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The classes of Raspail (also known as Bipolarizable) and P4-simplicial graphs were introduced by Hoàng and Reed

who showed that both classes are perfectly orderable and admit polynomial-time recognition algorithms [16]. In this

paper, we consider the recognition problem on these classes of graphs and present algorithms that solve it in O(nm)
time. In particular, we prove properties of the graphs investigated and show that we can produce bipolarizable and P4-

simplicial orderings on the vertices of the input graph G, if such orderings exist, working only on P3s that participate

in a P4 of G. The proposed recognition algorithms are simple, use simple data structures and both require O(n + m)
space. Additionally, we show how our recognition algorithms can be augmented to provide certificates, whenever they

decide that G is not bipolarizable or P4-simplicial; the augmentation takes O(n + m) time and space. Finally, we

include a diagram on class inclusions and the currently best recognition time complexities for a number of perfectly

orderable classes of graphs.
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1 Introduction

A linear order ≺ on the vertices of a graph G is perfect if the ordered graph (G,≺) contains no induced

P4 abcd with a ≺ b and d ≺ c (such a P4 is called an obstruction). In the early 1980s, Chvátal [4] defined

the class of graphs that admit a perfect order and called them perfectly orderable graphs.

Chvátal proved that if a graph G admits a perfect order ≺, then the greedy coloring algorithm applied

to (G,≺) produces an optimal coloring using only ω(G) colors, where ω(G) is the clique number of

G. This implies that the perfectly orderable graphs are perfect; a graph G is perfect if for each induced

subgraph H of G, the chromatic number χ(H) equals the clique number ω(H) of the subgraph H . The

class of perfect graphs was introduced in the early 1960s by Berge [1], who also conjectured that a graph

is perfect if and only if it contains no induced subgraph isomorphic to an odd cycle of length at least five,

or to the complement of such an odd cycle. This conjecture, known as the strong perfect graph conjecture,

has been recently established due to the work of Chudnovsky et al. [3].

It is well-known that several interesting problems in graph theory (e.g., coloring, independent set),

which are NP-complete in general graphs, have polynomial-time solutions in graphs that admit a perfect
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order [2; 8]; unfortunately, it is NP-complete to decide whether a graph admits a perfect order [22]. Since

the recognition of perfectly orderable graphs is NP-complete, we are interested in characterizing graphs

which form polynomially recognizable subclasses of perfectly orderable graphs. Many such classes of

graphs, with very interesting structural and algorithmic properties, have been defined so far and shown to

admit polynomial-time recognitions (see [2; 8]); note however that not all subclasses of perfectly orderable

graphs admit polynomial-time recognitions [13].

In 1989, Hoàng and Reed [16] introduced four subclasses of perfectly orderable graphs, namely, the

P4-indifference, Raspail (also known as Bipolarizable), P4-simplicial, and P4-comparability graphs; a

graph is defined to be

◦ P4-indifference if it admits a linear order≺ on its vertices such that every P4 abcd has either (a ≺ b,

b ≺ c, c ≺ d) or (d ≺ c, c ≺ b, b ≺ a);

◦ Bipolarizable if it admits a linear order≺ on its vertices such that every P4 abcd has (b ≺ a, c ≺ d);

◦ P4-simplicial if it admits a linear order ≺ such that every P4 has either a bipolarizable or a P4-

indifference ordering;

◦ P4-comparability if it admits a linear order ≺ on its vertices such that every P4 abcd has either

(a ≺ b, c ≺ b, c ≺ d) or (b ≺ a, b ≺ c, d ≺ c).

Hoàng and Reed proved structural and algorithmic properties for these four classes of perfectly orderable

graphs, and provided polynomial-time recognition algorithms and also polynomial-time algorithms for

constructing obstruction-free linear orders (i.e., perfect orderings). Note that every linear order ≺ on the

vertices of a graph yields an acyclic orientation of the edges, where each edge ab is oriented from a to b if

and only if a ≺ b; thus, a graph is bipolarizable if we can assign orientations to its edges so that the wings

of every P4 are oriented towards the endpoints of the P4. On the other hand, every acyclic orientation

gives at least one linear order; for example, the order taken by a topological sorting. Hence, bipolarizable

and P4-simplicial graphs can also be defined in terms of orientations.

Additionally, the class of bipolarizable graphs can be defined in terms of forbidden subgraphs. The

minimal set of forbidden subgraphs for this class has been established in [12; 16]; it includes the graphs

shown in Figure 1 (we will call the rightmost among them zig-zag triomino or z-triomino for short) and

the k-wheel (k ≥ 3) defined as follows (nearly following the notation of [12]): a k-wheel (k ≥ 3) is the

graph formed by a set of 3k vertices, namely, v0, v1, . . ., vk−1, r0, r1, . . ., rk−1, and s0, s1, . . ., sk−1,

such that
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⊲ the vertices v0, v1, . . . , vk−1 form a clique, while each of the vertex sets {r0, r1, . . . , rk−1} and

{s0, s1, . . . , sk−1} is an independent set,

⊲ for 0 ≤ i, j ≤ k − 1, vi is adjacent to rj except for j = i + 1,

⊲ for 0 ≤ i, j ≤ k − 1, vi is adjacent to sj except for j = i, i + 1, and

⊲ for 0 ≤ i ≤ k − 1, ri is adjacent to si but non-adjacent to any sj for j 6= i,

where all integer subscripts are taken modulo k. We note that the 2-wheel is also well defined and co-

incides with P6. A figure depicting the k-wheels for k = 2, 3, 4, 6 can be found in [12]. Unlike the

bipolarizable graphs, the minimal set of forbidden subgraphs for the class of P4-simplicial graphs, if it

can be concisely described, has not been determined.

Another interesting class of graphs is the class of weak bipolarizable graphs: a graph is weak bipo-

larizable if it has no induced subgraph isomorphic to Ck for k ≥ 5, to the house graph (P 5), or to the

graphs A and D6 of Figure 1. The class was introduced by Olariu [25] who also presented an O(n3)-time

recognition algorithm. Since any Ck, where k ≥ 7, contains a P6, the class of weak bipolarizable graphs

is a superclass of the bipolarizable graphs, as the name suggests after all (see also [25]).

As mentioned above, the recognition problem on both bipolarizable and P4-simplicial graphs has been

addressed by Hoàng and Reed [16]. Their algorithms are based on detecting whether the input graph G
admits a bipolarizable or P4-simplicial ordering. More precisely, the algorithm for recognizing a bipo-

larizable graph G constructs an acyclic bipolarizable orientation; for every P4 abcd in G, it orients ab
(resp. cd) towards a (resp. d); if no edge of G receives opposite orientations and the resulting oriented

graph is acyclic, it returns “yes”, otherwise returns “no”. The algorithm runs in O(n4) time, where n is the

number of vertices of the input graph G. Their algorithm for recognizing P4-simplicial graphs constructs

a P4-simplicial ordering of the vertices of G as follows: it initially sets H := V (G) and then repeatedly

chooses a vertex x ∈ H such that x is not a midpoint of any P4 abxc (of the graph G) with b, c ∈ H and

sets H := H − {x} and y ≺ x for all y ∈ H; if H 6= ∅ and the algorithm fails to choose a vertex x ∈ H ,

it returns “no”. This algorithm takes O(n5) time.

Recently, Eschen et al. [7] described recognition algorithms for several classes of perfectly orderable

graphs, e.g., O(n3.376)-time algorithms for both bipolarizable and P4-simplicial graphs. In particular,

they presented an algorithm for recognizing brittle graphs by direct application of the definition; a graph

is brittle if and only if its vertices admit a linear order (v1, v2, . . . , vn) such that each vertex vi is either

not a midpoint or not an endpoint of a P4 in the subgraph of G induced by {vi, . . . , vn} [2; 14]. Their

algorithm uses matrix multiplication and runs in O(n3.376) time; it computes, for each vertex vi, the P4s

which contain vi as a midpoint, and thus, is also used to recognize bipolarizable and P4-simplicial graphs

within the same time bounds.

Additionally, we note that Hoàng and Reed also presented algorithms which solve the recognition

problem for P4-comparability and P4-indifference graphs which run in O(n4) and O(n6) time [16; 17].

Recent results on these problems include O(nm)-time [23] and O(n + m)-time algorithms [10; 26],

respectively, where m is the number of edges of the input graph.

Our objective is to study the recognition problem on the classes of bipolarizable and P4-simplicial

graphs and we present O(nm)-time algorithms for each of these problems. Our algorithms rely on pro-

perties of these graphs which we establish and which allow us to only work with P3s of the input graph G
which participate in P4s of G; such P3s can be computed in O(nm) time by means of the distance trees
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of the complement of the graph rooted at each of its vertices [23]. The proposed recognition algorithms

are simple, use simple data structures and both require O(n + m) space. Additionally, we describe

how to augment our two recognition algorithms so that they return a certificate whenever they decide

that G is not bipolarizable or P4-simplicial, thus, providing the most natural evidence that the input

graph G indeed is not bipolarizable or P4-simplicial. In particular, for the case of bipolarizable graphs,

the augmented algorithm returns a forbidden subgraph contained in G. The augmented algorithms take

O(n + m) additional time and O(n + m) space. Finally, we show that the class of weak bipolarizable

graphs is a subclass of the class of P4-simplicial graphs and give class inclusion results and the currently

best time complexities for the recognition problem for a number of perfectly orderable classes of graphs.

The paper is structured as follows. In Section 2 we review the terminology that we use throughout the

paper and we establish the theoretical framework on which our algorithms are based. The recognition

algorithms for bipolarizable and P4-simplicial graphs are described and analyzed in Sections 3 and 4,

respectively. Section 5 gives results on class inclusions for a number of perfectly orderable classes, and

Section 6 concludes with a summary of our results and some open problems.

2 Theoretical Framework

We consider finite undirected graphs with no loops or multiple edges. Let G be such a graph; then,

V (G) and E(G) denote the set of vertices and of edges of G respectively. The neighborhood N(x) of a

vertex x ∈ V (G) is the set of all the vertices of G which are adjacent to x. The closed neighborhood of

x is defined as N [x] := {x} ∪N(x).
The subgraph of G induced by a subset S of G’s vertices is denoted by G[S]. A subset A ⊆ V (G) of

p vertices is a p-clique, or clique, if it induces a complete subgraph, i.e., G[A] = Kp; a single vertex is a

1-clique. An independent set is a subset B ⊆ V (G) of vertices no two of which are adjacent; it is also

called stable set. A subset H ⊆ V (G) of vertices is homogeneous if 2 ≤ |H| < |V (G)| and each vertex

x ∈ V (G)−H sees either all vertices or no vertex in H , i.e., either H ⊆ N(x) or H ∩N(x) = ∅.
A path in a graph G is a sequence of vertices v0v1 · · · vk such that vi−1vi ∈ E(G) for i = 1, 2, . . . , k;

we say that this is a path from v0 to vk and that its length is k. A path may be undirected or directed

depending on whether G is an undirected or directed graph. A path is called simple if none of its vertices

occurs more than once; it is called trivial if its length is equal to 0. A path (simple path) v0v1 · · · vk is

called a cycle (simple cycle) of length k + 1 if v0vk ∈ E(G). An edge connecting two non-consecutive

vertices in a simple path (cycle) is called a chord; then, a simple path (cycle) v0v1 · · · vk of a graph G
is chordless if G contains no chords of the path (cycle), i.e., vivj /∈ E(G) for any two non-consecutive

vertices vi, vj in the path (cycle). The chordless path (chordless cycle, respectively) on n vertices is

commonly denoted by Pn (Cn, respectively). In particular, a chordless path on 4 vertices is denoted by

P4.

Let abcd be an induced P4 of a graph. The vertices b and c are called midpoints and the vertices a and

d endpoints of the P4 abcd. The edge connecting the midpoints of a P4 is called the rib; the other two

edges (which contain some endpoint) are called the wings. For the P4 abcd, the edge bc is its rib and the

edges ab and cd are its wings.

Our bipolarizable graph recognition algorithm relies on the result stated in the following lemma.

Lemma 2.1 Let G be a graph that contains no induced subgraph isomorphic to a house graph or the

graphs A and D6 of Figure 1. Then, G does not contain a C4 abcd such that abc and bcd are P3s

participating in P4s of G.
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Proof: Suppose for contradiction that G contains a C4 abcd meeting the conditions in the statement of

the lemma. We distinguish cases. Suppose first that the P3 abc participates in the P4 abcx and that the

P3 bcd participates in the P4 bcdy. Then, xd /∈ E(G), otherwise the vertices a, b, c, d, x would induce a

house in G. In a similar fashion, ya /∈ E(G) either. But then, if xy /∈ E(G), then the subgraph induced

by a, b, c, d, x, y is isomorphic to the A whereas if xy ∈ E(G), it is isomorphic to the D6; a contradiction

in either case. The remaining three cases (depending on whether abc participates in a P4 xabc or abcx
and on whether bcd participates in a P4 ybcd or bcdy) are handled similarly. ✷

We note that Lemma 2.1, as well as the ensuing Lemma 3.1, in fact hold for the class of weak bipolarizable

graphs, which is a superclass of the bipolarizable graphs. Lemma 2.1 however holds neither for the class

of P4-simplicial graphs nor for the class of HHD-free graphs [2; 18; 24], since the former class contains

the house graph whereas the latter contains the graph A.

Computing all the P3s participating in P4s of a graph G: In [23], it has been shown that all the P3s

participating in P4s of a graph G can be efficiently computed as follows:

Lemma 2.2 For each vertex v of a graph G, let TG(v) be the distance tree of the complement of G rooted

at v (0-th level) and let S1, S2, . . . , Skv
be a partition of the vertices in the 2nd level of the tree, where

two vertices belong to the same Si iff they have the same neighbors in the 1st level of TG(v). Then, avb is

a P3 participating in a P4 of G iff ab /∈ E(G) and either exactly one of a, b belongs to the 2nd level and

the other to the 3rd level of TG(v), or both a and b belong to the 2nd level but they are in different sets of

the partition S1, S2, . . . , Skv
.

Lemma 2.2 implies that for a graph G on n vertices and m edges, the P3s participating in P4s of G can

be computed in O(nm) time and O(n + m) space because the number of vertices in all the levels, but the

0th and the 1st, of the distance tree TG(v) does not exceed the degree of v in G; thus, considering pairs of

vertices located in these levels takes O(
∑

v deg2(v)) = O(nm) time, where deg(v) denotes the degree

of v in the graph G [23].

Since the vertices in the 2nd and 3rd level of TG(v) form a subset of the neighborhood of v, we can

give a more unified criterion for deciding whether a P3 avb participates in a P4 of G by considering the

following partition of N(v):

⊲ the partition of the vertices in the 2nd level of TG(v) into S1, . . . , Skv
as described above;

⊲ all the vertices in the 3rd level of TG(v) are placed in a set Skv+1;

⊲ all remaining vertices in N(v) are placed in a set S0 (no such vertex a forms a P3 avb participating

in P4s of G for any vertex b of G).

Then, Lemma 2.2 can be equivalently stated as follows:

Lemma 2.3 For each vertex v of a graph G, let TG(v) be as in Lemma 2.2 and let S0, S1, . . . , Skv
, Skv+1

be the partition described above. Then, for any a, b ∈ N(v) such that a ∈ Si and b ∈ Sj , avb is a P3

participating in a P4 of G if and only if ab /∈ E(G), i 6= 0, j 6= 0, and i 6= j.
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3 Recognition of Bipolarizable Graphs

The definition of bipolarizable graphs implies that they can be efficiently recognized as soon as the wings

of all the P4s have been computed. The method described in [23] for computing all the P3s participating

in P4s of a given graph does not seem to extend to produce within the same time complexity which edge

of the P3 is the rib and which is the wing of the P4. However, in the case of bipolarizable graphs, we take

advantage of Lemma 2.1 in order to achieve their efficient recognition. Indeed, since the bipolarizable

graphs do not contain the house graph, A, or D6 (see Figure 1), Lemma 2.1 implies the following result.

Lemma 3.1 Let G be a bipolarizable graph and let abc be a P3 participating in a P4 of G. If bcd is

another such P3, then G contains the P4 abcd.

Proof: If the path abcd is not a P4 then G must contain the edge ad. But this creates a C4 meeting the

conditions of Lemma 2.1; a contradiction. ✷

Then, Lemma 3.1 implies the following corollary.

Corollary 3.1 Let G be a bipolarizable graph and let F be the orientation of G such that the wings of

each P4 of G are oriented towards the endpoints of the P4 and edges that are not the wings of any P4 are

not oriented. Then, for each edge bc of G for which there exist P3s abc and bcd participating in P4s of G,

the edges ab and cd (for all such a and d) get oriented towards a and d respectively.

Proof: Let us consider any such P3 abc; then, because of the existence of the P3 bcd, Lemma 3.1 applies,

and thus abcd is a P4 of G. Therefore, the edge ab is oriented towards a in F , and this holds for all such

a, and the edge cd is oriented towards d in F and this holds for all such d. ✷

The algorithm for the recognition of bipolarizable graphs applies Corollary 3.1. The input graph G is

assumed to be given in adjacency list representation. The algorithm uses two arrays, an array M [ ] and

an array S[ ], of size 2m each. The array M [ ] has entries M [xy] and M [yx], for each edge xy of G; the

entry M [xy] is equal to 1 if there exist P3s xyz participating in P4s of G, and is equal to 0 otherwise. As a

result, for an edge xy, both M [xy] and M [yx] are equal to 1 iff there exist P3s xyz and txy participating

in P4s of G. The array S[ ] too has entries S[xy] and S[yx], for each edge xy of G; the entry S[xy] is

equal to the index number of the partition set of N(y) to which x belongs (see Lemma 2.3). As a result,

a path xyz is a P3 participating in P4s of G iff S[xy] 6= 0, S[zy] 6= 0, and S[xy] 6= S[zy]. In more detail,

the algorithm works as follows.

Bipolarizable Graph Recognition Algorithm

Input: an undirected graph G on n vertices and m edges.

Output: a message as to whether G is a bipolarizable graph or not.

1. Initialize the entries of the arrays M [ ] and S[ ] to 0; for each vertex v, sort the records of the neighbors

of v in v’s adjacency list in increasing vertex index number;

2. Find all the P3s participating in P4s of G; for each such P3 abc, set the entries M [ab] and M [cb] equal

to 1, and appropriately update the entries S[ab] and S[cb];

3. for each edge uv of G such that M [uv] = 1 and M [vu] = 1 do
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(a) traverse the adjacency lists of u and v in lockstep fashion and process the neighbors of v which are

not neighbors of u, and the neighbors of u which are not neighbors of v as follows:

(b) for each neighbor w of v in G which is not adjacent to u do

if S[uv] 6= 0 and S[wv] 6= 0 and S[uv] 6= S[wv]
then {uvw is a P3 in a P4 of G}

if the edge vw has not yet received an orientation

then orient it towards w;

else if it is oriented towards v
then print that G is not a bipolarizable graph; exit;

(c) for each neighbor w of u in G which is not adjacent to v do

if S[vu] 6= 0 and S[wu] 6= 0 and S[vu] 6= S[wu]
then {vuw is a P3 in a P4 of G}

if the edge uw has not yet received an orientation

then orient it towards w;

else if it is oriented towards u
then print that G is not a bipolarizable graph; exit;

4. Check if the directed subgraph
−→
G spanned by the oriented edges contains a directed cycle; if it does

not, print that G is a bipolarizable graph; otherwise, print that it is not.

The correctness of the algorithm follows directly from Corollary 3.1. Observe that for any P4 abcd of

G, the edge bc will be considered in Step 3 of the algorithm, and then the edges ab and cd will be assigned

the desired orientations.

Time and Space Complexity. Step 1 takes O(n + m) time since the sorted adjacency lists can be

obtained through radix sorting an array of all the ordered pairs of adjacent vertices, while Step 2 takes

O(nm) time [23]. Steps 3b and 3c take constant time per such vertex w; it is assumed that the orientation

of an edge is stored in an array of size m for constant-time access and update. For an edge uv, Steps 3b

and 3c may be executed as many as Θ(deg(u) + deg(v)) times, where deg(u) denotes the degree of

vertex u in G. Since Step 3a also takes O(deg(u) + deg(v)) time, Step 3 takes O(nm) time because

∑

uv∈E(G)

(deg(u)+deg(v)) =
∑

uv∈E(G)

deg(u) +
∑

uv∈E(G)

deg(v) =
∑

u∈V (G)

deg(u)·deg(u) = O(nm).

Step 4 can be executed by constructing the directed graph
−→
G and then by applying topological sorting on

it; if the topological sorting succeeds then no directed cycle exists, otherwise there exists a directed cycle.

From this description, it is clear that Step 4 can be completed in O(n + m) time and space. Since the

computation of the P3s participating in P4s takes linear space, the total space needed by the recognition

algorithm is clearly linear in the size of the input graph G.

Summarizing, we obtain the following theorem.

Theorem 3.1 Let G be an undirected graph on n vertices and m edges. Then, our algorithm determines

whether G is a bipolarizable graph in O(nm) time and O(n + m) space.
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The recognition algorithm can be used to produce a bipolarizable ordering of the vertices of a bipolar-

izable graph G. The bipolarizable ordering coincides with the topological ordering of the vertices of the

directed graph
−→
G , possibly extended by an arbitrary ordering of any vertices of G which do not participate

in
−→
G .

3.1 Providing a Certificate

The bipolarizable graph recognition algorithm can be easily augmented so that it provides a certificate

whenever it decides that the input graph G is not bipolarizable; in particular, the algorithm can be made

to return a forbidden subgraph of G in such a case.

As indicated by the algorithm, there are two reasons due to which a given graph G can be found non-

bipolarizable. First, a conflict of orientation may arise on an edge of G which ends up receiving opposite

orientations by different P4s sharing it. Second, if no conflict has arisen, there may be the case that the

directed subgraph
−→
G spanned by the oriented edges contains a directed cycle. Relating these two cases to

the forbidden subgraphs, it is not difficult to see that:

Lemma 3.2 A conflict of orientation arises while orienting the edges of a graph G if and only if G
contains a C5, a house graph, a P6, an A, a C6, or a D6 (see Figure 1).

Proof: It is easy to see that if the graph G contains any of the above graphs then a conflict of orientation

arises; the bottom horizontal edge of the C5 and the house, and the top horizontal edge of P6, A, C6, D6

in Figure 1 receive opposite orientations.

Suppose now that an edge ab receives opposite orientations. Then, G contains P4s abcd and xyab;

clearly y differs from c and d, x differ from both c and y. If d coincides with x, then the vertices a, b, c, d, y
induce a C5 or a house in G. If d differs from x, then if d, y or c, x are adjacent in G a C5 or a house is

induced, otherwise G contains an induced P6, A, C6, or D6. ✷

In the following, we will consider graphs that contain no C5, house, P6, A, C6, or D6. Then, by

Lemma 3.2, the wings of every P4 of G can all be oriented without conflict towards the endpoints of

the P4. The orientation process produces directed and undirected edges; we say that an edge xy is not

oriented towards x, if it is either undirected or directed towards y. The following lemma will be useful

later.

Lemma 3.3 Let G be a graph which contains no C5, house, P6, A, C6, or D6, and whose edges have been

oriented as described above. Suppose further that G contains a cycle bcfg with a single diagonal bf such

that the edge fg is oriented towards f , the edge bg is not oriented towards b, the edge cf is not oriented

towards f , and the diagonal bf is undirected. Then, if ahgf is any P4 of G, the vertices a, b, c, f, g, h
induce in G a subgraph as the one shown on the right in Figure 2 and the edge cf is oriented towards c.

Proof: The cycle bcfg is shown on the left in Figure 2; white arrows indicate potential orientations. It

is easy to see that vertex b is adjacent to both a and h in G: if b was adjacent neither to a nor to h, the

path ahgb would be a P4 with its wing bg oriented away from the endpoint b, in contradiction to the

potential orientation of bg; if b was adjacent to a but not to h, the vertices a, b, f, g, h would induce a

house in G; if b was adjacent to h but not to a, the path ahbf would be a P4 and its wing bf would

have received an orientation. Additionally, ac /∈ E(G): if ac ∈ E(G), the vertices a, c, f, g, h would

induce a house or a C5 in G depending on whether c, h are adjacent or not. Then, ch /∈ E(G) as well,
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b c

fg

-->

a b c

fgh

Fig. 2::

a b c d

efgh

Fig. 3::

for otherwise the path ahcf would be a P4 with its wing cf oriented towards f , in contradiction to the

potential orientation of cf . The above adjacencies imply that the path cfgh is a P4 and thus the edges cf
and gh are oriented towards c and h respectively. ✷

Using Lemma 3.3 we prove the following lemma which is important for locating z-triominoes.

Lemma 3.4 Let G be a graph which contains no C5, house, P6, A, C6, or D6. Then, if G contains

a z-triomino then the directed graph
−→
G exhibits a directed cycle on 4 vertices with a single undirected

diagonal. Conversely, if
−→
G exhibits a directed cycle bgfc (directed from b to g to f to c to b) with a single

undirected diagonal bf , then for any P4s ahgf and bcde of G, the vertices a, b, c, d, e, f, g, h induce a

z-triomino in G.

Proof: (=⇒) Suppose that G contains a z-triomino. Since G contains no C5, house, P6, A, C6, or D6,

each edge of G will receive at most one orientation (Lemma 3.2). Thus, the edges of each z-triomino of G
receive the orientations indicated in Figure 3; that is, for the z-triomino with vertices a, b, c, d, e, f, g, h,

a single directed cycle bcfg is formed. It suffices to show that the diagonal bf is not the wing of any P4

of G and thus receives no orientation. Clearly, it does not get oriented due to a P4 induced by a subset of

the vertices of the z-triomino. Due to symmetry, considering P4s with vertices in addition to the vertices

of the triomino is exhausted to the following three cases (see Figure 3):

(a) the edge bf participates in a P4 xabf : Then, xc ∈ E(G), otherwise the path xabc would be a P4

whose wing bc would be oriented towards b in
−→
G . But then, fcxa would be a P4 with both its wings

oriented away from its endpoints; a contradiction.

(b) the edge bf participates in a P4 xhbf : Then, again xc ∈ E(G), otherwise the path xhbc would be a

P4 whose wing bc would be oriented towards b in
−→
G . And again, fcxh would be a P4 with both its

wings oriented away from its endpoints; a contradiction.

(c) the edge bf participates in a P4 xybf : Then, at least one of xc and yc belongs to E(G), otherwise

the path xybc would be a P4 whose wing bc would be oriented towards b. In fact, yc ∈ E(G), for

otherwise the existence of xc would imply that the vertices x, y, b, c, f induce a house graph in G.

This in turn implies that xc ∈ E(G), otherwise the path xycf would be a P4 whose wing fc would

be oriented towards c. The existence of xc implies the existence of xg and the non-existence of xh
since otherwise the paths gfcx and fcxh would be “badly” oriented P4s respectively. But then, the

subgraph induced by the vertices b, c, x, g, h is a house; a contradiction.

A contradiction has been obtained in each case, which implies that the edge bf is not the wing of any P4

of the graph G and thus it does not receive an orientation.
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(⇐=) Now suppose that the directed graph
−→
G exhibits a directed cycle bgfc with a single undirected

diagonal bf . Lemma 3.3 applies for this cycle in terms of the edge fg and any P4 ahgf of G. Lemma 3.3

also applies for the same cycle in terms of the edge bc and any P4 bcde of G; it is important to observe

that the vertices a, h differ from d, e as they have different neighbors among b, c, f, g. As a result, the

vertices a, b, c, d, e, f, g, h induce a subgraph containing the edges of the z-triomino shown in Figure 3

and potentially edges connecting a, h to d, e. In fact, d and h are not adjacent, otherwise the path cdhg
would be a P4 whose wing cd would be oriented away from the endpoint c. This implies that neither

e, h nor a, d are adjacent, otherwise, there would exist P4s cdeh and dahg, respectively, with their wings

cd and gh oriented away from the endpoint. Finally, a, e are not adjacent either; if they were adjacent,

the path haed would be a P4 whose wing ah would be oriented away from the endpoint h. The above

adjacencies imply that the vertices a, b, c, d, e, f, g, h induce a z-triomino in G. ✷

Additionally, we give below a result of Hertz ([12], Lemma 2.4) which we have paraphrased using our

formalism and terminology:

Lemma 3.5 Let C = vk−1vk−2 · · · v1v0 be a directed cycle on k ≥ 3 vertices without any directed

chord. Let us consider the directed path vn−1vn−2 · · · v0 on n ≤ k consecutive vertices of C. Let

ri, si (1 ≤ i ≤ n − 1) be any vertices such that the paths sirivivi−1 are P4s of G. Then, the vertices

v0, v1, . . . , vn−1, r1, r2, . . . , rn−1, and s1, s2, . . . , sn−1 induce a quasi n-wheel in G.

(We note that in Lemma 3.5 it is implied that no conflict of orientation has arisen and that the graph G
contains all chords connecting the k vertices of the directed cycle C.) A quasi k-wheel is what remains

from a k-wheel with vertex set {v0, v1, . . . , vn−1, r0, r1, . . . , rn−1, s0, s1, . . . , sn−1} when vertices r0

and s0 are removed. Hertz used Lemma 3.5 to establish his main theorem; in the proof, he shows the

following:

Lemma 3.6 Let C = vn−1vn−2 · · · v1v0 be a directed cycle on n ≥ 3 vertices without any directed

chord. Let ri, si (0 ≤ i ≤ n − 1) be any vertices such that the paths sirivivi−1 are P4s of G. Then, the

vertices v0, v1, . . . , vn−1, r0, r1, . . . , rn−1, and s0, s1, . . . , sn−1 induce an n-wheel in G.

Finally, we can also show the following results.

Lemma 3.7 Let G be a graph which contains no C5, house, P6, A, C6, or D6, and whose edges have

been oriented as described earlier yielding the directed graph
−→
G . Then:

(i) G does not contain a C4 bcfg such that the edge fg is oriented towards f , the edge bc is not oriented

towards c, and the edge cf is not oriented towards f .

(ii) If
−→
G contains a directed Ck where k ≥ 5 (i.e., there are no directed chords), the vertices of the cycle

induce a complete graph in G.

Proof: (i) Suppose for contradiction that the graph G contains such a C4. The orientation of the edge fg
implies that G contains an induced P4, say, ahgf , with wing fg. Then, as in the proof of Lemma 3.3, we

can show that c is adjacent neither to a nor to h. If ac ∈ E(G), then G would contain a house or a C5

depending on whether c, h are adjacent or not. Since a, c are not adjacent then c, h are not adjacent either,

otherwise the path ahcf would be a P4 whose wing cf would be oriented towards f , in contradiction

to the potential orientation of cf given in the statement of the lemma. Finally, bh ∈ E(G) otherwise
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the path cbgh would be a P4 whose wing cb would be oriented towards c, again in contradiction to the

potential orientation of bc. But then, the vertices b, c, f, g, h induce a house in G; a contradiction.

(ii) Suppose for contradiction that the directed graph
−→
G contains a directed Ck on k ≥ 5 vertices and two

of them are not adjacent in G; without loss of generality, we assume that the Ck is v0v1 · · · vk−1 (oriented

from v0 to v1 and so on to vk−1 and back to v0) and that v0vt /∈ E(G) where 1 < t < k − 2. Let

q = max
0≤i<t

{ i | vivt /∈ E(G) and vi+1vt ∈ E(G)};

we note that q is well defined since v0vt /∈ E(G) and vt−1vt ∈ E(G).
Next, we show that there exist vertices vp, vr such that the vertices vp, vq, vq+1, vr appear in that order

around the directed Ck of the graph
−→
G and induce in G the cycle vpvqvq+1vr where vpvq+1 ∈ E(G)

and vqvr /∈ E(G); see Figure 4(a). We consider a chordless path ρ connecting vt to vq in the sub-

graph G[{vt, vt+1, . . . , vk−1, v0, v1, . . . , vq}]; let us suppose that ρ = vtvi1vi2 · · · viℓ
vq, where ℓ ≥ 1

since vqvt /∈ E(G). If ℓ = 1 then we have the cycle vqvq+1vtvi1 where vqvt /∈ E(G). If vi1vq+1 /∈ E(G)
then the cycle vqvq+1vtvi1 meets the conditions of statement (i) of this lemma for b = vi1 , c = vt,

f = vq+1, and g = vq (note that the edges vq+1vt, vtvi1 , and vi1vq are either chords or they are directed

towards vt, vi1 , and vq, respectively); since this is impossible according to statement (i), we conclude

that vi1vq+1 ∈ E(G). Then, we have the desired cycle for vp = vi1 and vr = vt. Suppose now that

ℓ ≥ 2. Let us consider that vi0 = vt and let s = max0≤j≤ℓ{ j | vij
vq+1 ∈ E(G) }; s is well defined

since the edge vi0vq+1 = vtvq+1 belongs to E(G). Since G contains no C5, C6, or P6, and effectively

no Ci for i ≥ 5, it follows that s ≥ ℓ − 1. But s 6= ℓ − 1, otherwise the cycle vqvq+1viℓ−1
viℓ

would

meet the conditions of statement (i) of this lemma for b = viℓ
, c = viℓ−1

, f = vq+1, and g = vq, and that

would be impossible; recall that the path ρ is chordless. Thus, s = iℓ. Then, vq+1viℓ−1
∈ E(G); if not,

then depending on whether vq+1viℓ−2
∈ E(G) or not, G would contain either a house or a Ci for i ≥ 5,

respectively. Therefore, we have the desired cycle for vp = viℓ
and vr = viℓ−1

.

The existence of a cycle vpvqvq+1vr such that vpvq+1 ∈ E(G) and vqvr /∈ E(G) implies that we can

find vp, vr such that vp ∈ {vr+1, vr+2, . . . , vk−1, v0, . . . , vq−1} and the length of the path vrvr+1 · · · vp

is minimized. The properties of the cycle vpvqvq+1vr imply that Lemma 3.3 applies on it for b = vp,

c = vr, f = vq+1, and g = vq (Figure 4(a)); in turn, the lemma implies

(i) that for any P4 ahvqvq+1 of G, the vertices a, vp, vr, vq+1, vq, h induce a subgraph isomorphic to

the one shown on the right in Figure 2, and

(ii) that the edge vq+1vr is oriented towards vr.
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The latter fact implies that vr = vq+2, since among all the edges of G connecting vertices of the cy-

cle v0v1 · · · vk only the edges of the cycle are directed (Figure 4(b)). We distinguish the following cases:

a. vp = vq+3: In this case, the edge vq+2vp is directed towards vp and then Lemma 3.3 applies on the

cycle vpvqvq+1vq+2 for b = vq+1, c = vq, f = vp, and g = vr, implying that the edge vpvq is oriented

towards vq; however, this contradicts the fact that the cycle v0v1 · · · vk−1 is of length k ≥ 5 with no

directed chords.

b. vq+1vq+3 /∈ E(G): Then, the orientations of the edges vqvq+1, vq+1vq+2, and vq+2vq+3 imply that

vqvq+3 ∈ E(G), i.e., the vertices vq, vq+1, vq+2, vq+3 induce a C4 in G; this leads to a contradiction

as well since Lemma 3.7 (statement (i)) applies on this C4.

c. vp 6= vq+3 and vq+1vq+3 ∈ E(G): Then, vqvq+3 /∈ E(G) for otherwise G would contain the

cycle vqvq+1vq+2vq+3, contradicting the minimality of the choice of vp, vr. Since vqvq+3 /∈ E(G),
then for the same reason, vpvq+3 /∈ E(G); otherwise, G would contain the cycle vpvqvq+1vq+3.

Thus, the situation is as shown in Figure 4(c) where vq+3 may also be adjacent to a, h in G. Since

the chord vq+1vq+3 is undirected, the path avpvq+1vq+3 is not a P4, and thus avq+3 ∈ E(G). But

then, the vertices a, h, vq, vq+1, vq+3 induce either a house or a C5 depending on whether h, vq+3 are

adjacent in G or not, a contradiction.

We reached a contradiction in each case, and thus the directed graph
−→
G cannot contain a directed Ck,

where k ≥ 5, such that the vertices of the cycle do not induce a complete graph in G. ✷

The above lemmata suggest the following additions to our bipolarizable graph recognition algorithm so

that a forbidden subgraph is returned whenever the input graph G is deemed non-bipolarizable:

A. a conflict of orientation is found on an edge vw (Steps 3.2, 3.3):

A.1 locate P4s abvw and vwxy of G;

A.2 if a = y
then return as forbidden subgraph the subgraph G[{a, b, v, w, x}];
else return as forbidden subgraph the subgraph G[{a, b, v, w, x, y}];

B. a directed cycle is detected in the directed graph
−→
G (Step 4):

B.1 locate a directed cycle with no directed chords;

B.2 if this is a directed cycle bgfc with a single undirected diagonal bf
then locate P4s ahgf and bcde of G;

return as forbidden subgraph the subgraph G[{a, b, c, d, e, f, g, h};
else {the vertices of the cycle induce a complete subgraph of G}

return the k-wheel built around the directed cycle, where k is the length of the cycle;

The correctness of Steps A.1 and A.2 follows from Lemma 3.2 and its proof, while the correctness of

Steps B.1 and B.2 follows from Lemmata 3.4, 3.6, and 3.7. In the following, we describe in detail, the

components required to efficiently carry out the above computations.

3.1.1 Locating a P4 abcd when given an edge ab.

We assume that with each edge of G, we store pointers to the vertex records of its endpoints; thus, from

the edge ab, we can access a and b in constant time. Then, we find the sought P4 abcd as follows:



Recognizing Bipolarizable and P4-simplicial Graphs 243

1. store the neighbors of the vertices a and b in an array each for constant time adjacency tests;

2. for each edge uw of G do

if u is adjacent to b but not to a and w is adjacent neither to a nor to b
then the sought P4 is the path abuw; return;

if u is adjacent neither to a nor to b and w is adjacent to b but not to a
then the sought P4 is the path abwu; return;

The correctness of the computation is a direct consequence of the adjacencies of the vertices a, b, u, w.

3.1.2 Locating a directed cycle without directed chords.

To locate a directed cycle in the directed subgraph
−→
G spanned by the oriented edges of G, we apply

depth-first search on
−→
G and obtain an ordered list L of the vertices of such a cycle. Then, in order to

isolate a directed cycle with no directed chords, we use the following procedure get c-d-cycle(L) on L.

The procedure clips portions of the list L until it obtains a directed cycle without any directed chords, as

desired. We assume that each record in the list is initially associated with its rank in the list L. These

integers will not be updated, and, due to clipping, they will not match the current ranks; nevertheless, they

will reflect the order of the vertex records along the directed cycle stored in L at any given time.

get c-d-cycle(L)

for each vertex x in order in the list L do

find the vertex y, if any, such that the edge xy is directed towards x, and y exhibits the

smallest “rank” larger than x’s;

if no such vertex y exists

then find the vertex z, if any, such that the edge xz is directed towards z, and z exhibits

the largest “rank” larger than x’s;

if such a vertex z exists

then clip the list L by removing any vertex records between x and z;

else find the vertex z, if any, such that the edge xz is directed towards z, and z exhibits

the largest “rank” larger than x’s and smaller than y’s;

if no such vertex z exists

then clip the list L by removing any vertex records to the left of x and to the

right of y;

else clip the list L by maintaining the vertex record for x followed by those

between z and y inclusive;

x z x

y

z x

z

y

Fig. 5::
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The vertices that remain in the list L after the procedure get c-d-cycle(L) has completed induce a directed

cycle without directed chords in the directed subgraph
−→
G . The correctness of the computation follows

easily: the three cases of clipping are illustrated in Figure 5, where the dashed edge at the top indicates the

edge directed from the last vertex of the list L to its first vertex and the shaded regions are the portions of

the list L that are removed during the processing of vertex x in each case. It is important to observe that

the clipping indeed maintains the ordering of the “ranks” of the vertices along the list L, and that after a

vertex x has been processed the resulting list L induces a directed cycle without directed chords incident

on x.

3.1.3 Locating a k-wheel.

If the directed cycle in the list L that the procedure get c-d-cycle( ) has located is not a cycle on 4 vertices

with a single diagonal but instead is a Ck (k ≥ 3) induced by the vertex set P = {v0, v1, . . . , vk−1}
in order along the Ck, we can obtain the complete k-wheel built around the Ck. If we try to find a

P4 sirivivi−1 for each pair vi, vi−1, this might require Ω(k(n + m)) time, which may be superlinear

in max{n, m}. Instead, we can obtain a linear time complexity by using an array A[ ] of size n and by

working as follows:

1. mark the entries of A[ ] corresponding to the vertices v0, v1, . . . , vk−1 of the set P ;

form empty sets R0, R1, . . . , Rk−1 and S0, S1, . . . , Sk−1;

2. for each vertex x /∈ P do

px ← number of vertices in P which are neighbors of x in G;

if px = k − 1
then if the only vertex in P which is not a neighbor of x in G is vi−1 mod k

then insert x in the set Ri;

if px = k − 2
then if the only vertices in P which are not neighbors of x in G are vi, vi−1 mod k

then insert x in the set Si;

3. let B[ ] be an empty array of size n;

for i = 0, 1, . . . , k − 1 do

mark the entries of B[ ] corresponding to the vertices in the set Si;

for each vertex w ∈ Ri do

for each neighbor z of w in G do

if B[z] is marked {z ∈ Si}
then ri ← w; si ← z;

unmark the entries of B[ ] corresponding to the vertices in Si;

proceed with next value of i;

4. the vertices in P and the collected vertices ri and si induce a k-wheel in G.

It is important to observe that the vertex sets R0, R1, . . . , Rk−1 and S0, S1, . . . , Sk−1 are distinct from

one another and from P due to their adjacencies to the vertices in P ; thus, storing all these sets in linked

lists takes O(n) space. Moreover, for each i, the vertices vi, vi−1, ri, si induce a P4 sirivivi−1 in G; thus,

by Lemma 3.6, the process indeed finds a wheel.
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3.1.4 Time and Space Complexity.

In light of Section 3.1.1, Step A.1 clearly takes O(n + m) time and space, while Step A.2 takes O(1)

time and space. The application of depth-first search in the directed graph
−→
G also takes O(n + m) time

yielding the list L. Linear time and space is required by the execution of the procedure get c-d-cycle(L)

as well: identifying the vertices y and z for each vertex x in L takes time proportional to the degree of x
in G, assuming that each directed edge has been marked with its assigned orientation; then, clipping the

list can be done in constant time if L is maintained as a doubly connected list. In total, Step B.1 takes

O(n + m) time and space.

The time taken by Step B.2 includes O(1) time to test if the located directed cycle is a cycle on 4 ver-

tices with a single undirected diagonal, and either O(n + m) time to locate the P4s ahgf and bcde
or the time to locate the k-wheel. Steps 1and 4of the procedure to locate a k-wheel take O(n) time,

Step 2takes O(n+m) time (the number px is computed by traversing the adjacency list of x and counting

the number of x’s neighbors in the set P ), while Step 3takes O
(

n +
∑

i

(

|Si| +
∑

w∈Ri
deg(w)

))

=

O
(

n +
∑

x∈V (G) deg(x)
)

= O(n + m) time since the sets Ri and Si are disjoint; by deg(x) we denote

the degree of x in G. In addition to the adjacency list representation of the graph G, the space required by

Step B.2 is O(n).

Therefore, we have the following result:

Theorem 3.2 Let G be an undirected graph on n vertices and m edges. The bipolarizable graph recogni-

tion algorithm presented in this section can be augmented to provide a forbidden subgraph in G, whenever

it decides that G is not bipolarizable, in O(n + m) time and O(n + m) space.

4 Recognition of P4-simplicial Graphs

Our P4-simplicial graph recognition algorithm relies on the corresponding algorithm of Hoàng and Reed

[16]; our contribution is that we restate the main condition on which their algorithm is based in terms of

P3s participating in P4s of the input graph, and we show how to efficiently take advantage of it in order to

achieve an O(nm)-time complexity. As described in the introduction, their algorithm works as follows:

it initially sets H := V (G) and then it iteratively identifies a vertex x in H such that G does not contain

a P4 of the form abxc with b, c ∈ H , and removes it from H; the graph G is P4-simplicial iff the above

process continues until H becomes the empty set.

It is not difficult to see that the necessary property for a vertex x to be removed from H can be equiva-

lently stated as follows:

Property 4.1 Let H be the current set of vertices of a given graph G. Then, a vertex x can be removed

from H if and only if there does not exist any P3 bxc participating in a P4 of G with b, c ∈ H .

In light of Property 4.1, we can obtain an algorithm for deciding whether a given graph G is P4-

simplicial by keeping count, for each vertex v ∈ H , of the number of P3s bvc with b, c ∈ H which

participate in P4s of G, and by removing a vertex x from H whenever the number of such P3s associated

with x is 0. The proposed algorithm implements this idea; it takes advantage of the computation of the P3s

in P4s of G in O(nm) time, and maintains an array NumP3[ ] of size n, which stores for each vertex v in

H the number of P3s bvc which participate in P4s of G and have b, c ∈ H . The input graph G is assumed

to be given in adjacency list representation. In more detail, the algorithm works as follows.
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P4-simplicial Graph Recognition Algorithm

Input: an undirected graph G on n vertices and m edges.

Output: a message as to whether G is a P4-simplicial graph or not.

1. Collect all the vertices of G into a set H;

make a copy A[v] of the adjacency list of each vertex v of G while attaching at each record of the list

an additional field set;

2. for each vertex v of G do

a) compute the partition of the vertices in N(v) into sets S0, S1, . . . , Skv
, Skv+1 as described in

Lemma 2.3, and update the fields set of the records in the adjacency list A[v] of v;

b) compute the number of P3s avb participating in P4s of G and assign this number to NumP3[v];

3. Collect in a list L the vertices v for which NumP3[v] = 0;

4. while the list L is not empty do

a) remove a vertex, say, x, from L;

b) for each vertex u adjacent to x in G do

if u belongs to H
then traverse the adjacency list A[u] of u and let sx be the value of the field set for x;

if sx 6= 0
then {there may exist P3s xuw participating in P4s of G}

for each vertex w in the adjacency list A[u] of u do

sw ← value of the field set for the vertex w;

if w ∈ H and sw 6= 0 and sw 6= sx

then {xuw is such a P3 with x, u, w ∈ H}
NumP3[u]← NumP3[u]− 1;

if NumP3[u] = 0
then insert u in the list L;

c) remove x from the set H;

5. if the set H is empty

then print that G is a P4-simplicial graph;

else print that G is not a P4-simplicial graph;

To ensure correct execution, the algorithm maintains the following invariant throughout the execution of

Step 4.

Invariant 4.1 At the beginning of every iteration of the while loop in Step 4 of the algorithm, for each

vertex v in H , NumP3[v] is equal to the number of P3s bvc participating in P4s of G with b, c ∈ H .

Proof: The proof proceeds inductively in the number of iterations of the while loop. Step 2 clearly implies

that the invariant holds at the begin of the first iteration of the loop, since H = V (G). Suppose now that

the invariant holds at the beginning of the i-th iteration, where i ≥ 1; we will show that it also holds at



Recognizing Bipolarizable and P4-simplicial Graphs 247

the beginning of the (i + 1)-st iteration. Let Hi denote the current value of H at the beginning of the

i-th iteration and let x be the vertex removed from L during the i-th iteration; then, Hi+1 = Hi − {x}.
Clearly, the vertices v for which NumP3[v] may be changed from the i-th to the (i + 1)-st iteration are

those in Hi+1 ∩ N(x); indeed, for any vertex w in Hi+1 − N(x) = Hi − N(x) − {x}, any P3 awb
with a, b ∈ Hi will have a, b, w ∈ Hi+1, since a, b 6= x, and thus NumP3[w] will remain unchanged.

Now, let us consider a vertex v ∈ Hi+1 ∩N(x). At the beginning of the (i + 1)-st iteration, NumP3[v]
must be equal to the number of P3s avb participating in P4s of G with a, b ∈ Hi+1; this is precisely the

value of NumP3[v] at the beginning of the i-th iteration minus the number of P3s xvz participating in

P4s of G with z ∈ Hi. Step 4b identifies these P3s and decrements NumP3[v] by 1 for each one of

them. Note that NumP3[v] will be decremented exactly once for each P3 avb: if we assume, without

loss of generality, that a is removed from H before b, then NumP3[v] will be decremented during the

processing of a; when b is processed, the P3 avb will not be taken into account, even if v still belongs to

H , because a /∈ H . ✷

Then, the correctness of the algorithm follows from the correctness of the algorithm of Hoàng and

Reed, from Lemma 2.3, Property 4.1, and the fact that at any given time the list L contains precisely those

vertices that can be removed from H (a vertex x is inserted in L if and only if NumP3[x] = 0, i.e., there

does not exist any P3 bxc participating in a P4 of G with b, c ∈ H).

Time and Space Complexity. The set H can be implemented by means of an array M [ ] of size n,

where M [v] = 1 if v ∈ H and 0 otherwise; in this way, insertion, deletion, and membership queries for

any vertex of G can be answered in constant time, while the emptiness of H can be checked in O(n)
time. Then, Step 1 takes O(n + m) time, Step 4c takes O(1) time per vertex removed, and Step 5 O(n)
time. Step 2 takes O(nm) time [23], while Step 3 takes O(n) time. As a vertex is inserted at most once

in the list L, the time complexity of Step 4 is O

(

∑

x

(

1 +
∑

u∈N(x) deg(u)
)

)

, where deg(u) denotes

the degree of u in G. Since
∑

u∈N(x) deg(u) = O(m), the time complexity of Step 4 is O(nm). The

computation of the P3s participating in P4s takes linear space, and thus the total space needed by the

recognition algorithm is clearly linear in the size of the input graph G.

Summarizing, we obtain the following theorem.

Theorem 4.1 Let G be an undirected graph on n vertices and m edges. Then, our algorithm determines

whether G is a P4-simplicial graph in O(nm) time and O(n + m) space.

4.1 Providing a Certificate

As in the case of the bipolarizable graph recognition algorithm, the above algorithm can be made to return

a certificate whenever it decides that the input graph G is not P4-simplicial. In particular, it could return

the value of the set H , which would indicate a subgraph of G none of whose vertices can be removed in

the sense of Property 4.1. Clearly, this does not require any additional computation time and space.

However, it would be more interesting if the algorithm located a minimal such subset H ′ of H , that

is, a subset H ′ such that every vertex y of H ′ forms a P3 xyz participating in a P4 of the input graph

with x, z ∈ H ′. To see the benefits of this, consider for example that the input graph G contained two

domino graphs sharing an edge. Since the domino graph is a forbidden subgraph for the class of P4-

simplicial graphs, the algorithm would stop, would report that G is not P4-simplicial and would return

a set H of vertices which would be a superset of the set of vertices of both domino graphs. If however
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Fig. 6: Some forbidden subgraphs for the class of P4-simplicial graphs.

a minimal such set of vertices were returned, then one would be very close to identifying a forbidden

subgraph in G. This approach, although very interesting, is hindered in part by the fact that no complete

characterization of the P4-simplicial graphs by forbidden subgraphs is currently available in the literature.

As a first attempt towards obtaining such a characterization, we found in an exhaustive fashion that all the

forbidden subgraphs for the class of P4-simplicial graphs on up to 7 vertices are those shown in Figure 6.

5 Class Inclusions and Recognition Time Complexities

Figure 7 shows a diagram of class inclusions for a number of perfectly orderable classes of graphs and

the currently best time complexities to recognize members of these classes. For definitions of the classes

shown, see [2; 8]; note that the P4-free and the chordal graphs are also known as co-graphs and triangu-

lated graphs respectively. In the diagram, there exists an arc from a class A to a class B if and only if

B is a proper subset of A. Hence, if two classes are not connected by an arc, then each of these classes

contains graphs not belonging to the other class (there are such sample graphs for each pair of non-linked

classes).

Most of these class inclusions can be found in [2] where a similar diagram with many more graph

classes appears; Figure 7 comes from a portion of the diagram in [2] augmented with the introduction

of the inclusion relations for the classes of P4-simplicial, bipolarizable, and P4-indifference graphs, as

described in Lemmata 5.1-5.3. We will show next that the class of weak bipolarizable graphs [25] is a

proper subset of the class of P4-simplicial graphs. In fact, we show a slightly stronger result as established

in the following proposition.

Proposition 5.1 Let G be a weak bipolarizable graph and let v be a vertex of G. Then, G admits a

P4-simplicial order ≺ on its vertices such that v ≺ x for any vertex x of G other than v.

Proof: We apply induction on the size of the graph by taking advantage of Theorem 1 of [25] which states

that a graph G is weak bipolarizable if and only if every induced subgraph of G is chordal or contains a

homogeneous set. For the basis step, it is not difficult to verify that every weak bipolarizable graph on

up to 3 vertices admits a P4-simplicial order as described, since G does not contain any P4s. Next, we

assume that the proposition holds for all weak bipolarizable graphs on up to k ≥ 3 vertices; we will show

that any weak bipolarizable graph on k + 1 vertices admits a P4-simplicial order as described. Let G be
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Fig. 7: Class inclusions and recognition time complexities.

such a graph. Then, if G is chordal, G admits such a P4-simplicial order: simply consider the reverse of

the perfect elimination ordering of G’s vertices produced by running the LexBFS algorithm on G starting

at v [27]; note that if the ordering returned by LexBFS is (v1, v2, . . . , vn), then vi is simplicial with respect

to the subgraph G[{vi, . . . , vn}] and thus cannot form a P3 vjvivℓ with j, ℓ > i participating in a P4 of G
(see Property 4.1).

If G is not chordal, then from [25] we have that G contains a homogeneous set. Let S be a minimal

such homogeneous set and let u be a vertex in S; if v ∈ S, we choose u to be v. Then, the subgraph Gu

of G induced by the vertices in
(

V (G)− V (S)
)

∪ {u} is also a weak bipolarizable graph which contains

v and has at most k vertices, since |V (S)| ≥ 2. By our inductive hypothesis, Gu admits a P4-simplicial

order ≺ such that v ≺ x for all vertices x ∈ V (Gu) − {v}. On the other hand, the subgraph G[S] is

chordal, because it is a subgraph of a weak bipolarizable graph and S was chosen to be minimal [25]. If

we replace u in the P4-simplicial order≺ of the subgraph Gu by the reverse of the ordering of the vertices

of S which implements a perfect elimination scheme on S produced by the LexBFS algorithm starting at

u, we are guaranteed to obtain a P4-simplicial ordering of the vertices of G as desired. The inductive proof

is complete, and thus every weak bipolarizable graph admits a P4-simplicial order meeting the conditions

of the statement of the proposition. ✷

We are now ready to prove the inclusion relations of the class of P4-simplicial graphs.

Lemma 5.1 The class of P4-simplicial graphs is a proper subset of the class of brittle graphs and a

proper superset of the class of weak bipolarizable graphs.
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Proof: The fact that P4-simplicial ⊆ Brittle has been shown in [16]; to see that the subset relation is

proper, simply consider the graph D6 of Figure 1 which is brittle but not P4-simplicial. On the other

hand, Proposition 5.1 establishes that Weak Bipolarizable ⊆ P4-simplicial. The proper inclusion follows

from the fact that the house graph is P4-simplicial but not weak bipolarizable. ✷

Regarding the relation of P4-simplicial and the HHD-free and co-chordal graphs, note that the graph D6

of Figure 1 is both HHD-free and co-chordal but is not P4-simplicial whereas the house graph and P5 are

P4-simplicial but not HHD-free and not co-chordal respectively.

Lemma 5.2 The class of bipolarizable graphs is a proper subset of the class of weak bipolarizable graphs

and a proper superset of the classes of P4-sparse and split graphs.

Proof: The fact that Bipolarizable ⊂ Weak Bipolarizable has been established in [25]. To establish the

relationship of P4-sparse and bipolarizable graphs, we note that none of the forbidden subgraphs for

the class of bipolarizable graphs is P4-sparse; see Figure 1 and note that a k-wheel of order k ≥ 2
contains the P5 s0r0v0vk−1r1. This implies that any graph which is not bipolarizable cannot be P4-

sparse, or conversely that P4-sparse ⊆ Bipolarizable. The proper inclusion follows from the fact that a

P5 is bipolarizable but not P4-sparse.

It is not difficult to see that Split ⊆ Bipolarizable; the vertex set of a split graph can be partitioned into

an independent set and a clique, which implies that any P4 of a split graph has its midpoints in the clique

and its endpoints in the independent set. Thus any ordering of the vertices of a split graph where all the

vertices of the clique precede all the vertices of the independent set gives a bipolarizable ordering of the

graph. The proper inclusion follows from the fact that C4 is bipolarizable but not split. ✷

Lemma 5.3 The class of P4-indifference graphs is a proper subset of the class of weak bipolarizable

graphs and a proper superset of the class of P4-reducible graphs.

Proof: The fact that P4-indifference ⊂ Weak Bipolarizable follows from the fact that the set of forbidden

subgraphs for the class of weak bipolarizable graphs is a proper subset of the set of forbidden subgraphs

for the class of P4-indifference graphs (compare [25] and [15]).

To see that P4-reducible ⊆ P4-indifference, we recall that every vertex of a P4-reducible belongs to at

most one P4, which implies that the P4s of a P4-reducible graph are vertex-disjoint. Thus, we can create

a linear order of the vertices of such a graph by concatenating the vertices of each P4 at a time, in the

order they appear along the P4, and by appending any remaining vertices; then, the resulting ordering is a

P4-indifference ordering of the vertices of the graph. The proper inclusion follows from the fact that the

P5 is a P4-indifference graph but not P4-reducible. ✷

The non-inclusion relation between bipolarizable and co-chordal graphs follows from the counterex-

amples for the non-inclusion relation of the P4-simplicial and co-chordal graphs. A non-inclusion relation

also holds for the bipolarizable and the chordal graphs (consider a C4 and the z-triomino) and for the bipo-

larizable and the P4-indifference graphs (consider the forbidden subgraphs F5 of [15] and the z-triomino).

In Figure 7, we have also partitioned the depicted classes of graphs based on the time complexities

of the currently best recognition algorithms: see [7; 28] for the O(min{m2, n3 log2 n})-time complexity

range, [24] for the O(min{nmα(n), nm + n2 log n})-time complexity range, [23; 25] for the O(nm)-
time complexity range, and [10; 26; 19; 20; 5; 27; 9; 11] for the O(n + m)-time range. We note that the

algorithm of [25] for the recognition of weak bipolarizable graphs has a stated time complexity of O(n3);
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since O(n + m) time suffices to determine whether a graph is chordal and to compute a homogeneous set

(by means of modular decomposition [21; 6]), if one exists, the stated time complexity can be seen to be

O(nm).

6 Concluding Remarks

We have presented recognition algorithms for the classes of bipolarizable (also known as Raspail) and

P4-simplicial graphs running in O(nm) time, where n and m are the number of vertices and of edges of

the input graph. Our proposed algorithms are simple, use simple data structures and require O(n + m)
space; the algorithms can also be augmented so that they return a certificate, whenever they decide that

the input graph is not bipolarizable or P4-simplicial, in O(n + m) additional time and space. We have

also presented results on class inclusions and recognition time complexities for a number of perfectly

orderable classes of graphs.

We leave as an open problem the designing of o(nm)-time algorithms for recognizing bipolarizable

and/or P4-simplicial graphs. In light of the linear-time recognition of P4-indifference graphs [10; 26], it

would be worth investigating whether the recognition of P4-comparability, P4-simplicial, and bipolari-

zable graphs is inherently more difficult; it must be noted that the approach used in [10; 26] is different

from those used for the recognition of the remaining classes as it reduces in part the problem to the

recognition of interval graphs which can be carried out in linear time.

Finally, another interesting open problem is that of obtaining a characterization of the P4-simplicial

graphs by forbidden subgraphs. We note that any forbidden subgraph for the class of P4-simplicial graphs

other than a Ck for k ≥ 5, an A, and a D6 contains an induced house (see Figure 6): if it did not, then it

would be weak bipolarizable [25], and hence a P4-simplicial graph due to Lemma 5.1.
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[18] C.T. Hoàng and R. Sritharan, Finding houses and holes in graphs, Theoret. Comput. Sci. 259, 233–

244, 2001.



Recognizing Bipolarizable and P4-simplicial Graphs 253

[19] B. Jamison and S. Olariu, A linear-time recognition algorithm for P4-sparse graphs, SIAM J. Com-

put. 21, 381–407, 1992.

[20] B. Jamison and S. Olariu, A linear-time algorithm to recognize P4-reducible graphs, Theoret. Com-

put. Sci. 145, 329–344, 1995.

[21] R.M. McConnell and J. Spinrad, Linear-time modular decomposition and efficient transitive orien-

tation, Proc. 5th Annual ACM-SIAM Symp. on Discrete Algorithms (SODA’94), 536–545, 1994.

[22] M. Middendorf and F. Pfeiffer, On the complexity of recognizing perfectly orderable graphs, Dis-

crete Math. 80, 327–333, 1990.

[23] S.D. Nikolopoulos and L. Palios, Algorithms for P4-comparability graph recognition and acyclic

P4-transitive orientation, Algorithmica 39, 95–126, 2004.

[24] S.D. Nikolopoulos and L. Palios, Recognizing HHD-free and Welsh-Powell opposition graphs, Proc.

30th Int. Workshop on Graph-Theoretic Concepts in Computer Science (WG’04), LNCS 3353, 105–

116, 2004.

[25] S. Olariu, Weak bipolarizable graphs, Discrete Math. 74, 159–171, 1989.

[26] R. Rizzi, On the recognition of P4-indifferent graphs, Discrete Math. 239, 161–169, 2001.

[27] D.J. Rose, R.E. Tarjan, and G.S. Lueker, Algorithmic aspects of vertex elimination on graphs, SIAM

J. Comput. 5, 266–283, 1976.
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