[
i + h− (i− 1)d− 2

h− (i− 1)d− 1

]
z

zh−(i−1)d−1 zh+d i


=

zd

1− 2z

∂

∂v
Fd(z, z, v)

∣∣∣
v=1

which by singularity analysis at the dominant pole z = 1/2 gives

[zn]
∂

∂v
Fposition(z, 1) ∼ 2n−d ∂

∂v
Fd(1/2, 1/2, v)

∣∣∣
v=1

.

Hence the asymptotic mean position satisfies

µP := 21−d ∂

∂v
Fd(1/2, 1/2, v)

∣∣∣
v=1

. (5.7)

To simplify this we use (5.2) with z = 1/2 and u = 1

Fd(1/2, 1, v) = vFd(1/2, 1, v) + v − 2−d+1vFd(1/2, 1/2, v) .

This leads to

Fd(1/2, 1/2, v) = 2d−1 (v − 1)Fd(1/2, v) + 1
v

.

Differentiating this with respect to v gives

∂

∂v
Fd(1/2, 1/2, v)

∣∣∣
v=1

= 2d−1(Fd(1/2, 1)− 1) .

Hence we have shown

Theorem 3 The mean position of the first ascent of size d or more in compositions of n tends to

µP := Fd(1/2)− 1 as n →∞.

6 Size of the composition preceding the first ascent of size d or
more

The last parameter we consider is the size of the initial composition preceding the first ascent of size d or
more. For example, in the composition 3 + 1 + 1 + 2 + 5 + 1, the first ascent of size two or more precedes
the integer 5 and the size of the composition preceding this ascent is 3 + 1 + 1 + 2 = 7.
We use the same decomposition as for the initial height where now v marks the initial position. We replace
z by zv for each integer in the initial constrained composition that ends with h. This gives
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Fsize(z, v) =
∑
h≥1

Fd(zv)
∑
i≥1

(−1)i−1 (zv)i+d(i
2)

[
i + h− (i− 1)d− 2

h− (i− 1)d− 1

]
zv

(zv)h−(i−1)d−1 ×

×
∑

j≥h+d

zj .
1− z

1− 2z

 + Fd(z)

=
Fd(zv)
1− 2z

∑
h≥1

∑
i≥1

(−1)i−1 (zv)i+d(i
2)

[
i + h− (i− 1)d− 2

h− (i− 1)d− 1

]
zv

(zv)h−(i−1)d−1 zh+d

 + Fd(z) .

To obtain the mean size we need ∂
∂v Fsize(z, 1).

∂

∂v
Fsize(z, 1) =

zd

1− 2z

∂

∂v
Fd(zv, z)

∣∣∣
v=1

=
zd+1

1− 2z

∂

∂z
Fd(z, u)

∣∣∣
u=z

.

Now for the coefficient of zn, we once again apply singularity analysis to the dominant pole at z = 1/2:

[zn]
zd+1

1− 2z

∂

∂z
Fd(z, z) ∼ 2n−d−1 ∂

∂z
Fd(1/2, 1/2) as n →∞.

After dividing by 2n−1 we find that the asymptotic mean composition size is

µC := 2−d ∂

∂z
Fd(1/2, 1/2) as n →∞.

We can derive an alternative expression for µC in terms of ∂
∂uFd(1/2, 1/2) if we differentiate (2.2) with

respect to z and put u = 1,

∂

∂z
Fd(z, 1) = −dFd(z, z)zd−1

1− z
− Fd(z, z)zd

(1− z)2
−

(
∂

∂uFd(z, z) + ∂
∂z Fd(z, z)

)
zd

1− z
+

Fd(z, 1)z
(1− z)2

+
∂
∂z Fd(z, 1)z

1− z
+

z

(1− z)2
+

Fd(z, 1)
1− z

+
1

1− z
.

If we set z = 1/2 and use Fd(1/2, 1/2) = 2d−1,

∂

∂z
Fd

(
1
2
, 1

)
= 8

(
1
2

(
−d

2
− 1

2

)
+

1
2
Fd

(
1
2
, 1

))
+ 4

(
−2−d−1 ∂

∂u
Fd

(
1
2
,
1
2

)
+ 2−d−1 ∂

∂z
Fd

(
1
2
,
1
2

)
− 2−d ∂

∂z
Fd

(
1
2
,
1
2

)
+

1
4

∂

∂z
Fd

(
1
2
, 1

)
+ 1

)
.

It follows that

∂

∂z
Fd

(
1
2
,
1
2

)
= −2dd + 2d + 2d+1Fd

(
1
2
, 1

)
− ∂

∂u
Fd

(
1
2
,
1
2

)
.

Hence we have shown

Theorem 4 The mean size of the composition preceding the first ascent of size d or more in compositions
of n tends to

µC := 2−d ∂

∂z
Fd(1/2, 1/2) = 2Fd(1/2)− 1− d− 2−d ∂

∂u
Fd(1/2, 1/2) as n →∞.

Remark We see from our results that

µE = µI + d + 1 and µC = 2µP − µE + 2. (6.1)

From Figure 1 it appears that as d →∞, the asymptotic mean value of the initial height of the first ascent of
size d or more, µI , tends to 4

3 . In view of (6.1) we can determine the growth of all four statistics as d →∞
by considering just µP and µI .
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As d →∞,

τd(z) ∼ z

1− z
− zd+2

(1− z)(1− z2)

so that

Fd(z) ∼ (1− z)(1− z2)
(1− 2z)(1− z2) + zd+2

.

It follows that µP = Fd(1/2)− 1 ∼ 3× 2d−1. Also, by (3.2) as d →∞,

Fd(z, u) ∼ Fd(z)
zu

1− zu

so that
∂

∂u
Fd(z, u) ∼ Fd(z)

z

(1− zu)2
.

Thus

µI = 2−d ∂

∂u
Fd

(
1
2
,
1
2

)
∼ 2−d × 3× 2d−1 × 1

2
× 42

32
=

4
3
,

as was suggested by Figure 1.
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