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Permutation tableaux are new objects that were introducdRblgynikov in the context of enumeration of the totally
positive Grassmannian cells. They are known to be in bijection with permutations and recently, they have been
connected to PASEP model used in statistical physics. Properties of permutation tableaux became a focus of a
considerable research activity.

In this paper we study properties of basic statistics defined on permutation tableaux. We present a simple and unified
approach based on probabilistic techniques and use it to compute the expected values of basic statistics defined on
permutation tableaux. We also provide a non-bijective and very simple proof that therepammnutation tableaux

of lengthn.

Keywords: permutation tableau, expected value, binomial distribution

1 Introduction

Permutation tableaux are new objects that are in bijection with permutations (Bur07; CNO7; SWO07).
They come from the enumeration of the totally positive Grassmannian cells (Pos06; Wil05). Surprisingly
they are also connected to a statistical physics model called the Partially ASymmetric Exclusion Process
(PASEP) (Cor07; CW07; CWO06). permutation tableaSWO07) is a partitior\ with non negative parts
together with a filling of the boxes of the Ferrers diagramiofith 0's and1’s such that the following
properties hold:

1. Each column of the diagram contains at least bne
2. There is nd which has al above it in the same colunandal to its left in the same row.

An example is given on Figure 1.
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Fig. 1: Example of a permutation tableau

Different statistics on permutation tableaux were defime@W06; SWO07). We list a few here. The
lengthof a tableau is the sum of the number of parts and the largessopthe partition\. A zero in a
permutation tableau iestrictedif there is a one above it in the same column. A rowisestrictedf it
does not contain a restricted zero. A restricted zerorigldmostrestricted zero if it is restricted and it
has no restricted zero to its right in the same row. A orsugerfluousf it has a one above itself in the
same column. For example the tableau of Figure 1 has lengtB 42perfluous ones and 4 unrestricted
rows.

The purpose of this work is to compute the expected valuevairaeof these statistics. We list here our
main results.

Theorem 1 Letn be a fixed integer
1. The expected number of rows of a tableau of lemgth(n + 1)/2.
2. The expected number of unrestricted rows of a tableawngthe: is H,,, then harmonic number.
3. The expected number of ones in the first row of a tableawngthe: is H,, — 1.

4. The expected number of superfluous ones of a tableau dhleng (n — 1)(n — 2)/12.

The first three of these results are known as

1. The number of permutation tableaux of lengttvith £ rows is equal to the number of permutation
tableaux of lengtm with n — k+ 1 rows (CWO06) or the number of permutation tableaux of length
with & rows is equal to the number of permutationgidf= {1, 2, ..., n} with k£ weak excedances
(SWO07).

2. The number of permutation tableaux of lengtiith &k unrestricted rows is equal to the number of
permutations ofn] with £ RL-minima (CNO7; SWO07). Moreover the number of permutatiof
n with k¥ RL-minima is equal to the number of permutationg:dfwith & cycles and the expected
number of cycles of a permutation ppf] is H,, (Rio58).

3. The number of permutation tableaux of lengttvith £ unrestricted rows is equal to the number of
of permutation tableaux with — 1 ones in the first row (CWO06).

These results come from bijections between permutatidedalk and permutations (CNO7; SWQ07) and

an involution on permutation tableaux (CWO06). Neverthelbe combinatorics behind those results are
not straightforward and all three required different meihoBy contrast, in this paper we present an
elementary approach that will enable us to derive all thelte®f Theorem 1 in a unified manner. The

idea is to see how to construct a tableau of lengfinom a tableau of length — 1. This construction
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was already used in (CWO06; Wil05) and is explained in SecBiorHere, we will reinterpret this con-
struction in probabilistic language. This will allow us teautools from probability theory to analyze
properties of permutation tableaux. In particular, we pte\a simple argument showing that the number
of permutation tableaux of lengthis n!. (The idea of extending the size of a tableau by one can also
be translated into generating functions and gives anotisian of our proof of this enumeration result;
we indicate it in Section 7.) All earlier proofs that we areaas of are based on establishing bijections
between permutations and permutation tableaux. Whileethes at least three different bijections by
now, none of them is particularly easy (of course, bijectix@ofs have their advantages as they give more
information). Moreover thanks to this method, we can coraplu¢ expected number of superfluous ones
of the tableaux of length (item (4) of Theorem 1). This is a new and very interestingiitedndeed,
using bijections between permutation tableaux and petioat(CNO7; SWO07), we know that the num-
ber of tableaux of length with k superfluous ones is equal to the number of permutatiofs|afith

k crossings and also to the number of permutationspivith & occurrences of the generalized pattern
31-2. A crossing (Cor07) in a permutation= (o1, ..., 0,) iS a pair(i, j) such that < j < o; < o,

ori > j > o; > o;. This definition implies that the permutations with no cings are in bijection
with non-crossing partitions (Sim00) counted by the Catalambers. An occurrence of the generalized
pattern 31-2 (BS00) in a permutationis a pair(i, j) with 1 < ¢ < j and such that,_; > o, > 0.

Itis also known that permutations with no occurrences o22ire counted by the Catalan numbers. See
(BS00; Cla01; CM05; CM02). Moreover it is shown in (CorO7atipermutations dffr] with k crossings
are in bijection with permutations ¢f] with & occurrences of 31-2. Therefore we also get a result on
permutation enumeration:

Theorem 2 The expected value of the number of crossings or occurraritke generalized pattern 31-2
in a random permutation dh] is equal to

(n—1)(n— 2).
12

Most of the up to date enumeration research related to gérestgatterns focused on enumerating per-
mutations that avoid a given generalized pattern (see &90(; Cla01) and references therein). To our
knowledge the above theorem is the first result of this typgémeralized permutation patterns of length
larger than two.

We start in Section 2 by some definitions and general obsensand then use Sections 3-6 to prove
Theorem 1.

2 From tableaux of length n — 1 to tableaux of length n

Given a fixed permutation tableduone can increase its length by one by inserting a new row ona ne
column. We use the example of Figure 1.

If one inserts a new row (a south step to the shape) then théewof unrestricted rows increases by
one. For example, the tableau below has now 5 unrestrictest ro

If one inserts a new column (a west step to the shape), thisrooheeds to be filled with zeros and
ones. Every restricted row @f needs a zero in the new column, as there is a zero in this ravhéssa
one above itself. The unrestricted rows can be filled witloger ones in the new column. If the tableau
T hadU = U(T) unrestricted rows, then there &€ — 1 fillings of the new column as this new column
must contain a one. Some unrestricted rows become resitifdtesy are filled with a zero that has a one
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above itself. Therefore the new tableau can have up tmrestricted rows. On the example below the
tableau of length 13 has now 3 unrestricted rows.

olofo[1]o]o]1]1]
1]ofof[1] o] 1
ofof1]1]1]1
o[o]o]o

1]1

All together, there ar@V possible extensions @f and since we will consider the uniform probability
measure each of those extensions should be assigned th@sarability, namelyl /2V. Hence, ifP(S)
is the probability of adding a row (South step) &ndV') the probability of adding a column (West step)
then U
1 2Y —1
LetP(U — k) be the probability of going frort to k, 1 < k < U + 1, unrestricted rows. Ik = U + 1,
the only way to increase the number of unrestricted rows leyieby adding a row. Therefore

P(S)

1
PU—U+1)= g

Now letk < U. That means that the step was West and so
PU—k)=P(U — k,W)=Pw (U — k)P(W), (2)

where we have writteRyy ( - ) for the conditional probabilit( - |[WW).

If one adds a column, this decreases (potentially) the nummbanrestricted rows according to the
following rule. First, all restricted rows stay restrict@hd the corresponding entries in the new column
are filled with 0’s). Of the remaining/ entries those that are assigned 0's which are below the top 1
will become restricted. Let be the number (counting only unrestricted rows) of the topmow that
is assigned 1 and &t be the number of 1's assigned to the remairlihg- G unrestricted rows. Then,
conditionally onG, V is distributed likeBin(U — G) random variable. Here and in what followB$n (m)
denotes a binomial random variable with paramete@ndp = 1/2. Consequently,

k
Pw(U—k)=Pw(G+V=k=> Pw(G=jV=Fk-—j
j=1

M-

PV = k=316 = PG =) = Y- 3o (4 7 JPwi@ =)

J
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SinceG is the waiting time for the first 1 in Bin(U') random variable conditioned that it is at least 1, for
1 <k < U we have

Pw(G=j) = P(j—10sfollowed by 1|Bin(U) > 1)
P(j — 1 0’s followed by 1, Bin(U) > 1)
P(Bin(U) > 1)
1/27 U~

1—1/2U0  2U —1°

Combining with (2) and (1),

Therefore

1 U
P(U—>k)_2U(k_1), k=1,....,U+ 1. 3)
We will now single out two simple observations that are keyptw arguments. LeT,, be the set of
all permutation tableaux of length We denote the uniform probability measure nby P,, andE,,
will denote the integration with respecti®y, over7Z,. LetU,, be a random variable which is equal to the
number of unrestricted rows in a random (i.e. chosen acegiaiP,,) tableau of lengtt.

We will be using conditional distribution and expectatigngen the random variablés,, £ > 1. Since
Uy is a discrete random variable, a book by Shiryaev is a veryglgeterence as it contains a section
on conditioning with respect to what Shiryaev calls “decosifions” ((Shi96, Chapter 1, Sec. 8)) that
specifically covers that case. We refer to Shiryaev’s bookifore details, here we briefly explain the
decomposition of7,, that we will be using. One natural possibility would be to pubne element of a
decomposition all tableaux of lengththat were generated by the same tableau flm,. However,
since our process is fully described by the number of uricéstt rows, when we refer in the sequel to the
conditional distributions or expectations giveR_, we will mean a coarser decomposition generated by
U,—_1, namely

n—1
T.=J D
j=1
whereD;’s are pairwise disjoint subsets Bj defined by
Dj={TeTy: Us(T}, ,)=j},

and where byl _, we mean a tableau ii,_; that is obtained fronT" by removing thenth piece of its
length (and the leftmost column if theh step was to the west).
With this notation our first observation is as follow$; = 1 and forn > 2 the conditional distribution
of U,, givenU,,_; is
L(Up|Up—1) =1+ Bin(U,_1). (4)
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That is a direct consequence of 3) foe=1,...,U +1:

1 n— .
Pu(Un =klUn-1) = 5 <Z_ i) = PBin(U,_1) =k —1).
For the second observation, note tRatinduces a measure 6h,_ 1, namely each tabledll, ; € 7,,_1

is assigned a measure that is proportional to the numbeblefaax from7,, it generates when its length
is increased fromn — 1 to n. This measure is different thd?,_; since different tableaux fror,,_;
generate different number of tableauxZip. Specifically,T},_, generate@U~-1(T=-1) tableaux of length

n whereU,,_1(T,,—1) is the number of unrestricted rows6f _,. Hence, the relationship between these
two measures is given by

2Un7l(Tnfl) Tﬂ,— 1 ,Z;L—
= 2U"’1(T"’1) | 1| = 2Un71(T"71) | 1| Pn—l(Tn—l)'

P(Ty 1) = ——— = il
(Tnt) = =7 T, TZo] T

Of course, we know bijectively thdf,,| = n! but we will not use it yet since we want to provide an
independent proof of that fact. Before doing this one contrabout the notation is in order. As we will
be switching between these two measure§,on;, we need to carefully distinguish which of the two we
mean. We adopt the following convention: for any 2 and any random variabl€,,_; defined orZ,, 1,
E,._1X,_1 will mean the integration with respect to the uniform measam7,,_,, while E,, X,, 1 will
mean the integration with respect to the measure inducéd,birhus for examplet,, U, is the expected
number of unrestricted rows in a random tableau of lemgtlihile E,,U,,_; denotes the expected number
of unrestricted rows in a tableau of length- 1 computed with respect to the measure induce@byin
particular, the above relation between the measures means t

71|
|7,

Tn—1|
ox, ) <!
| 75|

Ean,1 = Enfl < Enfl (2Un71Xn71) . (5)

This together with (4) is all we need to prove Theorem 1. Bt five wish to illustrate our method by
providing a direct proof of

Proposition 3 For everyn > 0 |7,41]| = (n+ 1)\
Proof: The elements df,,; may be counted as follows

| Toa] = Y 2.

TeT,
Therefore,

1

Tnta] = Iﬂlm

S 20D — |7, B2V = |T,| - EAE(2U Up 1), ©®)
TeT,

whereE( - |U,—1) is the conditional expectation givén,_;. By (4) the conditional distribution of’,,
givenU,,_; is 1 + Bin(U,,—1) so that

Un-1
E(2[0-1) = B0, ) = 2P0, ) =2 ()
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where we have used an obvious fact tRat»(™) = (2£)™. Hence by (5)

Unfl U7171
3 T 3 T
E,.2U" = 2E, (5) ol 7 |1|En_12U”1 (5) s 7 |1|En_13Um.

Putting this back into (6) we obtain
|Tos1] = |T0| - En2Y" = 2|7, 1| - Epoq3Yn2,
This can be iterated and results in the following chain ofaditjigs

Total = |Tal En2" =2 T | - Eni3Pt =23 [T, | - E, 942

2-3-...-(n—1) || - Ean"?
= 2.3-...-n-|T| -Ei(n+ 1)V = (n+1)!
O
The above proof is typical for our arguments : we will coratiti use (4), compute an expectation
involving a function of a binomial random variable, and flgaise (5) to reduce the length of the tableaux

by one. In the next four sections we will further illustrakeetmethod, by sketching the proofs of parts
(1)—(4) of Theorem 1. Of course, now that Proposition 3 isspm (5) simplifies to

Ean,1 = %Enfl (2Un71Xn71) (7)

and this is the form we will invoke in the sequel.

3 The expected number of unrestricted rows

In this section we will prove part (2) of Theorem 1. The rel#v@xpectation involving a binomial random
variable is isolated in the following lemma (observe that 1 andc = 0 gives the property used in the
proof of Proposition 3).

Lemma4 For any numbers;, b, andc we have

Bin(m) : — a+l "
Ea (b + ¢Bin(m)) ( 5 ) b+ coy 1m). (8)
Proof: Since Bin(m) is distributed IikeZZ“;1 I, wherely,..., I, are independent indicators with

P(I; = 1) = 1/2, the left-hand side of (8) is

Eq2i=1 1k (b +ey Ik> = bEa>i=1 ke Y “Ela>i= T = bE [[ a™+¢) E (Ikalk C a2zt Ij) .
k=1 k=1 k=1 k=1

By the independence of the indicators

Efl[alr’c = lnjllfal’c = (a+1)m7
k=1 k=1 2
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and, forl <k <m,

m—1 m
E (Ikafk .aZj;éklj) _ (EIkalk) Eazj#k I; — g (a+1) — a (a+1) .

2 a+1 2
Putting the last two expressions in the earlier formulagihe right—hand side of (8). )
The proof of Theorem 1(2) can now be completed as follows:
Un_
Enln = EnE(UalUn-1) = ExE(L+Bin(Uy—1)[Uno1) = En(1+ =5 Ly
1 Un—l
J— —-F,_ 2U7171 1
n ! (1+ 2 )

where we have used (in that order) conditioning, (4), Lemnfaith « = b = ¢ = 1), and (7). Applying
the same procedure to this expression (this time with 2, b = Hs, ¢ = 1/2) we get

1

. 1 + Bin(U,,—
E.U, = —-E, ,E (21+B1n(Un2)(1+ + Bin( 2))‘Un2)
n

2

2 ; Bin(U,,—
— Ze (e 22, )
n

Un_2
2 3 1 2 2 1
= —-E,.1(= H- —-=-U,_9)= ———E,_ 3Un-2(H, =U,—_2).

n 1(2) (e + 5 - 5Un-2) n(n—1) "2 (Hz + 5Un-2)
Further iterations lead to

—1)! U 1
MEanl (anl + —1) = anl + — = Hn,
n 2 n n

E.U, =

which completes the proof.
Remark: By modifying the above argument one can obtain a more gesti@ment, namely, that the
number of unrestricted row$,, is distributed like

Un g iJka
k=1

whereJy, Jo, .. ., are independent indicators wie{(.J, = 1) = 1/k. In particular,

u - "1 1
EnlUn=> P(Jy)=H,, var,(U,) =Y var(Ji)=>» - <1 - E) =H, - H?,
k=1 1

k=1 = k=

where H? = >n_, k=2 is the generalizeath harmonic number. The details together with further
results concerning more precise information about therdadtedistics on permutation tableaux will be
included in the subsequent manuscript, now in preparatidare, we just mention that this recovers
the full strength of the second comment after Theorem 1 whigbrobabilistic language says that the
number of unrestricted rows is distributed like the numiferyales in a random permutation. The latter
distribution has been known to coincide with that of the spifi_, .J;. for a long time, see for example
(Fel68, Chapter X, Section 6(b)) or (Rio58, Chapter 4, $ac3).
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4 Expected number of rows

Let R,, be the number of rows in a random permutation tableau ofllemgto prove part (1) of Theorem 1
we have to show thd, R,, = 2+

Recall form the construction that rows of a permutationdgablcorrespond to south steps in the process
of its construction. To be more precise, we M}, indicate the direction of the move at thkth step (i.e.
when the length is increased frdm- 1 to k). We refer toM}, as thekth move and will writeM;, = S or
M, = W to indicate its direction. With this notation we have

Ry =Y In=s,
k=1

and the proof will be complete once we show
Proposition5 For1 <k <n

k—1

Enfa,{kzszpn(Mk:S):l— "

Proof: Let a be any number and consider more generally the expre&sidny, —sa”™ for m > k. Then
EmIMkZSaU’" = EmE(IMkzgaU’“ |Um,1).

If m > k, thenk < m — 1 and thusl,;, — s is measurable with respect 4e-algebra generated &, 1.
Hence, using properties of conditional expectations aed (), Lemma 4, and (7) we can further write

a+ 1 U7n71
EmE(In,—sa”|Upm—1) = Emly,—sE(@""|Upn_1) = aElnr—s ( 5 )
a
= —Em 1y - 1)Um—1,
- Iy, =s(a+1)
If, on the other handpn = k, thenM;, = S implies thatU, = Uy_1 + 1 and thus
ExE(In=sa”|Uk—1) = Epla—sE(a' T |Uy_1) = aBEra” " E(Ips,=5|Uk-1)
a
= aByaP(My = S|V 1) = 0Bl s = 2B ol
Both cases can be further iterated and if we begin with- n anda = 1 we obtain
2:3-...-(n—k) U
Enly=s = Erln,— —(k=1))"*
Mi=5 nn—1)-...-(k+1) ehag=s(n—( )
2:3-....m=(k-=1)) n—(k-1) U
= . E _ _ k _ 1 k—1
nn—1)-...-(k+1) k e-1(n = ( )
—N(n— (k — D — (k — _
_ (n—=2)!(n—(k 1))E1(n _ ) = (n—DYn—-(k-1)) 11— k 1’
n! n! n

as claimed. O
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5 The expected number of ones in the first row

Let F;, be the number of ones in the top row of a random permutatidedatof lengthn. Define Gy,

to be the position of the topmost (counting only unrestdat@ws) 1 on theith move. Note tha&y, is
undefined if this move is south. While it is inconsequentighis section as we are interested in the event
{G}, = 1}, for the purpose of the next section it is convenient to&et= U1 + 1 if the kth move is
south. Then we have

n

n n 1
E Fo=S Enlg—1=Y P.(Gr=1)= —— —H, 1,

where the third equality follows by iterating the followimdentity: If n > m > k > 2 then

v %Em_llgkzl(a + 1)Um’1, if m>k,
Enlg,—10"™ =
Gr=10 LY £ - " B
R afiEk—10 it m==k.

The relevant property of a binomial random variable is

. +1 m
El G+Bin(m—G) _ a a
G=10 a+ 1 2 9

whereG is the position of the first 1 in Bin(m) random variable. We omit further details.

6 The expected number of superfluous ones

Let S,, be the number of superfluous ones in a random permutatiozetalolf length. We write

Sn = i Vka
k=1

whereV, is the increase in the number of superfluous ones ohktthenove (thus, in particulak, = 0 if
this move is south). Lef;. be as in the previous section. Then fox j < Uy_; we have

Pr(Gr = j|lUk-1) = Pr(Gr=j, My =W|Up_1) = Pr(Gr = j|My = W,Ug_1)Pp(My = W|Uy_1)
. . Uk-1 _ 1 2-J 2Uk-1 _ 1 1
= P(Bin(Ug—1) = j|Bin(Ui-1) > 1) U T 1 e Ui = oi
and, forj = 1+ Uy_1,
1
Pi(Gr = Up—1 + 1|Up-1) = 0y

Moreover, after some additional calculations, one findstthejoint conditional distribution ofUy, Vi)
givenUj_1 is
ﬁ((Uk, Vk)|Uk_1) = (Gk + Bin(Uk_l — Gk), Bin(Uk_l — Gk))

We will need the following property of a binomial random \adoie.
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Lemma6 G is the position of the first one in a binomial random variatiieen

EBin(m-G) = ——-1+—

G+Bin(m—G) s . _ 2 m_ a+1\™ a\m
Ea Bin(m — G) a ((a—i—l 1)( 5 +(2) .

Proof: For the first expression write

m—1 1 m—1 1 m ] 1m—1 k m
. _ _ - _ __o—m k—1
EBin(m — G) = 2—JB1n —Jj)= > 53 —3 Sk = 2 Z k2
j=1 j=1 k=1
m—1
d m 1
= 27— k =2 Mm2m 2 41 = — — 1
a <Zw> i (m 1) =2 -1+,
k=0
and for the second
m-ly ! a a+1 a
G+Bin(m—-G)R: _ _ — JEgBr(m—i)R; — ) = — -7
Ea Bin(m — G) Z 57 ¥ Ea Bin(m — j) 2 ( ) ])a—i—l

i=1 i=1 2
a T fa+1\* paymk axm T fa+1\F? a d
() OGS ()T - (B

0" (o () () ) () () )

This, (4), and (7) is enough to establish the following lemmiich contains all ingredients needed for
the iteration

—atl
a

Lemma?7
EkSkCLUk = gEk 1.5k 1(CL—|— 1)Uk’1 + a—QEk 1 —Ukil -1 (a—|— 1)Uk’1 —l—aUk’l
ko k- a+1
EkaU’“(b—i— cUy) = %Ek—l(a-i- 1)U’“*1 <b—|— c+c a4 1Uk_1> )
a

a

Starting withk = n anda = 1 and using successive conditioning and the above lemma, teénabe
following chain of equalities foE,, S,,.

1 1 e
EnSy = —En 1S8,12U" '+ -E, , <<U L 1) 2Un-1 4 1)
n n 2

2 22 U,_2
= ——E, 25, 23" 2+ ———E,_ S 1) 3Unt 4 2Un2
n(n—1) 2 2 +n(n—1) 2<< 3 ) +
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1 —
+—En-1 (<U L 1) 2Un-1 4 1)
n 2
2 3 32 Un_s
= ——«¢——E, 35,_ 4Un-s3 E,_ n — 1) 4Vn-3 L 3Un-s
n(n—l){n—2 on=s +n—2 3<( 4 > +

22 U72 1 U,1
————E, = 1) 3V 22 ) 4, = 12V 1),
s (5 )3 e e (B ) s

Continuing in the same manner and usthg;as = %2 in the last step we obtain

(n—2)(n—2)!
n!

E.S, =

Splitting the above expectation and successively appltfiegsecond part of Lemma 7 to each of the
resulting parts (startingwita=n+1—j,b=—-1,¢=1/(n+1—j),anda =n—j,andb =1,c =0,
respectively) yields

n—2 (n—=3)(n-2)

E.S., = I + 5 (Hp — Hp—3)
m=4)(n-3) m-3)(n—-2) nm-3)(n—2)2n->5)
+ — + :
4 2 6n
which simplifies to%. O

Remark. We could also have tried to attack this problem with techegdeveloped for labeled
Motzkin paths (FPV86; Lou87) as it was shown in (Cor07) trexhputations ofrn| with & crossings (or
permutation tableaux of lengthwith &£ superfluous ones) are in bijection with certain labeled Miotz
paths of lengtl: such that the sum of the labelsiis This method is easy to use for crossings for match-
ings but appears to be hard in this case (Lou06).

7 Conclusion

In this paper we used simple probabilistic techniques tatgeéxpected values of the different parameters
of interest of permutation tableaux of length the number of unrestricted rows, the number of ones in
the first row, the number of rows and the number of superfluoes.oOur approach is very elementary
and gives some exact as opposite to asymptotic expressiptisefexpected values of these parameters.
Thanks to this approach we can also compute the variancasenlistributions of those parameters and
this will be reported in the long version of this work. To finigre want to highlight that as the method
used here is just to build tableaux of lengthirom tableaux of lengtlh — 1, this can be translated into
recurrences and generating functions. Indeed,]gt; be the number of tableaux of lengthwith %
unrestricted rows anglones in the first row. Thet), , ; =0if k >norj>n—-10orn <0,t1,10 =1,

and

n—1

n—1
f—1 {—1
tnk,j = Z (k _ 1>tn1,z,j1 + Z (k _ 2> tn—1,04,

=k l=k—1
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otherwise. This implies that i}, (z, y) = Zk_’j tnkj2¥y?, thenTy (x,y) = z and

r(r +y
Tn(xay) = %Tn—l(x + 1ay)
Therefore fom > 1,
n—2
To(z,y) =z [[(x +y+1).
=0

This gives another straightforward proof that theresdrpermutation tableaux of lengthand that per-
mutation tableaux of length and withk unrestricted rows (ok — 1 ones in the first row) are in bijection
with permutations of 1,2, ...n} with k cycles. This generating function approach therefore loky
easy. Computations get way more complicated for superflooes as it was shown by Williams in
(Wil05). This is why we chose to present in this extendedrabsthe details of the probabilistic approach
that works well for all the parameters. Combinatorial stsdshowed the links between the permutation
tableaux and the Partially ASymmetric Exclusion procesSEEP) (Cor07; CW07; CW06). As suggested
by one of the referees, it would be very interesting to stundytypical shape of tableaux not under the
uniform distribution but under the weighted distributidrat underlies the stationary distribution of the
PASEP. This will be done in a later work.
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