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Permutation tableaux are new objects that were introduced byPostnikov in the context of enumeration of the totally
positive Grassmannian cells. They are known to be in bijection with permutations and recently, they have been
connected to PASEP model used in statistical physics. Properties of permutation tableaux became a focus of a
considerable research activity.

In this paper we study properties of basic statistics defined on permutation tableaux. We present a simple and unified
approach based on probabilistic techniques and use it to compute the expected values of basic statistics defined on
permutation tableaux. We also provide a non–bijective and very simple proof that there aren! permutation tableaux
of lengthn.

Keywords: permutation tableau, expected value, binomial distribution

1 Introduction
Permutation tableaux are new objects that are in bijection with permutations (Bur07; CN07; SW07).
They come from the enumeration of the totally positive Grassmannian cells (Pos06; Wil05). Surprisingly
they are also connected to a statistical physics model called the Partially ASymmetric Exclusion Process
(PASEP) (Cor07; CW07; CW06). Apermutation tableau(SW07) is a partitionλ with non negative parts
together with a filling of the boxes of the Ferrers diagram ofλ with 0’s and1’s such that the following
properties hold:

1. Each column of the diagram contains at least one1.

2. There is no0 which has a1 above it in the same columnanda1 to its left in the same row.

An example is given on Figure 1.
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Fig. 1: Example of a permutation tableau

Different statistics on permutation tableaux were defined in (CW06; SW07). We list a few here. The
lengthof a tableau is the sum of the number of parts and the largest part of the partitionλ. A zero in a
permutation tableau isrestrictedif there is a one above it in the same column. A row isunrestrictedif it
does not contain a restricted zero. A restricted zero is arightmostrestricted zero if it is restricted and it
has no restricted zero to its right in the same row. A one issuperfluousif it has a one above itself in the
same column. For example the tableau of Figure 1 has length 12, 3 superfluous ones and 4 unrestricted
rows.

The purpose of this work is to compute the expected value of several of these statistics. We list here our
main results.

Theorem 1 Letn be a fixed integer

1. The expected number of rows of a tableau of lengthn is (n + 1)/2.

2. The expected number of unrestricted rows of a tableau of lengthn is Hn, thenth harmonic number.

3. The expected number of ones in the first row of a tableau of lengthn is Hn − 1.

4. The expected number of superfluous ones of a tableau of length n is (n − 1)(n − 2)/12.

The first three of these results are known as

1. The number of permutation tableaux of lengthn with k rows is equal to the number of permutation
tableaux of lengthn with n−k+1 rows (CW06) or the number of permutation tableaux of lengthn
with k rows is equal to the number of permutations of[n] = {1, 2, . . . , n} with k weak excedances
(SW07).

2. The number of permutation tableaux of lengthn with k unrestricted rows is equal to the number of
permutations of[n] with k RL-minima (CN07; SW07). Moreover the number of permutations of
n with k RL-minima is equal to the number of permutations of[n] with k cycles and the expected
number of cycles of a permutation of[n] is Hn (Rio58).

3. The number of permutation tableaux of lengthn with k unrestricted rows is equal to the number of
of permutation tableaux withk − 1 ones in the first row (CW06).

These results come from bijections between permutation tableaux and permutations (CN07; SW07) and
an involution on permutation tableaux (CW06). Nevertheless the combinatorics behind those results are
not straightforward and all three required different methods. By contrast, in this paper we present an
elementary approach that will enable us to derive all the results of Theorem 1 in a unified manner. The
idea is to see how to construct a tableau of lengthn from a tableau of lengthn − 1. This construction
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was already used in (CW06; Wil05) and is explained in Section2. Here, we will reinterpret this con-
struction in probabilistic language. This will allow us to use tools from probability theory to analyze
properties of permutation tableaux. In particular, we provide a simple argument showing that the number
of permutation tableaux of lengthn is n!. (The idea of extending the size of a tableau by one can also
be translated into generating functions and gives another version of our proof of this enumeration result;
we indicate it in Section 7.) All earlier proofs that we are aware of are based on establishing bijections
between permutations and permutation tableaux. While there are at least three different bijections by
now, none of them is particularly easy (of course, bijectiveproofs have their advantages as they give more
information). Moreover thanks to this method, we can compute the expected number of superfluous ones
of the tableaux of lengthn (item (4) of Theorem 1). This is a new and very interesting result. Indeed,
using bijections between permutation tableaux and permutations (CN07; SW07), we know that the num-
ber of tableaux of lengthn with k superfluous ones is equal to the number of permutations of[n] with
k crossings and also to the number of permutations of[n] with k occurrences of the generalized pattern
31-2. A crossing (Cor07) in a permutationσ = (σ1, . . . , σn) is a pair(i, j) such thati < j ≤ σi < σj

or i > j > σi > σj . This definition implies that the permutations with no crossings are in bijection
with non-crossing partitions (Sim00) counted by the Catalan numbers. An occurrence of the generalized
pattern 31-2 (BS00) in a permutationσ is a pair(i, j) with 1 < i < j and such thatσi−1 > σj > σi.
It is also known that permutations with no occurrences of 31-2 are counted by the Catalan numbers. See
(BS00; Cla01; CM05; CM02). Moreover it is shown in (Cor07) that permutations of[n] with k crossings
are in bijection with permutations of[n] with k occurrences of 31-2. Therefore we also get a result on
permutation enumeration:

Theorem 2 The expected value of the number of crossings or occurrencesof the generalized pattern 31-2
in a random permutation of[n] is equal to

(n − 1)(n − 2)

12
.

Most of the up to date enumeration research related to generalized patterns focused on enumerating per-
mutations that avoid a given generalized pattern (see e. g. (BS00; Cla01) and references therein). To our
knowledge the above theorem is the first result of this type for generalized permutation patterns of length
larger than two.

We start in Section 2 by some definitions and general observations and then use Sections 3-6 to prove
Theorem 1.

2 From tableaux of length n − 1 to tableaux of length n

Given a fixed permutation tableauT one can increase its length by one by inserting a new row or a new
column. We use the example of Figure 1.

If one inserts a new row (a south step to the shape) then the number of unrestricted rows increases by
one. For example, the tableau below has now 5 unrestricted rows:

If one inserts a new column (a west step to the shape), this column needs to be filled with zeros and
ones. Every restricted row ofT needs a zero in the new column, as there is a zero in this row that has a
one above itself. The unrestricted rows can be filled with zeros or ones in the new column. If the tableau
T hadU = U(T ) unrestricted rows, then there are2U − 1 fillings of the new column as this new column
must contain a one. Some unrestricted rows become restricted if they are filled with a zero that has a one
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1
0
0 1 1 1 1
0 0 1 0 1
0 0 0 01 1 1

00

above itself. Therefore the new tableau can have up toU unrestricted rows. On the example below the
tableau of length 13 has now 3 unrestricted rows.

1
0
0 1 1 1 1
0 0 1 0 1
0 0 0 01 1 1

000
1

0
1
0

All together, there are2U possible extensions ofT and since we will consider the uniform probability
measure each of those extensions should be assigned the sameprobability, namely1/2U . Hence, ifP(S)
is the probability of adding a row (South step) andP(W ) the probability of adding a column (West step)
then

P(S) =
1

2U
; P(W ) =

2U − 1

2U
. (1)

Let P(U → k) be the probability of going fromU to k, 1 ≤ k ≤ U + 1, unrestricted rows. Ifk = U + 1,
the only way to increase the number of unrestricted rows by one is by adding a row. Therefore

P(U → U + 1) =
1

2U
.

Now letk ≤ U . That means that the step was West and so

P(U → k) = P(U → k, W ) = PW (U → k)P(W ), (2)

where we have writtenPW ( · ) for the conditional probabilityP( · |W ).
If one adds a column, this decreases (potentially) the number of unrestricted rows according to the

following rule. First, all restricted rows stay restricted(and the corresponding entries in the new column
are filled with 0’s). Of the remainingU entries those that are assigned 0’s which are below the top 1
will become restricted. LetG be the number (counting only unrestricted rows) of the topmost row that
is assigned 1 and letV be the number of 1’s assigned to the remainingU − G unrestricted rows. Then,
conditionally onG, V is distributed likeBin(U −G) random variable. Here and in what followsBin(m)
denotes a binomial random variable with parametersm andp = 1/2. Consequently,

PW (U → k) = PW (G + V = k) =
k
∑

j=1

PW (G = j, V = k − j)

=

k
∑

j=1

PW (V = k − j|G = j)PW (G = j) =

k
∑

j=1

1

2U−j

(

U − j

k − j

)

PW (G = j).
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SinceG is the waiting time for the first 1 in aBin(U) random variable conditioned that it is at least 1, for
1 ≤ k ≤ U we have

PW (G = j) = P(j − 1 0′s followed by 1|Bin(U) ≥ 1)

=
P(j − 1 0′s followed by 1, Bin(U) ≥ 1)

P(Bin(U) ≥ 1)

=
1/2j

1 − 1/2U
=

2U−j

2U − 1
.

Combining with (2) and (1),

P(U → k) =
P(W )

2U − 1

k
∑

j=1

(

U − j

k − j

)

=
1

2U

k
∑

j=1

(

U − j

k − j

)

=
1

2U

(

U

k − 1

)

.

Therefore

P(U → k) =
1

2U

(

U

k − 1

)

, k = 1, . . . , U + 1. (3)

We will now single out two simple observations that are key toour arguments. LetTn be the set of
all permutation tableaux of lengthn. We denote the uniform probability measure onTn by Pn andEn

will denote the integration with respect toPn overTn. Let Un be a random variable which is equal to the
number of unrestricted rows in a random (i.e. chosen according toPn) tableau of lengthn.

We will be using conditional distribution and expectationsgiven the random variablesUk, k ≥ 1. Since
Uk is a discrete random variable, a book by Shiryaev is a very good reference as it contains a section
on conditioning with respect to what Shiryaev calls “decompositions” ((Shi96, Chapter 1, Sec. 8 )) that
specifically covers that case. We refer to Shiryaev’s book for more details, here we briefly explain the
decomposition ofTn that we will be using. One natural possibility would be to putin one element of a
decomposition all tableaux of lengthn that were generated by the same tableau fromTn−1. However,
since our process is fully described by the number of unrestricted rows, when we refer in the sequel to the
conditional distributions or expectations givenUn−1 we will mean a coarser decomposition generated by
Un−1, namely

Tn =
n−1
⋃

j=1

Dj ,

whereDj ’s are pairwise disjoint subsets ofTn defined by

Dj =
{

T ∈ Tn : Un−1(T|n−1
) = j

}

,

and where byT|n−1
we mean a tableau inTn−1 that is obtained fromT by removing thenth piece of its

length (and the leftmost column if thenth step was to the west).
With this notation our first observation is as follows:U1 ≡ 1 and forn ≥ 2 the conditional distribution

of Un givenUn−1 is

L(Un|Un−1) = 1 + Bin(Un−1). (4)



Expected values of statistics on permutation tableaux 365

That is a direct consequence of (3) fork = 1, . . . , U + 1 :

Pn(Un = k|Un−1) =
1

2Un−1

(

Un−1

k − 1

)

= P(Bin(Un−1) = k − 1).

For the second observation, note thatPn induces a measure onTn−1, namely each tableauTn−1 ∈ Tn−1

is assigned a measure that is proportional to the number of tableaux fromTn it generates when its length
is increased fromn − 1 to n. This measure is different thanPn−1 since different tableaux fromTn−1

generate different number of tableaux inTn. Specifically,Tn−1 generates2Un−1(Tn−1) tableaux of length
n whereUn−1(Tn−1) is the number of unrestricted rows ofTn−1. Hence, the relationship between these
two measures is given by

Pn(Tn−1) =
2Un−1(Tn−1)

|Tn|
= 2Un−1(Tn−1)

|Tn−1|

|Tn|

1

|Tn−1|
= 2Un−1(Tn−1)

|Tn−1|

|Tn|
Pn−1(Tn−1).

Of course, we know bijectively that|Tn| = n! but we will not use it yet since we want to provide an
independent proof of that fact. Before doing this one comment about the notation is in order. As we will
be switching between these two measures onTn−1, we need to carefully distinguish which of the two we
mean. We adopt the following convention: for anyn ≥ 2 and any random variableXn−1 defined onTn−1,
En−1Xn−1 will mean the integration with respect to the uniform measure onTn−1, while EnXn−1 will
mean the integration with respect to the measure induced byPn. Thus for example,EnUn is the expected
number of unrestricted rows in a random tableau of lengthn, whileEnUn−1 denotes the expected number
of unrestricted rows in a tableau of lengthn− 1 computed with respect to the measure induced byPn. In
particular, the above relation between the measures means that

EnXn−1 = En−1

(

|Tn−1|

|Tn|
2Un−1Xn−1

)

=
|Tn−1|

|Tn|
En−1

(

2Un−1Xn−1

)

. (5)

This together with (4) is all we need to prove Theorem 1. But first, we wish to illustrate our method by
providing a direct proof of

Proposition 3 For everyn ≥ 0 |Tn+1| = (n + 1)!.

Proof: The elements ofTn+1 may be counted as follows

|Tn+1| =
∑

T∈Tn

2Un(T ).

Therefore,

|Tn+1| = |Tn|
1

|Tn|

∑

T∈Tn

2Un(T ) = |Tn| · En2Un = |Tn| · EnE(2Un |Un−1), (6)

whereE( · |Un−1) is the conditional expectation givenUn−1. By (4) the conditional distribution ofUn

givenUn−1 is 1 + Bin(Un−1) so that

E(2Un |Un−1) = E(21+Bin(Un−1)|Un−1) = 2E(2Bin(Un−1)|Un−1) = 2

(

3

2

)Un−1

,
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where we have used an obvious fact thatEaBin(m) =
(

a+1
2

)m
. Hence by (5)

En2Un = 2En

(

3

2

)Un−1

= 2
|Tn−1|

|Tn|
En−12

Un−1

(

3

2

)Un−1

= 2
|Tn−1|

|Tn|
En−13

Un−1 .

Putting this back into (6) we obtain

|Tn+1| = |Tn| · En2Un = 2|Tn−1| · En−13
Un−1 .

This can be iterated and results in the following chain of equalities

|Tn+1| = |Tn| · En2Un = 2 · |Tn−1| · En−13
Un−1 = 2 · 3 · |Tn−2| · En−24

Un−2

= . . .

= 2 · 3 · . . . · (n − 1) · |T2| · E2n
U2

= 2 · 3 · . . . · n · |T1| · E1(n + 1)U1 = (n + 1)!

2

The above proof is typical for our arguments : we will condition, use (4), compute an expectation
involving a function of a binomial random variable, and finally use (5) to reduce the length of the tableaux
by one. In the next four sections we will further illustrate the method, by sketching the proofs of parts
(1)–(4) of Theorem 1. Of course, now that Proposition 3 is proven, (5) simplifies to

EnXn−1 =
1

n
En−1

(

2Un−1Xn−1

)

(7)

and this is the form we will invoke in the sequel.

3 The expected number of unrestricted rows
In this section we will prove part (2) of Theorem 1. The relevant expectation involving a binomial random
variable is isolated in the following lemma (observe thatb = 1 andc = 0 gives the property used in the
proof of Proposition 3).

Lemma 4 For any numbersa, b, andc we have

EaBin(m)(b + cBin(m)) =

(

a + 1

2

)m

(b + c
a

a + 1
m). (8)

Proof: SinceBin(m) is distributed like
∑m

k=1 Ik, whereI1, . . . , Im, are independent indicators with
P(Ik = 1) = 1/2, the left–hand side of (8) is

Ea
P

m
k=1

Ik

(

b + c

m
∑

k=1

Ik

)

= bEa
P

m
k=1

Ik+c

m
∑

k=1

EIka
Pm

j=1
Ij = bE

m
∏

k=1

aIk+c

m
∑

k=1

E
(

IkaIk · a
P

j 6=k
Ij

)

.

By the independence of the indicators

E
m
∏

k=1

aIk =

m
∏

k=1

EaIk =

(

a + 1

2

)m

,
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and, for1 ≤ k ≤ m,

E
(

IkaIk · a
P

j 6=k
Ij

)

=
(

EIkaIk
)

Ea
P

j 6=k
Ij =

a

2

(

a + 1

2

)m−1

=
a

a + 1

(

a + 1

2

)m

.

Putting the last two expressions in the earlier formula gives the right–hand side of (8). 2

The proof of Theorem 1(2) can now be completed as follows:

EnUn = EnE (Un|Un−1) = EnE(1 + Bin(Un−1)|Un−1) = En(1 +
Un−1

2
)

=
1

n
En−12

Un−1(1 +
Un−1

2
)

where we have used (in that order) conditioning, (4), Lemma 4(with a = b = c = 1), and (7). Applying
the same procedure to this expression (this time witha = 2, b = H2, c = 1/2) we get

EnUn =
1

n
En−1E

(

21+Bin(Un−2)(1 +
1 + Bin(Un−2)

2
)
∣

∣Un−2

)

=
2

n
En−1E

(

2Bin(Un−2)(H2 +
Bin(Un−2)

2
)
∣

∣Un−2

)

=
2

n
En−1

(

3

2

)Un−2

(H2 +
1

2
·
2

3
Un−2) =

2

n(n − 1)
En−23

Un−2(H2 +
1

3
Un−2).

Further iterations lead to

EnUn =
(n − 1)!

n · . . . · 2
E1n

U1(Hn−1 +
U1

n
) = Hn−1 +

1

n
= Hn,

which completes the proof.
Remark: By modifying the above argument one can obtain a more generalstatement, namely, that the

number of unrestricted rowsUn is distributed like

Un
d
=

n
∑

k=1

Jk,

whereJ1, J2, . . ., are independent indicators withP(Jk = 1) = 1/k. In particular,

EnUn =

n
∑

k=1

P(Jk) = Hn, varn(Un) =

n
∑

k=1

var(Jk) =

n
∑

k=1

1

k

(

1 −
1

k

)

= Hn − H(2)
n ,

whereH
(2)
n =

∑n

k=1 k−2 is the generalizednth harmonic number. The details together with further
results concerning more precise information about the other statistics on permutation tableaux will be
included in the subsequent manuscript, now in preparation.Here, we just mention that this recovers
the full strength of the second comment after Theorem 1 whichin probabilistic language says that the
number of unrestricted rows is distributed like the number of cycles in a random permutation. The latter
distribution has been known to coincide with that of the sum

∑n

k=1 Jk for a long time, see for example
(Fel68, Chapter X, Section 6(b)) or (Rio58, Chapter 4, Section 3).
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4 Expected number of rows
LetRn be the number of rows in a random permutation tableau of lengthn. To prove part (1) of Theorem 1
we have to show thatEnRn = n+1

2 .
Recall form the construction that rows of a permutation tableau correspond to south steps in the process

of its construction. To be more precise, we letMk indicate the direction of the move at thekth step (i.e.
when the length is increased fromk − 1 to k). We refer toMk as thekth move and will writeMk = S or
Mk = W to indicate its direction. With this notation we have

Rn =

n
∑

k=1

IMk=S ,

and the proof will be complete once we show

Proposition 5 For 1 ≤ k ≤ n

EnIMk=S = Pn(Mk = S) = 1 −
k − 1

n
.

Proof: Let a be any number and consider more generally the expressionEmIMk=SaUm for m ≥ k. Then

EmIMk=SaUm = EmE(IMk=SaUm |Um−1).

If m > k, thenk ≤ m − 1 and thusIMk=S is measurable with respect toσ–algebra generated byUm−1.
Hence, using properties of conditional expectations and then (4), Lemma 4, and (7) we can further write

EmE(IMk=SaUm |Um−1) = EmIMk=SE(aUm |Um−1) = aEmIMk=S

(

a + 1

2

)Um−1

=
a

m
Em−1IMk=S(a + 1)Um−1 .

If, on the other hand,m = k, thenMk = S implies thatUk = Uk−1 + 1 and thus

EkE(IMk=SaUk |Uk−1) = EkIMk=SE(a1+Uk−1 |Uk−1) = aEkaUk−1E(IMk=S |Uk−1)

= aEkaUk−1P(Mk = S|Uk−1) = aEkaUk−1
1

2Uk−1
=

a

k
Ek−1a

Uk−1 .

Both cases can be further iterated and if we begin withm = n anda = 1 we obtain

EnIMk=S =
2 · 3 · . . . · (n − k)

n(n − 1) · . . . · (k + 1)
EkIMk=S(n − (k − 1))Uk

=
2 · 3 · . . . · (n − (k − 1))

n(n − 1) · . . . · (k + 1)
·
n − (k − 1)

k
Ek−1(n − (k − 1))Uk−1

=
(n − 2)!(n − (k − 1))

n!
E1(n − 1)U1 =

(n − 1)!(n − (k − 1))

n!
= 1 −

k − 1

n
,

as claimed. 2
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5 The expected number of ones in the first row
Let Fn be the number of ones in the top row of a random permutation tableau of lengthn. DefineGk

to be the position of the topmost (counting only unrestricted rows) 1 on thekth move. Note thatGk is
undefined if this move is south. While it is inconsequential in this section as we are interested in the event
{Gk = 1}, for the purpose of the next section it is convenient to setGk = Uk−1 + 1 if the kth move is
south. Then we have

EnFn =

n
∑

k=2

EnIGk=1 =

n
∑

k=2

Pn(Gk = 1) =

n
∑

k=2

1

n − k + 2
= Hn − 1,

where the third equality follows by iterating the followingidentity: If n ≥ m ≥ k ≥ 2 then

EmIGk=1a
Um =







a
m

Em−1IGk=1(a + 1)Um−1 , if m > k,

1
k

a
a+1Ek−1a

Uk−1 if m = k.

The relevant property of a binomial random variable is

EIG=1a
G+Bin(m−G) =

a

a + 1

(

a + 1

2

)m

,

whereG is the position of the first 1 in aBin(m) random variable. We omit further details.

6 The expected number of superfluous ones
Let Sn be the number of superfluous ones in a random permutation tableau of lengthn. We write

Sn =

n
∑

k=1

Vk,

whereVk is the increase in the number of superfluous ones on thekth move (thus, in particular,Vk = 0 if
this move is south). LetGk be as in the previous section. Then for1 ≤ j ≤ Uk−1 we have

Pk(Gk = j|Uk−1) = Pk(Gk = j, Mk = W |Uk−1) = Pk(Gk = j|Mk = W, Uk−1)Pk(Mk = W |Uk−1)

= P(Bin(Uk−1) = j|Bin(Uk−1) ≥ 1)
2Uk−1 − 1

2Uk−1
=

2−j

1 − 2−Uk−1

2Uk−1 − 1

2Uk−1
=

1

2j
,

and, forj = 1 + Uk−1,

Pk(Gk = Uk−1 + 1|Uk−1) =
1

2Uk−1
.

Moreover, after some additional calculations, one finds that the joint conditional distribution of(Uk, Vk)
givenUk−1 is

L((Uk, Vk)|Uk−1) = (Gk + Bin(Uk−1 − Gk), Bin(Uk−1 − Gk)).

We will need the following property of a binomial random variable.
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Lemma 6 G is the position of the first one in a binomial random variable.Then

EBin(m − G) =
m

2
− 1 +

1

2m

EaG+Bin(m−G)Bin(m − G) = a2

((

m

a + 1
− 1

)(

a + 1

2

)m

+
(a

2

)m
)

.

Proof: For the first expression write

EBin(m − G) =

m−1
∑

j=1

1

2j
Bin(m − j) =

m−1
∑

j=1

1

2j

m − j

2
=

1

2

m−1
∑

k=1

k

2m−k
= 2−m

m−1
∑

k=1

k2k−1

= 2−m d

dx

(

m−1
∑

k=0

xk

)

∣

∣

∣

x=2
= 2−m(m2m−1 − 2m + 1) =

m

2
− 1 +

1

2m
,

and for the second

EaG+Bin(m−G)Bin(m − G) =

m−1
∑

j=1

1

2j
ajEaBin(m−j)Bin(m − j) =

m−1
∑

j=1

(a

2

)j
(

a + 1

2

)m−j

(m − j)
a

a + 1

=
a

a + 1

m−1
∑

k=1

k

(

a + 1

a

)k
(a

2

)m−k

=
(a

2

)m
m−1
∑

k=1

k

(

a + 1

a

)k−1

=
(a

2

)m d

dx

(

m−1
∑

k=0

xk

)

∣

∣

∣

x=a+1

a

=
(a

2

)m

a2

(

m

(

a + 1

a

)m−1
1

a
− 1

(

a + 1

a

)m

+ 1

)

= a2

((

m

a + 1
− 1

)(

a + 1

2

)m

+
(a

2

)m
)

.

2

This, (4), and (7) is enough to establish the following lemmawhich contains all ingredients needed for
the iteration

Lemma 7

EkSkaUk =
a

k
Ek−1Sk−1(a + 1)Uk−1 +

a2

k
Ek−1

((

Uk−1

a + 1
− 1

)

(a + 1)Uk−1 + aUk−1

)

EkaUk(b + cUk) =
a

k
Ek−1(a + 1)Uk−1

(

b + c + c
a

a + 1
Uk−1

)

.

2

Starting withk = n anda = 1 and using successive conditioning and the above lemma, we obtain the
following chain of equalities forEnSn.

EnSn =
1

n
En−1Sn−12

Un−1 +
1

n
En−1

((

Un−1

2
− 1

)

2Un−1 + 1

)

=
2

n(n − 1)
En−2Sn−23

Un−2 +
22

n(n − 1)
En−2

((

Un−2

3
− 1

)

3Un−1 + 2Un−2

)
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+
1

n
En−1

((

Un−1

2
− 1

)

2Un−1 + 1

)

=
2

n(n − 1)

{

3

n − 2
En−3Sn−34

Un−3 +
32

n − 2
En−3

((

Un−3

4
− 1

)

4Un−3 + 3Un−3

)}

+
22

n(n − 1)
En−2

((

Un−2

3
− 1

)

3Un−1 + 2Un−2

)

+
1

n
En−1

((

Un−1

2
− 1

)

2Un−1 + 1

)

.

Continuing in the same manner and usingE3S3a
U3 = a2

6 in the last step we obtain

EnSn =
(n − 2)(n − 2)!

n!

+

n−1
∑

j=3

(n − j)(n − j)!

n(n − 1) . . . (j + 1)
Ej

((

Uj

n + 1 − j
− 1

)

(n + 1 − j)Uj + (n − j)Uj

)

.

Splitting the above expectation and successively applyingthe second part of Lemma 7 to each of the
resulting parts (starting witha = n+1− j, b = −1, c = 1/(n+1− j), anda = n− j, andb = 1, c = 0,
respectively) yields

EnSn =
n − 2

n(n − 1)
+

(n − 3)(n − 2)

2
(Hn − Hn−3)

+
(n − 4)(n − 3)

4
−

(n − 3)(n − 2)

2
+

(n − 3)(n − 2)(2n − 5)

6n
,

which simplifies to(n−1)(n−2)
12 . 2

Remark. We could also have tried to attack this problem with techniques developed for labeled
Motzkin paths (FPV86; Lou87) as it was shown in (Cor07) that permutations of[n] with k crossings (or
permutation tableaux of lengthn with k superfluous ones) are in bijection with certain labeled Motzkin
paths of lengthn such that the sum of the labels isk. This method is easy to use for crossings for match-
ings but appears to be hard in this case (Lou06).

7 Conclusion
In this paper we used simple probabilistic techniques to getthe expected values of the different parameters
of interest of permutation tableaux of lengthn: the number of unrestricted rows, the number of ones in
the first row, the number of rows and the number of superfluous ones. Our approach is very elementary
and gives some exact as opposite to asymptotic expressions for the expected values of these parameters.
Thanks to this approach we can also compute the variances andthe distributions of those parameters and
this will be reported in the long version of this work. To finish we want to highlight that as the method
used here is just to build tableaux of lengthn from tableaux of lengthn − 1, this can be translated into
recurrences and generating functions. Indeed lettn,k,j be the number of tableaux of lengthn with k
unrestricted rows andj ones in the first row. Thentn,k,j = 0 if k > n or j > n − 1 or n < 0, t1,1,0 = 1,
and

tn,k,j =

n−1
∑

ℓ=k

(

ℓ − 1

k − 1

)

tn−1,ℓ,j−1 +

n−1
∑

ℓ=k−1

(

ℓ − 1

k − 2

)

tn−1,ℓ,j,
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otherwise. This implies that ifTn(x, y) =
∑

k,j tn,k,jx
kyj , thenT1(x, y) = x and

Tn(x, y) =
x(x + y)

1 + x
Tn−1(x + 1, y).

Therefore forn ≥ 1,

Tn(x, y) = x
n−2
∏

i=0

(x + y + i).

This gives another straightforward proof that there aren! permutation tableaux of lengthn and that per-
mutation tableaux of lengthn and withk unrestricted rows (ork − 1 ones in the first row) are in bijection
with permutations of{1, 2, . . . n} with k cycles. This generating function approach therefore looksvery
easy. Computations get way more complicated for superfluousones as it was shown by Williams in
(Wil05). This is why we chose to present in this extended abstract the details of the probabilistic approach
that works well for all the parameters. Combinatorial studies showed the links between the permutation
tableaux and the Partially ASymmetric Exclusion process (PASEP) (Cor07; CW07; CW06). As suggested
by one of the referees, it would be very interesting to study the typical shape of tableaux not under the
uniform distribution but under the weighted distribution that underlies the stationary distribution of the
PASEP. This will be done in a later work.
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