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A probabilistic analysis of a leader election
algorithm

Hanène Mohamed1†
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A leader election algorithm is an elimination process that divides recursively into tow subgroups an initial group of n
items, eliminates one subgroup and continues the procedure until a subgroup is of size 1. In this paper the biased case
is analyzed. We are interested in the cost of the algorithm, i.e. the number of operations needed until the algorithm
stops. Using a probabilistic approach, the asymptotic behavior of the algorithm is shown to be related to the behavior
of a hitting time of two random sequences on [0, 1].

Keywords: Election Algorithm. Randomized Selection Algorithm. Distributed Systems. Asymptotic Oscillating
Behavior. Probabilistic de-Poissonization.

1 Introduction
A single-hop network is a distributed system of n nodes, also called stations, sharing a common communi-
cation channel which can transmit only one message per time unit. In the special case of collision detection,
the channel is ternary feedback; each station sending a message to the network can simultaneously listen
to the channel and detect: a collision when at least there are two broadcast attempts, a silence when no
station sends message, or a success when exactly one station sends its message. A single-hop network with
collision detection is called multiple access channel.

Consider a multiple access channel of n stations which has to elect a leader to control and organize the
network. Because of links or stations failures, the leader may be temporarily out of service. Such failure
can be detected by a silence, in which case the system stops normal operations and initiates the election
process: the system has to identify a new leader in a reasonable execution time. We are interested in the
cost of the algorithm, i.e. the number of operations needed to find a leader.

1.1 Leader election problem
We assume that the size n of the multiple access channel is unknown. Moreover, each station is assumed
to have a unique identifying number ID. To elect a leader among themselves, stations have to use the same
algorithm. The case n ∈ {0, 1} is trivial, n is assumed to be greater than 2. Let us recall the basic one:

— Deterministic Initialization: At the first time unit, each station send a message with its ID number to
the common channel. As n ≥ 2, all stations detect a collision.

— Randomized Selection Process: Each station S generates independently a Bernoulli random variable
BS with parameter p. Only which obtains BS = 1 is allowed to send its message again during the
next time unit.

For a station S, there are two cases:

1. If BS = 1, station S will be called Active; S sends again its message to the channel and can detect

— a success; only station S is trying transmission, then all the other stations receive its ID’s mes-
sage and S obtains the status of leader. The protocol is finished.

— a collision; station S is not the only candidate to be leader, and so has to generate BS again.

†INRIA, France

1365–8050 c© 2006 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

http://www.dmtcs.org/proceedings/
http://www.dmtcs.org/proceedings/dmAGind.html


226 Hanène Mohamed

2. Otherwise, station S becomes Non Active; it remains candidate to be leader, listens to the channel
but does not participate to the transmission. So it can detect

— a success; only one station S′ 6= S is trying transmission. The other stations (including S)
detect its ID. So S′ obtains the status of leader. The protocol is finished.

— a collision; although station S is not participating to the selection process, there are at least 2
Active stations. So, station S is eliminated.

— a silence; all stations are Non Active, so station S has to generate BS again to send or not its
ID’s message to the channel.

That is, at the end of the protocol, a single station remains Active and becomes the leader of the system.

This splitting process using a Bernoulli random variable was also used in the tree protocol of Capetanakis
and Tsybakhov. For a survey, see Mathys and Flajolet (1985).

The example below illustrates the election process applied to a group of 4 stations {A,B, C, D}. In this
case, the leader A is elected in 4 times units.

time units 1 2 3 4
Active Stations A B C D A B C A
Non Active Stations D A B C B C
Eliminated Stations D D
Channel feedback Collision Collision Silence Success

A B C D

A B C D

A B C

A B C

O

Fig. 1: Election of the leader A; H4 = 4. Incomplete tree structure.

Definition 1 (Algorithm Cost) It is the number of rounds needed to find a leader. Denote by Hn the
algorithm cost when the size of the network is n.

Such a randomized elimination algorithm has various applications in distributed systems like cellular phones
and wireless communication networks. In mobile Ad-hoc networks, failures occur when mobile nodes move
out of transmission range. The unstable topology of the network makes leader election problem more com-
plex. For more details, see Malpani et al. (2000). Electing a leader in a computer network is fundamental to
supervise communication and synchronization. See Fill et al. (1996). It is also studied in a context of radio
networks. For an interesting survey on randomized communication in this context, see Chlebus (2001). For
more elaborate leader election algorithms on radio network with no collision detection, see Lavault et al.
(2003).

1.2 Splitting process and tree structure
Formally, the algorithm starts with a group of n items which is divided in two subgroups. The probability
that an item is sent into the left subgroup is p. This subgroup will be divided by the same process. The other
items will be ignored. If the left subgroup is empty, the algorithm restarts from the previous level.

This distributed algorithm is a randomized elimination process with a natural binary tree structure (Fig.1).
At the root of the associated tree, is the initial group of items. In the first split, it generates two nodes: the
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left one will be split by the same process, the right one is a terminal node, also called leaf, which will not be
treated by the algorithm except when the left node is empty. Only in this case, the right node will be split
into two one.

Thus, this tree structure can be represented as an incomplete tree in which only one side is developed. We
define the height of the associated tree as the length of the path from the root to the leader which is the
longest root-to-leaf path in the tree (see Fill et al. (1996) ). Then the algorithm cost is equivalently the
height of the associated tree. Fig.1 illustrates this equality.

1.3 Previous works
It is known that the average cost of the leader election algorithm is of logarithmic order in n with an
oscillating behavior. See Prodinger (1993) for the unbiased case p = 1/2, Janson and Szpankowski (1997)
for the biased one p 6= 1/2.

Consider the Poisson model of the leader election problem, i.e. the election process applied to a network
with random size following a Poisson process Nx (see 1.6). Let h the Poisson transform of the sequence of
average cost of the algorithm (E(Hn))n≥0.

Definition 2 (Poisson transform) For x > 0, the Poisson transform of the sequence (E(Hn)) is the func-
tion h defined by

h(x) = E(HNx
) =

+∞∑
n=2

E(Hn)
xn

n!
e−x.

Then, function h is solution of a functional equation, called basic functional equation associated to the
algorithm

h(x) = h(px) + h(qx) e−px + f(x), where p + q = 1 (1)

and f is a given function. Equation (1) is the starting point of all studies made on this algorithm.

The unbiased case
When the splitting process follows a Bernoulli random variable of parameter 1/2, the leader election algo-
rithm is called symmetrical. Observe that, for the unbiased case, the functional equation (1) is solved by
direct iteration. In fact, the Poisson transform h verifies

h(x) = h(x/2)
(
1 + e−x/2

)
+ f(x),

which can be rewritten g(x) = g(x/2) + f(x)/(1− e−x) where g(x) = h(x)/ (1− e−x).

The first analysis of the leader election algorithm was proposed by Prodinger (1993). He investigated
different parameters of interest such as the height, called depth in his paper, the size of the associated
tree, i.e. the number of nodes. . . . Using combinatorial techniques, he established exact expressions and
asymptotic formulas for these quantities for the symmetrical case. So, it is shown that for an initial group
of size n, the algorithm stops on average after about log2 n steps. Using complex analysis techniques like
Mellin and inverse Mellin transform, Fill et al. (1996) studied the asymptotic behavior of the first two
moments of the algorithm cost. Moreover, they obtained the exact expression and asymptotic behavior
of the distribution of Hn and they have shown that a limit distribution for the centered algorithm cost
Hn − blog2 nc does not exist. For a survey on Mellin transform, see Flajolet et al. (1995).

The biased case
If the splitting process is biased, i.e. the probability that an item is sent into the left subgroup is p 6= 1/2, the
algorithm is called asymmetrical. Studies on biased case become more rare. An asymmetric leader election
algorithm was investigated by Janson and Szpankowski (1997) using complex analysis techniques. The
asymptotic behavior of the first two moments of the algorithm cost Hn is given in term of the sequence of
their exact values (E(Hj))j∈N computed numerically from two recurrence equations.

This implicit dependence is due to the asymmetry of the functional equation (1) obtained by Poissonization.
The coefficient e−p x makes more complex the establishment of an iterative scheme such as in the context of
a protocol for a multi-access broadcast channel (see Fayolle et al. (1986)). Applying the Mellin transform
to equation (1) without solving it yields this dependence.
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1.4 Related leader election algorithms

Leader election algorithm in network of fixed size
Consider a simple algorithm for leader election algorithm in the context of communication network; at
each level, the probability p for a station to send its message depends on the number n of stations remaining
in the elimination process; p = 1/n. Expected run time is O(1) but it is clear that is necessary to know
the number of active stations in advance, or at least to estimate it. See Willard (1984) for an estimation
procedure in order of log log n + O(1/n). This variant of the basic leader election algorithm does not
exhibit an oscillating behavior any more. In fact, the average algorithm cost is asymptotically equivalent to
a some constant L. For more details, see Lavault and Louchard (2005).

LZ’77 data compression Scheme
Consider a variant of the leader election algorithm by introducing a moderator who determines the elim-
ination process; each of participants and the moderator throws independently a coin and only those who
obtain the same result as the moderator continue the process. See Ward and Szpankowski (2004) for the
biased case, Prodinger (1993) for the unbiased one. Let Mn the number of participants remaining in the
last nontrivial round from an initial group of n items. It is asymptotically equivalent to the multiplicity of
phrases in the LZ’77 data compression scheme.

1.5 Overview
In a previous paper on splitting algorithms, Mohamed and Robert (2005) proposed a direct approach based
on a probabilistic reformulation of a basic functional equation associated to such algorithms. The purpose
of this work is to apply the techniques used by Mohamed and Robert (2005) to analyze an additive quantity
in the context of an incomplete tree structure. In Section 2, a similar series formula for the average cost
E(Hn) is given by Proposition 2. The asymptotic behavior of the algorithm is studied in Section 3 and
reformulated on the behavior of some stopping time τ . Theorem 1 presents a new representation of the
asymptotic oscillations of the algorithm. In Section 4, the distribution of the algorithm cost is investigated.
Using the binary decomposition of the interval [0, 1], the exact expression of the distribution of Hn is
established. Proposition 3 is a slight variation of the asymptotic formula given by Janson and Szpankowski
(1997) for the distribution of the algorithm cost Hn in the biased case.

1.6 Notations
Throughout this paper, (tn)n≥1 is a non decreasing random variables sequence such that

• t1 follows an exponential distribution with parameter 1,

• (tn+1 − tn) is a sequence of i.i.d. random variables exponentially distributed with parameter 1.

For x ≥ 0, let Nx be the number of tn in the interval [0, x]. It is a r. v. with Poisson distribution .

2 Average Cost of The Algorithm
2.1 Algorithm cost
The algorithm cost is the number of steps needed to find a leader, or equivalently the height of the associated
tree. Denote by Hn this quantity when the size of the initial group of items is n, then, for n ≥ 2, this random
variable verifies a recurrence relation;

Hn
dist.= 1 + H1,Sn 1{Sn 6=0} + H2,n 1{Sn=0},

with the boundary conditions H0 = H1 = 0, where (Bi(p))1≤i≤n are n independent Bernoulli variables of
parameter p,

Sn =
n∑

i=1

Bi(p),

for (m,n) ∈ N2, H1,m and H2,n are independent and, for i = 1, 2, the variable Hi,m has the same
distribution as Hm. So, for n ≥ 0, the recurrence equation for the sequence (Hn) can be rewritten

Hn
dist.= 1 + HSn + Hn 1(Sn=0) − 1{n≤1}. (2)
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2.2 Poissonization
Consider the Poisson model, i.e. the size of the initial group of items is random following a Poisson process
Nx of intensity 1 on the interval [0, x]. The following proposition gives a useful representation of the
Poisson transform of the average cost of the algorithm.

Proposition 1 For x > 0,

E(HNx
) = E

(
+∞∑
i=0

1
πi

1{t1>xπi ; t2≤x(αi+πi)}

)
,

where (Aj , Bj) is a sequence of i.i.d. realizations of a couple of random variable (A,B) with distribution

P(A = p, B = 0) = p, P(A = q, B = p) = q,

π0 = 1, α0 = 0 and, for i ≥ 1,

πi =
i−1∏
j=0

Aj , αi =
i−1∑
j=0

πj Bj .

Proof: Let h the Poisson transform of the average cost (see Definition 2). Then, the recurrence equation
(2) for the sequence (Hn)n≥0 becomes

h(x) = h(px) + h(qx) e−px + 1− (1 + x)e−x.

Following the approach of Mohamed and Robert (2005), direct iteration becomes possible using a proba-
bilistic formulation of the last equation as below

h(x) = E
(

h(Ax)
A

e−Bx

)
+ f(x), (3)

where f(x) = 1− (1 + x)e−x and (A,B) is couple of random variables with distribution

P(A = p, B = 0) = p, P(A = q, B = p) = q.

Let the sequence of i.i.d realizations (Ai, Bi)i∈N of the couple of random variables (A,B). We introduce
some notations; for x ≥ 0, X0 = x, Y0 = 0, and for n ∈ N,

Xn+1 = An Xn, Yn+1 = Bn Xn.

By iterations of equation (3), one gets at the (n + 1)th stage

h(x) = E
(

h(Xn+1)∏n
i=0 Ai

e−
Pn+1

i=0 Yi

)
+ E

(
n∑

i=0

e−
Pi

j=0 Yj
f(Xi)∏i−1
j=0 Aj

)
.

Since h′(0) = 0 and, almost surely, limn→+∞ Xn+1 = 0, then, one obtains

h(x) = E

(
+∞∑
i=0

1
πi

(
1− (1 + πi)e−πix

)
e−αix

)
,

where π0 = 1, α0 = 0 and, for i ≥ 1,

πi =
i−1∏
j=0

Aj , αi =
i−1∑
j=0

πj Bj .

As the sequences (αi) and (αi+πi) are, almost surely, in the interval [0, 1], the function h can be represented
as follows

h(x) = E

(
+∞∑
i=0

1
πi

1{t1>αix ; t2<(αi+πi)x}

)
. (4)

The proposition has been proved. 2

From now on, throughout the paper, we conserve the notations introduced in this proof.
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2.3 de-Poissonization
The next step is the probabilistic de-Poissonization of (4) following the method of Robert (2005) to obtain
the expression of the average cost E(Hn).

Proposition 2 (Probabilistic representation of the average cost) For n ≥ 2,

E(Hn) = E

τ(U1,n,U2,n)−1∑
i=0

1
πi

 ,

where, for 0 < x < y < 1, τ(x, y) = min (ν(x);µ(y)) with

ν(x) = inf {i ≥ 1 : αi > x} ,

µ(y) = inf {i ≥ 1 : αi + πi < y} ,

and Ui,n is the ith smallest variables of n independent, uniformly distributed random variables on [0, 1]
independent of the sequence (Aj , Bj)j≥0.

Proof: For x > 0, by decomposing with respect to the number of points of the Poisson process (Nx) in the
interval [0, x], one gets, for 0 < a < b < 1,

P(t1 > ax , t2 < bx) =
+∞∑
n=2

P(t1 > ax , t2 < bx|Nx = n)P(Nx = n).

For n ≥ 2, conditionally on the event {Nx = n}, the couple of variables (t1, t2) has the same distribution as
the couple (xU1,n, xU2,n) of the two smallest random variables of n uniformly distributed random variables
on [0, x]. So, we get the identity

P(t1 > ax, t2 < bx) = E

(
+∞∑
n=2

1{U1,n>a, U2,n<b}
xn

n!
e−x

)
.

Due to the independence of the sequence (Ai, Bi) and (t1, t2), and using the Fubini’s Theorem, one gets

E(HNx
) =

+∞∑
n=2

(
E

(
+∞∑
i=0

1
πi

1{U1,n>πi , U2,n<(αi+πi)}

))
xn

n!
e−x.

The identification of the representation of the Poisson transform (see Definition 2) E(HNx) and the last
identity gives the following formula for n ≥ 2

E(Hn) = E

(
+∞∑
i=0

1
πi

1{U1,n>πi , U2,n<(αi+πi)}

)
.

Since, almost surely, the sequence (αi)i≥0 is increasing to a random variable α ∈ [0, 1] and the sequence
(αi + πi)i≥0 is decreasing to the same random variable, the following equality holds

{i ≥ 0 : U1,n > πi , U2,n < αi + πi} = [0, τ(U1,n, U2,n)− 1],

where the hitting time τ is defined as above. 2

3 Asymptotic Analysis of The Average Cost
3.1 Two random sequences and one hitting time
It is clear that the key of the analysis of the asymptotic behavior of the algorithm is the hitting time τ written
on the two random sequences (αi)i≥0 and (αi + πi)i≥0. Let (γi) the sequence of random variables defined
by

(γi)i∈N = {j ≥ 0 : Bj = p}.
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These are the moments of jump of the sequence (αi)i≥0 and conversely the instants of stopping for the
other one, (πi + αi)i≥0. It is clear that these moments can be recursively defined as below: γ0 = G0 and
γn+1 = 1 + γn + Gn+1, where (Gn)n≥0 is a sequence of i.i.d r. v. with a geometric distribution Geo(q)

P(Geo(q) = k) = q pk.

So, it is easy to see that

ν(x) ∈ {1 + γi : i ∈ N}, µ(y) 6∈ {1 + γi : i ∈ N}.

Using a discussion on the position of the hitting time τ in comparison with the sequence γ, we establish the
following lemma which will be proved in the Appendix 5.

Lemma 1

E

τ(x,y)−1∑
i=0

1
πi

 = dlogp(y)e+
(
dlogp(ρ(logp(y))y)e − blogp(y)c

)
1Ω(x,y)

+ E

 τ(x,y)−1∑
i=1+dlogp(ρ(logp(y))y)e

1
πi

1{γ0=blogp(y)c;γ1=dlogp(ρ(logp(y))y)e}

1Ω(x,y).

where Ω(x, y) = {(x, y) ∈ (]0, 1[)2 : dlogp(y)e = dlogp(x)e} and ρ is a periodic function with magnitude
1 defined for z > 0 by

ρ(z) =
1− p1−{z}

1− p
, {z} = z − bzc is the fractional part of z.

3.2 Asymptotic fluctuations phenomena
Theorem 1 (Asymptotic behavior of the average cost) The average cost E(Hn) admits the following asymp-
totic formula

E(Hn) = − logp(n) + E
(
dlogp(t2)

⌉
) + F (logp(n)) +R(n),

where F is a periodic function defined for all z > 0 by

F (z) =
∫ ∞

0

y(1− p1−{logp y−z})

(
dlogp(

1− p1−{logp y−z}

1− p
) + logp y − ze − blogp y − zc

)
e−ydy,

(5)
Ωn = Ω(U1,n, U2,n) and R(n) is a rest discussed in Section 3.3, defined by

R(n) = E

(
τ(U1,n,U2,n)−1∑

i=1+dlogp(ρ(logp(U2,n))U2,n)e

1
πi

)1{γ0=blogp(U2,n)c;γ1=dlogp(ρ(U2,n)U2,n)e} 1Ωn

 . (6)

Proof: Using Lemma 1, one gets

E(Hn) = E
(
dlogp(U2,n)e

)
+ E

(
(dlogp(ρ(logp(U2,n))U2,n)e − blogp(U2,n)c)1Ωn

)
+ E

(
τ(U1,n,U2,n)−1∑

i=1+dlogp(ρ(logp(y))y)e

1
πi

)1{γ0=blogp(U2,n)c;γ1=dlogp(ρ(U2,n)U2,n)e} 1Ωn

 .

The only not neglect terms are

T1(n) = E
(
dlogp(U2,n)e

)
and T2(n) = E

(
(dlogp(ρ(logp(U2,n))U2,n)e − blogp(U2,n)c)1Ωn

)
.

As n goes to infinity, nU2,n converges in distribution to a random variable t2 which is a sum of two i.i.d.
exponential random variables with parameter 1.Then, the first term satisfies

T1(n) = E(dlogp(t2)− logp(n)e) + O(
1
n

).
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Let D, function of − logp(n), the difference

D(− logp(n)) = E(dlogp(t2)− logp(n)e)−
(
E(dlogp(t2)e)− logp(n)

)
It is easy to check that D(z) = D({z})− bzc, then limn→+∞ n D(− logp n) = limz→+∞ p−z D(z) = 0,
and one gets

T1(n) = − logp(n) + E(dlogp(t2)e) + O(
1
n

).

The last term T2(n) is asymptotically equivalent to F (logp(n)) where F is defined by 5. In fact

|F (logp(n))−T2(n)| ≤
∫ n

0

∣∣∣(1− y

n
)n−2 − e−y

∣∣∣ dy+
∫ ∞

n

logp(ρ(logp(y/n))) y e−ydy+
1
n

F (logp(n))+2e−n

Observe that ∫ ∞

n

logp(ρ(logp(y/n))) y e−ydy = n2

∫ ∞

1

logp(ρ(logp y))y e−nydy.

By decomposition on the sequence of intervals
(
[pk+1, pk]

)
, the last integral is dominated by a geometric

sum and the following inequality holds for n > 2∫ ∞

1

logp(ρ(logp(y))) y e−nydy ≤ pn−2

1− p
.

Then,

F (logp(n))− E
(
(dlogp(ρ(logp(U2,n))U2,n)e − blogp(U2,n)c)1Ωn

)
= O(

1
n

).

This ends the proof. 2

3.3 Estimation of the rest
The final step is to estimate the rest R(n) defined by (6). For x, y ∈ [0, 1], K > k > 0

E

τ(x,y)−1∑
i=K

1
πi

1{γ0=k;γ1=K}

 ≤ (1− δ)K

√
E
(

(
1
δ2

)τ(x,y)

)
,

where δ = min(p, q). The following result is admitted.
Conjecture 1 The hitting time τ satisfies

sup
x∈[0,1]

E
(

(
1
δ2

)τ(x,x)

)
< ∞.

Remark 1 Conjecture 1 is an intuitive restriction on the exponential moment of the hitting time τ . It is
supported by some simulations (Fig.2,3) of x :→ E

(
( 1

δ2 )τ(x,x)
)

using Monte-Carlo techniques. Observe
that, for the unbiased case (Fig.2), the maximum corresponds to numerical values of x around 0.5 which is,
on average, the limit α of the two random sequences (αi) and (αi + πi). This maximum is of order of 1014,
which is reasonable since it implies that

E(τ) ≤ 14 log4(10) ≈ 23.25

For the biased one (Fig.3), since δ = 0.2, a maximum of the order of 1080 is acceptable; E(τ) ≤ 57.22.

Since, for 0 ≤ x < y ≤ 1, τ(x, y) ≤ max(τ(x, x), τ(y, y)), then, using Conjecture 1, we obtain

R(n) ≤ C E
(
(1− δ)dlogp(ρ(U2,n)U2,n)e

)
,

where C = supx∈[0,1]

√
E
(
(1/δ2)τ(x,x)

)
. Using the same method as for the function F , one gets

E
(
(1− δ)dlogp(ρ(U2,n)U2,n)e

)
≤ E

(
(1− δ)dlogp(U2,n)e

)
∼
(

1
n

)logp(1−δ)

.

This gives

R(n) = O(
1

nlogp(1−δ)
).

Conclusion
E(Hn) = − logp(n) + E

(
blogp(t2)c

)
+ F (logp(n)) + O(

1
nlogp(1−δ)

).
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Fig. 2: Unbiased case: simulations of x :→ E
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Fig. 3: Biased case: simulations of x :→ E
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.
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4 Algorithm Cost Distribution
It is more appropriate to use these notations p0 = p, p1 = q, to define recursively the sequence of intervals
(In

k ) associated to the binary decomposition of the interval [0, 1] in the base (p0, p1){
I0
0 = [0, 1]

In+1
k =

(
In+1
k−1

)
+

+ pk−2bk/2c In
bk/2c,

where (I)+ denotes the right extremity of the interval I . Let |I| the length of the interval I , then

(In
k )+ =

k∑
i=0

|In
i |.

Let n ∈ N and 0 ≤ k ≤ 2n+1 − 1. Consider the binary decomposition of k at the stage n

k = a0 + a12 + . . . + an2n, for 0 ≤ i ≤ n, ai ∈ {0, 1}.

Then, the length of the interval In+1
k is

|In+1
k | =

n∏
i=0

pai .

For k ∈ N, x > 0, one gets the following identity

{HNx
> k} = {∃ 0 ≤ i < 2k : N (xIk

0 ) = . . . = N (xIk
i−1) = 0 , N (xIk

i ) ≥ 2}.

So

P(HNx ≤ k) = e−x + x

2k−1∑
i=0

|Ik
i |e

−(Ik
i )+ . (7)

Let us define the sequence of probability measures (µk) by

µk(t) =
2k−1∑
i=0

|Ik
i | δ(Ik

i )+
(t).

Then, equation (7) can be rewritten as

P(HNx ≤ k) = e−x + x

∫ 1

0

e−xt dµk(t). (8)

Using a probabilistic de-Poissonization of equation (8) as done for Proposition 2, we obtain the exact
distribution of Hn.

Proposition 3 For n ≥ 2,

P(Hn ≤ k) = n

∫ 1

0

(1− t)n−1 dµk(t),

where the probability measure µk is described as above.

Using this identity
1− n(1− t)n−1 = 1− nt (1− t)n−1 − n(1− t)n,

the following result is immediate.

Corollary 1 For k ∈ N,

P(Hn > k) ∼
∫ 1

0

P(U2,n < t) dµk(t) , as n goes to infinity.

where U2,n is the second smallest random variable of n uniformly distributed random variables on [0.1]
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5 Appendix
We present the proof of Lemma 1. Recall the sequence of random variables (γi) defined by

(γi)i∈N = {j ≥ 0 : Bj = p}.

Proof of Lemma 1: First, note that

(ν(x) ≥ 2 + γ0) ⇔ (γ0 ≥ blogp(x)c)
(µ(y) ≤ γ0) ⇔ (γ0 ≥ dlogp(y)e).

Denote by Ω0 the following set

Ω0 = Ω(x, y) := {(x, y) ∈ (]0, 1[)2 : dlogp(y)e = dlogp(x)e}.

By decomposing the function Φ with respect to Ω0, one gets this formula

E

τ(x,y)−1∑
i=0

1
πi

 = E

(
γ0∑

i=0

1
pi

1{γ0<blogp(y)c}

)

+ P
(
γ0 = blogp(y)c

) blogp(y)c∑
i=0

1
pi

+ E

µ(y)−1∑
i=0

1
pi

1{γ0≥dlogp(y)e}


+ E

(
τ(x,y)−1∑

i=dlogp(y)e

1
πi

)1{γ0=blogp(y)c}

1Ω0 .

Since
µ(y)|(γ0 ≥ dlogp(y)e) = inf{i ≥ 1, pi < y} = dlogp(y)e,

then, by simple calculations, one gets

E

τ(x,y)−1∑
i=0

1
πi

 = dlogp(y)e+ E

(
τ(x,y)−1∑

i=dlogp(y)e

1
πi

)1{γ0=blogp(y)c}

1Ω0 .

A second discussion on γ1 implies that, on the set (γ0 = blogp(y)c,Ω0),

(ν(x) ≥ 2 + γ1) ⇔ (γ1 ≥ dlogp(ρ(logp(x))x)e)
(µ(y) ≤ γ1) ⇔ (γ1 ≥ 1 + dlogp(ρ(logp(y))y)e),

where ρ is a periodic function with magnitude 1 defined by ρ(z) = (1 − p1−{z})/(1 − p). Moreover, ρ is
decreasing on [0, 1[, so on the set Ω0,

ρ(logp(x))x < ρ(logp(y))y.

Let Ω1 = Ω(ρ(logp(x))x, ρ(logp(y))y). Then

E

τ(x,y)−1∑
i=0

1
πi

 = dlogp(y)e+
(
dlogp(ρ(logp(y))y)e − blogp(y)c

)
1Ω(x,y)

+ E

 τ(x,y)−1∑
i=1+dlogp(ρ(logp(y))y)e

1
πi

1{γ0=blogp(y)c;γ1=dlogp(ρ(logp(y))y)e}

1Ω(x,y).

This ends the proof. 2
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