
Fourth Colloquium on Mathematics and Computer Science DMTCS proc. AG, 2006, 203–214

Complete k-ary trees and generalized
meta-Fibonacci sequences

Chris Deugau1 and Frank Ruskey1 †

1Dept. of Computer Science, University of Victoria, CANADA

We show that a family of generalized meta-Fibonacci sequences arise when counting the number of leaves at the largest
level in certain infinite sequences of k-ary trees and restricted compositions of an integer. For this family of generalized
meta-Fibonacci sequences and two families of related sequences we derive ordinary generating functions and recurrence
relations.
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1 Introduction
A meta-Fibonacci recurrence relation is one of the form

a(n) = a( x(n) − a(n − 1) ) + a( y(n) − a(n − 2) ),

where x(n) and y(n) are certain linear functions. These recurrence relations have been investigated by
several authors in recent years, but their general behavior remains rather mysterious (e.g., Guy [7][Problem
E31], Pinn [13]). Perhaps the most well-behaved sequences in the family occur when x(n) = n and
y(n) = n − 1. For a given parameter s ≥ 0, Jackson and Ruskey [9] showed that the sequences with
x(n) = y(n) + 1 = n − s for s ≥ 0 are almost as well-behaved. The case of s = 1 was studied before by
Tanny [14]. The case of s = 0 was considered before by Conolly [4].

Prior to the paper [9], no combinatorial interpretation was known for these sequences (i.e., they were not
known to be the solution to some natural counting problem), nor were their generating functions known.
The combinatorial interpretation given in [9] was based on binary trees. This paper extends the results of
[9] to k-ary trees.

We will refer to the sequences (a(1), a(2), . . .) of solutions to the recurrence relation

a(n) =
k∑

i=1

a( n−i − (s−1) − a(n−i) )

as generalized meta-Fibonacci sequences. These sequences were studied recently by Callaghan, Chew, and
Tanny [2], building on the earlier work of Higham and Tanny [8]. In particular, our sequence a0,3(n) is the
same as the sequence T0,3(n + 2) of [2] for n ≥ 1 (e.g., Figure 1.5, pg.797). Generalized meta-Fibonacci
sequences are quite sensitive to the initial conditions.

We will show that, with the appropriate initial conditions, these sequences also occur in a natural com-
binatorial setting, that they satisfy a recurrence relation of the form a(n) = fs,k(n) + a(n − gs,k(n)), and
that they have a fairly elegant ordinary generating function. In particular, for any fixed s ≥ 0 and k ≥ 2, we
give new ways of interpreting the sequences; our interpretations are based on certain subtrees of unusually
labelled infinite k-ary trees and on certain restricted compositions of an integer. From the combinatorial
interpretation, we can easily see that a(n) is monotone, that its consecutive terms increase by 0 or 1, and
that therefore, the sequence hits every positive integer.

2 Meta-Fibonacci Sequences and Complete k-ary Trees
Figure 1 shows part of an infinite ordered ternary tree F0,3. A k-ary version of this tree, F0,k is defined in
the natural way. The forest of labelled trees in F0,k consists of a succession of complete k-ary trees of sizes
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Fig. 1: The tree F0,3.
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Fig. 2: The tree F1,3.
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n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
a0,2(n) 1 2 2 3 4 4 4 5 6 6 7 8 8 8 8 9 10 10 11
a1,2(n) 1 1 2 2 2 3 4 4 4 4 5 6 6 7 8 8 8 8 8
a2,2(n) 1 1 1 2 2 2 2 3 4 4 4 4 4 5 6 6 7 8 8
d0,2(n) 1 1 0 1 1 0 0 1 1 0 1 1 0 0 0 1 1 0 1
d1,2(n) 1 0 1 0 0 1 1 0 0 0 1 1 0 1 1 0 0 0 0
d2,2(n) 1 0 0 1 0 0 0 1 1 0 0 0 0 1 1 0 1 1 0
p0,2(n) 1 2 4 5 8 9 11 12 16 17 19 20 23 24 26 27 32 33 35
p1,2(n) 1 3 6 7 11 12 14 15 20 21 23 24 27 28 30 31 37 38 40
p2,2(n) 1 4 8 9 14 15 17 18 24 25 27 28 31 32 34 35 42 43 45
a0,3(n) 1 2 3 3 4 5 6 6 7 8 9 9 9 10 11 12 12 13 14
a1,3(n) 1 1 2 3 3 3 4 5 6 6 7 8 9 9 9 9 10 11 12
a2,3(n) 1 1 1 2 3 3 3 3 4 5 6 6 7 8 9 9 9 9 9
d0,3(n) 1 1 1 0 1 1 1 0 1 1 1 0 0 1 1 1 0 1 1
d1,3(n) 1 0 1 1 0 0 1 1 1 0 1 1 1 0 0 0 1 1 1
d2,3(n) 1 0 0 1 1 0 0 0 1 1 1 0 1 1 1 0 0 0 0
p0,3(n) 1 2 3 5 6 7 9 10 11 14 15 16 18 19 20 22 23 24 27
p1,3(n) 1 3 4 7 8 9 11 12 13 17 18 19 21 22 23 25 26 27 30
p2,3(n) 1 4 5 9 10 11 13 14 15 20 21 22 24 25 26 28 29 30 33

Tab. 1: The values of as,k(n), ds,k(n), and ps,k(n) for k = 2, 3, s = 0, 1, 2, and 1 ≤ n ≤ 19.

1, 1, 1, . . . , 1︸ ︷︷ ︸
k−1

, 1+k, . . . , 1+k︸ ︷︷ ︸
k−1

, . . . , 1+k+ · · ·+kh, . . . , 1+k+ · · ·+kh︸ ︷︷ ︸
k−1

, . . . (1)

The nodes of these subtrees are labelled in preorder. In F0,k there is a one-way infinite path of unlabelled
nodes (drawn with rectangles in Figure 1), which we refer to as the delay path. The rightmost (k − 1)
subtrees of delay node h are referred to as subforest h, where h ∈ {0, 1, 2, . . .} is the common height of the
trees in the subforest. For instance, the first super-node is the parent of subforest 1, the second super-node
is the parent of subforest 2, and so on. We will now generalize to Fs,k. The structure of the tree is the same
as for F0,k; it is only the labelling of the delay nodes that changes. The trees F1,3 and F2,3 are shown in
Figures 2 and 3. Except along the delay path, each subtree is again labelled in preorder. The delay path is
parameterized by a value s that gives the delay between the preorder counts of successive trees, where the
delay is applied after the leftmost subtree of a given size. Alternatively, we can think of the nodes along
the path as being super-nodes, where each super-node contains s ordinary nodes. Note that the nodes of the
delay path occur at the positions between the underbraces in (1).

Denote by Ts,k(n) the tree induced by the first n labelled nodes of the infinite tree Fs,k. Define as,k(n)
to be the number of nodes at the bottom level in Ts,k(n). Also define ds,k(n) to be 1 if the n-th node is
a leaf and to be 0 if the n-th node is an internal node. Finally, define ps,k(n) to be the positions occupied
by the 1’s in the ds,k(n) sequence. Since Ts,k(0) is an empty tree, it has no nodes at the bottom level.
Therefore, as,k(0) = 0, which implies ds,k(0) = ps,k(0) = 0. Table 1 gives the values of as,k(n),
ds,k(n), and ps,k(n) for k = 2, 3, s = 0, 1, 2 and 1 ≤ n ≤ 20. The values of four of these table
entries appear in OEIS(i), namely a0,2(n) = A046699, a1,2(n) = A006949, d0,2(n) = A079559, and
p0,2(n) = A101925 = A005187(n) + 1. For fixed s these numbers are related as follows,

as,k(n) =
n∑

j=0

ds,k(j) and ps,k(n) = min{j : as,k(j) = n}. (2)

In the sequel we will drop the s, k subscripts, since our discussion will be for fixed values of these parame-
ters, and it will make the notation less cumbersome.

Theorem 2.1 If 1 ≤ n ≤ s+1, then a(n) = 1. If n = s+i and 2 ≤ i ≤ k then a(n) = i. If n > s+k, then

a(n) =
k∑

i=1

a(n − i − (s−1) − a(n−i)). (3)

(i) OEIS = Neil Sloane’s online encyclopedia of integer sequences.



206 Chris Deugau and Frank Ruskey

Proof: First observe that if all the leaves at the last level are removed from Fs,k, then the same structure
remains, once the leftmost super-node is made into an ordinary node (by subtracting s − 1). We will refer
to this process as chopping the last level. The number of nodes at the penultimate level of Ts,k(n) can be
obtained by chopping the last level of the tree, and then counting how many nodes are at the bottom level of
a tree containing that same number of nodes. The number of nodes in the chopped tree is n− (s−1)−a(n).
Therefore, the number of nodes at the penultimate level of Ts,k(n) (counting the super-node only once) is

a(n − (s−1) − a(n)). (4)

Also observe that if each node at the penultimate level of Ts,k(n) has k children, then the number of nodes at
the penultimate level is a(n)/k. However, the rightmost node on the penultimate level will not necessarily
have k children. Assume that the rightmost node on the penultimate level has r children. If we add k − r
nodes to the bottom level of Ts,k(n), then the rightmost node has k children, and we can divide by k to
determine the number of nodes at the penultimate level. Therefore, another expression for the number of
nodes at the penultimate level of Ts,k(n) is

(a(n) + k − r)/k. (5)

Finally, observe that if the rightmost node at the penultimate level has r children, and we subtract r
nodes from the bottom level of Ts,k(n), then the rightmost node at the penultimate level has 0 children. If
we divide by k, we would be counting every node at the penultimate level other than the rightmost node.
Therefore, an expression for the number of nodes at the penultimate level, other than the rightmost node, of
Ts,k(n) is

(a(n) − r)/k. (6)

We split the proof into two broad cases depending on whether n is a leaf or not; i.e., whether d(n) = 1
(Case 1) or d(n) = 0 (Case 2). In either case, we will be computing a(n), the number of nodes at the
bottom level of our tree Ts,k(n), by counting each node p that is at the penultimate level of our tree pc

times, where pc is the number of children of node p.
Case 1: If d(n) = 1, then node n is the rth child of node n − r. Each of the r trees

Ts,k(n−1), Ts,k(n−2), . . . , Ts,k(n−r) have node n − r at the penultimate level, and therefore each has
(a(n) + k − r)/k nodes at the penultimate level. Each of the k − r remaining trees
Ts,k(n−r−1), Ts,k(n−r−2), · · · , Ts,k(n−k) does not have n−r at the penultimate level, and therefore has
(a(n)−r)/k nodes at the penultimate level. Recall that for any m, the tree Ts,k(m) has a(m − (s−1) − a(m))
nodes at the penultimate level. Thus

k∑
i=1

a(n − i − (s−1) − a(n−i))

=
r∑

i=1

a(n − i − (s−1) − a(n−i)) +
k∑

i=r+1

a(n − i − (s−1) − a(n−i))

=
n−1∑

m=n−r

a(m − (s−1) − a(m)) +
n−(r+1)∑
m=n−k

a(m − (s−1) − a(m))

=
n−1∑

m=n−r

(a(n) + k − r)/k +
n−(r+1)∑
m=n−k

(a(n) − r)/k

= r(a(n) + k − r)/k + (k−r)(a(n) − r)/k

= (ra(n) + rk − r2 + ka(n) − kr − ra(n) + r2)/k

= ka(n)/k

= a(n).

Case 2: Omitted for space reasons. Will be included with the full paper. 2

Define Ds,k to be the infinite string ds,k(1)ds,k(2)ds,k(3) · · · . Let Dn,k be the finite string defined by
D0,k = 1 and Dn+1,k = 0(Dn,k)k, the string with 0 at the start, followed by k repetitions of Dn,k. Let
En,k be the finite string defined by E0,k = 1 and En+1,k = (En,k)k0, the string starting with k repetitions
of En,k followed by 0. As before, we will drop the subscripts s and/or k when no confusion can arise.
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Lemma 2.2 For all n ≥ 0, we have 0nEn = Dn 0n.

Proof: Our proof is by induction on n. The statement is true if n = 0 since D0 = E0 = 1. Assuming that
it is true for n, for n + 1 we have

0n+1En+1 = 0 0n(En)k0 = 0 (Dn)k 0n 0 = Dn+1 0n+1.

2

Lemma 2.3 For n ≥ 0 and k ≥ 2,

D0(D0)k−1(D1)k−1 · · · (Dn)k−1 = (En)k−1(En−1)k−1 · · · (E1)k−1(E0)k−1E0. (7)

Proof: Our proof is by induction on n. If n = 0, then (D0)k = (E0)k = 1k. For the general case we will
first prove, also by induction on n, that

(Dn)k−1 = 0n (En)k−2 (En−1)k−1 · · · (E1)k−1 (E0)k−1E0 (8)

Equation (8) is true if n = 0. For n + 1 we have

(Dn+1)k−1 = (Dn+1)k−2 Dn+1

= (Dn+1)k−2 0 (Dn)k

= (Dn+1)k−2 0 Dn (Dn)k−1

= (Dn+1)k−2 0 Dn 0n (En)k−2 (En−1)k−1 · · · (E1)k−1 (E0)k−1E0

= (Dn+1)k−2 0n+1En (En)k−2 (En−1)k−1 · · · (E1)k−1 (E0)k−1E0

= 0n+1(En+1)k−2 (En)k−1 (En−1)k−1 · · · (E1)k−1 (E0)k−1E0.

In a somewhat similar fashion we may also prove by induction that

(En)k−1 (En−1)k−1 · · · (E1)k−1 (E0)k−1 E0 0n+1 = En+1. (9)

Now back to the proof of the lemma. Assuming that it is true for n, then for n + 1

D0(D0)k−1(D1)k−1 · · · (Dn)k−1(Dn+1)k−1

= (En)k−1(En−1)k−1 · · · (E1)k−1(E0)k (Dn+1)k−1

= (En)k−1(En−1)k−1 · · · (E1)k−1(E0)k 0n+1 (En+1)k−2(En)k−1 · · · (E1)k−1(E0)k−1E0

= En+1 (En+1)k−2(En)k−1 · · · (E1)k−1(E0)k−1E0

= (En+1)k−1(En)k−1 · · · (E1)k−1(E0)k.

The first equality follows from the inductive assumption; the second follows from (8); the third follows
from (9). 2

Lemma 2.4
D0,k = D0(D0)k−1(D1)k−1(D2)k−1(D3)k−1 · · · = E∞. (10)

Proof: The first equality in (10) is implied immediately by the definition of F0,k; i.e., in 0DnDn · · · the 0
is from the root (which is listed first in preorder) and DnDn · · · are the subtrees of height n. Since there
will be k − 1 extra subtrees of height n + 1, (one subtree has already been defined), we need to make sure
to repeat this substring k − 1 times.

The second equality comes from Lemma 2.3. Since En is a prefix of En+1, the expression E∞ is well-
defined. Hence D0,k = E∞. 2

In the notation for the q-binomial coefficients [3], we have [h1 ]k = 1 + k + · · · + kh−1 = kh−1
k−1 . In this

paper, the bottom term will always be one, so we will use the notation [h]k to represent [h1 ]k. When no
confusion can arise the subscript k will be dropped.
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Lemma 2.5 For n ≥ 0, we have |Dn| = |En| = [h + 1].

Proof: It is obvious that |Dn| = |En|. We know that D0 = 1, so |D0| = 1 = [0 + 1]. Since Dn+1 =
0(Dn)k, inductively, |Dk

n+1| = 1 + k[n + 1] = 1 + k(1 + k + · · · + kn) = [n + 2]. 2

Corollary 2.6 The numbers a0,k(n) satisfy the following recurrence relation for 0 ≤ m < kh.

a0,k([h] + m) = kh−1 + a0,k(m).

Proof: Since D0 = EhEh · · · = (Eh−1)k0(Eh−1)k0(Eh−1)k0 · · · and |Eh−1| = [h], the equality d([h] +
m) = d(m) holds for 1 ≤ m ≤ kh − 1. The range for m comes from the fact that |(Eh−1)k| = [h] + (k −
1)[h] = [h] + kh − 1. Since we defined d(0) = 0 the range can be extended to include m = 0. The number
of 1’s in Eh−1 is #1(Eh−1) = kh−1. Thus

a0,k([h] + m) =
[h]∑

p=0

d(p) +
m∑

p=0

d([h] + p) = #1(Eh−1) +
m∑

p=0

d0(p) = kh−1 + a0,k(m). (11)

2

Lemma 2.7 For s ≥ 0 and k ≥ 2,

as,k(n) =

{
a0,k(n − sh) if [h] + (s−1)h + 2 ≤ n ≤ [h+1] + (s−1)h,

kh−1 if [h] + (s−1)h − s + 2 ≤ n ≤ [h] + (s−1)h + 1.

Proof: The labels on the nodes in subforest h in Fs,k are exactly the values of n lying in the first range
above. This is true because the number of ordinary nodes to the left of h can be found by adding the
number of nodes in all of the subtrees. The first subtree is simply one node. The remaining subtrees are
k-ary trees of height j = 1, 2, . . . , h−1. These k-ary trees each have 1 + k + · · · + kj−1 = [j] nodes. By
the construction of Fs,k, we have k−1 of each subtree of height j (except, as previously mentioned, the
extra tree of height 1). Summing the number of nodes in all of the subtrees gives us

1 +
h−1∑
j=1

(k − 1)[j] = 1 +
h−1∑
j=1

(kj − 1) = −h + 2 +
h−1∑
j=1

kj = [h] − h + 1.

The number of super-nodes is sh. Thus, the lowest label of a node in subforest h of our tree is [h] +
(s−1)h + 1 + 1 = [h] + (s−1)h + 2 and the highest label is [h] + (s−1)h + 1 + (k−1)[h] = (s−1)h +
1 + k(1 + k + · · · + kh−1) = [h+1] + (s−1)h. 2

Corollary 2.8 a1,k(n) = a(n − blogk((n−1)(k−1) + 1)c)

Proof: If s = 1, the super-nodes of F1,k are numbered [h] + 1. Hence node n is contained in subforest
h = blogk((n−1)(k−1) + 1)c.

Taking s = 1 in Lemma 2.7 we obtain a1,k(n) = a0,k(n − h) in the range [h] + 2 ≤ n ≤ [h+1]. In
that range h = blogk((n−1)(k−1)+1)c. We need to check what happens when n is a super-node, in other
words, when n = [h] + 1. By the Lemma 2.7 a1,k([h] + 1) = kh−1. In F0,k, the node [h] + 1 − h is the
rightmost node in subforest h−1, and thus a0,k([h] + 1 − h) = kh−1. 2

Theorem 2.9 If 1 ≤ n ≤ s+1, then a(n) = 1. If n = s+i and 2 ≤ i ≤ k then a(n) = i. If n > s+k, then
If [h] + (s−1)h − s + 2 ≤ n ≤ [h] + (s−1)h + 2 then

a(n) = kh−1

If 1 ≤ m ≤ [h−1] then

a([h] + (s−1)h + 2 + m) = kh−2 + a([h] + 1 + (s−1)h + m − [h−1] − s)
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If 1 ≤ m ≤ kh−1 − 1 then

a([h] + [h−1] + (s−1)h + 2 + m) = kh−2 + a([h] + (s−1)h + 2 + m)

If 1 ≤ m ≤ (k−2)[h] then

a(2[h] + (s−1)h + 1 + m) = kh−1 + a([h] + (s−1)h + 1 + m)

Proof: Omitted for space reasons. To be included in full paper. 2

Corollary 2.10 There are functions fs,k(n) and gs,k(n) such that a(n) = fs,k(n) + a(n − gs,k(n)).

Proof: The existence of such functions should be clear from Theorem 2.9 but finding a nice expression
for them is a challenge and is omitted. For example, one of the breaks in the cases above occurs when
n = [h] + (s − 1)(h − 1) + 1. This can be solved for h to yield

h =
1

(s−1)(k−1) ln k

(
(k−1)(n−2+s)+1 − (s−1)(k−1)W

(
k((k−1)(n−2+s)+1)/((s−1)(k−1)) ln k

(s − 1)(k − 1)

))
,

where W is the Lambert-W function. 2

Let r1, r2, r3, r4, · · · be the transition sequence of the k-ary reflected Gray code; in the case of k = 2 this
sequence is also known as the “ruler function” (A001511). The generalized ruler sequence is R∞ where
R1 = 1k−1 and Rn+1 = (Rn, n + 1)k−1, Rn. Observe that if all the 0’s are removed from the sequence
r1 − 1, r2 − 1, r3 − 1, r4 − 1, . . . then the ruler function is again obtained. The non-zero values occur in the
positions that are divisible by k.

Lemma 2.11

D0 = 1k0r11k0r21k0r31k0r4 · · · (12)
= 10r1−110r2−110r3−110r4−1 · · · (13)

Proof: Equation (13) is true by the observation made above. Since |Rn| = kn − 1, we have rkn+i = ri for
1 ≤ i ≤ kn+1 − kn − 1 and rkn = n + 1. We will show that

En = 1k0r11k0r2 · · · 1k0rkn−1 , (14)

which will finish the proof of (12) sinceD0 = E∞ by Lemma 2.4. Since we know for n = 0 that E1 = Ek
0 0,

we can proceed by induction and find

En+1 = (En)k0
= 1k0r11k0r2 · · · 1k0rkn−1 1k0r11k0r2 · · · 1k0rkn−1 0
= 1k0r11k0r2 · · · 1k0rkn−1 1k0rkn−1+11k0rkn−1+2 · · · 1k0rkn−11k0rkn−1 0
= 1k0r11k0r2 · · · 1k0rkn−1 1k0rkn−1+11k0rkn−1+2 · · · 1k0rkn−11k0n+1.

2

We can extend some of the previous results about D0 to Ds. For proposition P the notation [[P ]] means 1
if P is true and 0 if P is false.

Lemma 2.12 Let sj = rj + s[[j is a power of k]]. Then

Ds = D00s(D0)k−10s(D1)k−10s(D2)k−1 · · · (15)
Ds = 10s1−110s2−110s3−110s4−1 · · · (16)
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Proof: Equation (15) comes from our construction of Fs,k. The 0s terms represent where the super-nodes
go in our construction, and since ds(n) = 0 when n is an internal node, we will have s 0’s.

Equation (16) comes from the second equality in Lemma 2.11, and the fact that a new super-node will
be added after we have seen a complete left subtree, which will have ki leaf nodes, where i is an integer.
Therefore, we need to add s 0’s after every ki-th leaf node, where i is an integer. This gives us

Ds = 10s0r1−110r2−1 · · · 10s0rk−11 · · · 10s0rk2−1 · · ·
= 10s+r1−110r2−1 · · · 10s+rk−11 · · · 10s+rk2−1 · · ·
= 10s1−110s2−110s3−110s4−110s5−110s6−110s7−110s8−110s9−1 · · ·

2

Since the ps,k(n) numbers give the positions of the 1’s in Ds the following corollary is true. The s = 1
case of this corollary is contained in Proposition 4.1 of [8].

Corollary 2.13 For all n ≥ 1,

ps(n + 1) − ps(n) = rn + s[[n is a power of k]].

By summing the equation in Corollary 2.13 we obtain

ps(n) = 1 + εk((n − 1)!) + sdlogk ne

= sdlogk ne +
∑
j≥0

⌊
n − 1

kj

⌋
,

where εq(m) denotes the largest power of q that divides m (see [6], pg. 114). For s = 1, this result is
closely related to Proposition 4.1 of [8].

2.1 Generating Functions
If S = s(1)s(2)s(3) · · · is a string then we use S(z) to denote the ordinary generating function S(z) =∑

k≥1 s(i)zi. Let As(z) and Ds(z) denote the ordinary generating functions of the as,k(n) and ds,k(n)
sequences, respectively. Directly from the definitions we get the equation shown below:

As(z) =
Ds(z)
1 − z

.

Since As(z) is determined by Ds(z) and Ds(z) is easier to treat, we first concentrate our attention on Ds(z).

Lemma 2.14

Dn(z) = zn+1(1+z[1]+z2[1]+ · · ·+z(k−1)[1]) · · · (1+z[n]+ · · ·+z(k−1)[n])

= zn+1
n∏

i=1

k−1∑
j=0

zj[i] = zn+1
n∏

i=1

1 − zk[i]

1 − z[i]
,

En(z) = z(1+z[1]+z2[1]+ · · ·+z(k−1)[1]) · · · (1+z[n]+ · · ·+z(k−1)[n])

= z

n∏
i=1

k−1∑
j=0

zj[i] = z

n∏
i=1

1 − zk[i]

1 − z[i]
.

Proof: From the recurrence relation D0 = 1 and Dn+1 = 0(Dn)k we obtain D0(z) = z and

Dn+1(z) = zDn(z) + z|0Dn|Dn(z) + z|0(Dn)2|Dn(z) + · · · + z|0(Dn)k−1|Dn(z)
= zDn(z) + z[n+1]+1Dn(z) + z2[n+1]+1Dn(z) + · · · + z(k−1)[n+1]+1Dn(z)
= z(1 + z[n+1] + z2[n+1] + · · · + z(k−1)[n+1])Dn(z).

Similarly, E0(z) = z and En+1(z) = (1+ z[n+1] + z2[n+1] + · · ·+ z(k−1)[n+1])En(z). The results now
follow by induction. 2
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Corollary 2.15

D0(z) = z
∏
i≥1

k−1∑
j=0

zj[i] = z

n∏
i≥1

.
1 − zk[i]

1 − z[i]

Proof: Follows from Lemma 2.14 and the equation D0 = E∞ from Lemma 2.4. 2

Theorem 2.16 The generating function Dk
s (z) is equal to

z

(
1 + zs+k0

(
1 − z(k−1)[1]

1 − z[1]
+ zs+k1 1 − zk[1]

1 − z[1]

(
1 − z(k−1)[2]

1 − z[2]
+ zs+k2 1 − zk[2]

1 − z[2]

(
1 − z(k−1)[3]

1 − z[3]
· · ·

(17)

Proof: We need to translate the string D00s(D0)k−10s(D1)k−10s(D2)k−10s · · · from Lemma 2.12 into
its generating function. Since

|D00s(D0)k−10s · · · (Dn−1)k−10s| = s + 1 +
n−1∑
i=0

((k − 1)[i + 1] + s) = s + n(s − 1) + [n + 1],

we can write

Ds(z) = z +
∑
n≥0

zs+n(s−1)+[n+1]Dn(z)(1 + z|Dn| + · · · + z(k−2)|Dn|)

= z +
∑
n≥0

k−1∑
i=1

zs+n(s−1)+i[n+1]Dn(z)

= z +
∑
n≥0

k−1∑
i=1

zs+n(s−1)+i[n+1]+1x1x2 · · ·xn,

where xi = z(1 + z[i] + · · · + z(k−1)[i]) = z[k]. Recall that Dn(z) = zx1x2 · · ·xn and expand the
summation to obtain

Ds(z) = z + (z(zs+[1]+ · · ·+zs+(k−1)[1])) + (zx1(z2s−1+[2]+ · · ·+z2s−1+(k−1)[2])) + · · ·
= z(1 + (zs+[1]+ · · ·+zs+(k−1)[1]) + (x1(z2s−1+[2]+ · · ·+z2s−1+(k−1)[2])) + · · ·
= z(1 + zs+[1]((1+ · · ·+z(k−2)[1]) + (x1(zs−1+k[1]+ · · ·+zs−1+(k−2)[2]+k[1])) + · · ·
= z(1 + zs+k0

((1+ · · ·+z(k−2)[1]) + zs−1+k[1]x1((1+ · · ·+z(k−2)[2]) + · · ·

= z

(
1 + zs+k0

(
1 − z(k−1)[1]

1 − z[1]
+ zs+k1 1 − zk[1]

1 − z[1]

(
1 − z(k−1)[2]

1 − z[2]
+ zs+k2 1 − zk[2]

1 − z[2]
· · ·

2

The proofs of the next two theorems are omitted for space reasons. They will be included in the full
paper.

Theorem 2.17 For all s ≥ 1 and k ≥ 2,

As,k(z) =


z

1 − z

∏
i≥1

1 − zk[i]

1 − z[i]
if s = 0

z
1 − zs

1 − z

∑
n≥0

n∏
i=1

zs 1 − zk[i]

1 − z[i]
if s > 0.

Theorem 2.18 For all s ≥ 0 and k ≥ 2,

∑
n≥0

ps(n)zn =
1

1 − z

z + z
∑
m≥0

zkm

(
s +

1
1 − zkm

) .
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3 Compositions Of An Integer
Jon Perry [12] has observed experimentally that a1,2(n) counts the number of compositions of n such that,
for some m,

n0 + n1 + · · · + nm = n where ni ∈ {1, 2i} for i = 0, 1, . . . ,m.

He uses a notation similar to 〈1〉 + 〈1, 2〉 + 〈1, 4〉 + 〈1, 8〉 + · · · to denote the set of such compositions
and notes that many other combinatorial objects are in one-to-one correspondence with similar composition
rules [12]. We call these rules specifications. Jackson and Ruskey [9] showed that as,2(n) counted the
number of compositions of n with specification

〈1, 2, . . . , s〉 + 〈s, 2 + s − 1〉 + 〈s, 4 + s − 1〉 + 〈s, 8 + s − 1〉 + · · · .

Corollary 3.1 For s ≥ 1, the number of compositions of n with specification

〈1, 2, . . . , s〉 + 〈s, s + [1], . . . , s + (k − 1)[1]〉 + 〈s, s + [2], . . . , s + (k − 1)[2]〉 + · · ·

is as,k(n).

Proof: This is clear from the generating function of As,k(z) given in Theorem 2.17 by observing that
z(1 − zs)/(1 − z) = (z + z2 + · · · + zs). Substituting into our summation gives

(z+z2+ · · ·+zs)(1 + zs(1+z[1]+ · · ·+zk[1]) + zs(1+ · · ·+zk[1])zs(1+ · · ·+zk[2]) + · · ·

2

As an example, a2,3(20) = 10, and the 10 corresponding compositions are given below:

1+2+2+15, 1+3+2+2+2+2+2+2+2+2, 1+3+6+2+2+2+2+2, 1+3+10+2+2+2,
1+4+15, 2+2+2+2+2+2+2+2+2+2, 2+2+6+2+2+2+2+2,
2+2+10+2+2+2, 2+4+6+2+2+2+2, 2+4+2+2+2+2+2+2+2
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