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Limit laws for a class of diminishing urn
models.
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In this work we analyze a class of diminishing 2× 2 Pólya-Eggenberger urn models with ball replacement matrix M
given by M =

`−a 0
c −d

´
, a, d ∈ N and c ∈ N0. We obtain limit laws for this class of 2× 2 urns by giving estimates

for the moments of the considered random variables. As a special instance we obtain limit laws for the pills problem,
proposed by Knuth and McCarthy, which corresponds to the special case a = c = d = 1. Furthermore, we also
obtain limit laws for the well known sampling without replacement urn, a = d = 1 and c = 0, and corresponding
generalizations, a, d ∈ N and c = 0.
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1 Introduction
1.1 Pólya-Eggenberger urn models
Pólya-Eggenberger urn models are defined as follows. We start with an urn containing nwhite balls andm
black balls. The evolution of the urn occurs in discrete time steps. At every step a ball is drawn at random
from the urn. The color of the ball is inspected and then the ball is reinserted into the urn. According to
the observed color of the ball, balls are added/removed due to the following rules. If a white ball has been
drawn, a white balls and b black balls are put into the urn, and if a black ball has been drawn, c white balls
and d black balls are put into the urn. The values a, b, c, d ∈ Z are fixed integers and the urn model is
specified by the 2×2 ball replacement matrixM =

(
a b
c d

)
. This definition extends naturally also to higher

dimensions. Most papers in the literature impose the so-called tenability condition on the ball replacement
matrix, so that the process can be continued ad infinitum. However, in some applications, there are urn
models with a very different nature, e. g. the OK Corral problem, M =

(
0 −1
−1 0

)
, see (FDP06), or the

Cannibal urn problem, M =
(

0 −1
1 −2

)
, see (Pit87), which we will refer to as diminishing urn models. In

this work we will analyze diminishing Pólya-Eggenberger urn models with ball replacement matrix M
given by

M =
(
−a 0
c −d

)
, with a, d ∈ N, c ∈ N0. (1)
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Throughout this work N denotes the positive integers and N0 the non-negative integers.
We are interested in the distribution of the random variableXn,m = Xn,m(a, c, d), counting the number

of white balls, when all black balls have been taken out of the urn, starting with nwhite andm black balls,
respectively. The distribution of the random variable Xn,m in the context of the evolution of the urn may
be described as follows. We have a state space S := {(i, j)| i, j ∈ N0}, where the evolution of the urn
takes place. The evolution stops at absorbing states A := {(0, j)|j ∈ N0}. No negative values of i and j
should be reached, the state space S should not be left during the evolution of the urn. Then, the question
is to determine the probability P{Xn,m = k}, that a certain state k ∈ A is reached, starting with n white
balls and m black balls. In the context of diminishing urns we call an urn well defined, if the evolution
of the urn always ends in an absorbing state of A, when starting at any point (m,n) ∈ S, without ever
leaving the state space. The urns considered here are not naturally well defined. Consider for example the
evolution of the urn with ball replacement matrix M =

(−5 0
1 −1

)
, when there are less then 5 white balls.

We will overcome this deficit by the introduction of extra rules in regions where the state space may be
left in order to ensure that an absorbing state in A must be reached.

The aim of this work is the derivation of limit laws of the random variables Xn,m for diminishing urn
models, when the urn evolves according to ball replacement matrix M given by (1). We will see that
different limit laws arise according to the growth of n and m. In some cases we can extend our results to
a, d ∈ N and c ∈ Z. Note that choosing c ∈ −N imposes additional difficulties. We have to modify our
state space S to S = {(i, j)|i ∈ N0, j ∈ N,−ci ≤ j}. The condition (−c) · i ≤ j is necessary to ensure
that, starting with j white balls and i black balls, a point in A1 = {(0, n) : n ∈ N0} can be reached. We
also have to introduce a second absorbing region A2 = {(i, j)| − ci > j, i ∈ N, j ∈ Z}, with Xn,m = 0
for all (i, j) ∈ A2. Despite these additional restrictions we can obtain limit laws for Xn,m if m ∈ N is
fixed and n tends to infinity.

Due to their importance in applications, there is a huge literature on the stochastic behavior of urn
models. There are quite recent very deep and general treatments by (Jan04; Jan05) and (FDP06; FGP05).
We also refer to (JK77; KB97), which are the standard references for urn models.

A discussion of “diminishing urns” has been given in (HKP06), where a generating functions approach
leading to partial differential equations has been used to establish exact and asymptotic results for the
distribution of Xn,m for several replacement matrices M . Here we choose a different approach dealing
directly with recurrences for the s-th integer moments of Xn,m, which turns out to be suitable for a
characterization of the behavior of the whole class of “2× 2 triangular diminishing urn models”.

Our studies of the class of diminishing urns, with ball replacement matrix M given by (1), is motivated
by the following problems.

1.2 The pills problem
The pills problem was originally proposed by (KM91), p. 264; the solution appeared in (Hes92). In a
bottle there are n small pills and m large pills. The large pill is equivalent to two small pills. Every day
a person chooses a pill at random. If a small pill is chosen, it is eaten up, if a large pill is chosen it is
broken into two halves, one half is eaten and the other half which is now considered to be a small pill is
returned to the bottle. The proposed problem was to find the expected number of small pills remaining
when there are no more large pills left in the bottle. The pills problem corresponds to the derivation of the
expected value of Xn,m for a diminishing urn model with ball replacement matrix M =

(−1 0
1 −1

)
. The

pills problem was revisited in (BP03), where it was shown how to derive higher moments of the random
variable counting the number of small pills when all large pills have been consumed. In the recent work
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of (HKP06) the limit laws of the pills problem and a related model, M =
(−1 0

1 −2

)
, were studied using

generating functions. It was shown that the limit laws significantly differ for the two problems considered.
The results of (HKP06) for these two specific urns were the primary motivation to analyze the whole class
of urns with M =

(−a 0
c −d

)
.

1.3 Sampling without replacement
This fundamental urn model corresponds to the urn with ball replacement matrix M =

(−1 0
0 −1

)
. The

distribution of the type of balls after t draws is very well known (see e. g. (FDP06)), but here we will focus
on the limit laws of Xn,m. Note that this problem is often treated by introducing two absorbing axes, i.e.,
{(0, n) : n ∈ N0} ∪ {(m, 0) : m ∈ N0}, but we rather simply use the absorbing axis A = {(0, n) : n ∈
N0}, which is fully sufficient. We will also derive limit laws for the generalizationM =

(−a 0
0 −d

)
, which,

best to our knowledge, has not been considered before.

1.4 Weighted lattice paths
It is useful to describe and visualize the evolution of an urn with ball replacement matrix M =

(
a b
c d

)
by

“weighted paths”, which is described here in the case of urns with two type of balls. If the urn contains n
white balls and m black balls and we select a white ball (with probability n

m+n ), then this corresponds to
a step from (m,n)→ (m+a, n+ b), to which the weight n

m+n is associated; and if we select a black ball
(with probability m

m+n ), then this corresponds to a step from (m,n)→ (m+ c, n+ d) with weight m
m+n .

The weight of a path after t successive draws consists of the product of the weights of every step. For a
diminishing urn we obtain that the sum of the weights of all possible paths starting at state (m,n) and
ending at the absorbing state (i, j) ∈ A (which did not pass another absorbing state earlier) gives then the
required probability, that when starting at (m,n) we are ending at (i, j). Unfortunately, the expressions so
obtained for the probability are, although exact, less useful for large n or m. An example for a weighted
path corresponding to the evolution of a diminishing urn is given in Figure 1. The steps associated with
ball replacement matrix M =

(−a 0
c−d

)
are visualized in Figure 2.
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Fig. 1: An example of a weighted path from (6, 1) to the absorbing state (0, 2) for the pills problem with ball
addition matrix M =

`−1 0
1−1

´
and the absorbing axis A = {(0, n) : n ∈ N0}. The illustrated path has weight
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1.5 Goal
It will turn out in this paper that an elementary approach, which is inspired by the work of Brennan and
Prodinger, is sufficient for the analysis of urn models with ball replacement matrix M =

(−a 0
c −d

)
. For

a ∈ N and c = p · a, p ∈ N0 we can provide exact formulas for the expectation. We will determine limit
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Fig. 2: The steps associated with M =
`−a 0

c−d

´
, according to the cases c = 0, c > 0 and c < 0.

laws of the random variable Xn,m, with replacement matrix M as given in (1). As a byproduct we obtain
limit laws for the pills problem and generalizations.

For m fixed and n tending to infinity we can show that Xn,m/n tends to a limit law for arbitrary c ∈ Z,
which can be characterized as a Kumaraswamy distribution. Further, for c ∈ N0 we will show that for m
tending to infinity and n = n(m) the limit laws change according to the quotient a/d, with a ∈ N and
d ∈ N. We will encounter Weibull distributions as limit laws.

1.6 Notation

We denote with X
(d)
= Y the equality in distribution of the random variables X and Y and by Xn

(d)−−→ X
the weak convergence, i. e., the convergence in distribution, of the sequence of random variables Xn to a
random variable X . Further Hn :=

∑n
k=1 1/k denotes the n-th harmonic number.

2 Results
2.1 Exact results for the expected value
Theorem 1 For a ∈ N, c = p · a, with p ∈ N0, the urn with ball replacement matrix M =

(−a 0
c −d

)
is

well defined when starting with a · n white and d ·m black balls. The expectation of Xan,dm is given by
the exact formulas

a/d = 1 : E(Xan,dm) =
an

m+ 1
+ paHm,

a/d 6= 1 : E(Xan,dm) =
an(

m+ a
d

m

) + pa
( 1

1− a
d

m+ a
d(

m+ a
d

m

) +
a
d

a
d − 1

)
.

2.2 Limiting distribution results for m fixed
Theorem 2 The s-th moment of the random variable Xn,dm, counting the number of white balls, when
all black balls have been removed, with ball replacement matrix M =

(−a 0
c −d

)
, a, d ∈ N, c ∈ Z, starting

with n white and d ·m black balls, is for fixed m ∈ N and n→∞ asymptotically given by

E(Xs
n,dm) =

ns(
m+ as

d
m

)(1 +O(n−1)
)
.

The limiting distribution of Xn,dm is characterized as follows:

Xn,dm

n

(d)−−→ X, X
(d)
= K(

d

a
,m),
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where K(r, u) denotes a Kumaraswamy distribution with parameters r and u.

Remark 1 Kumaraswamy’s double bounded distribution is in its simplest form defined on [0, 1]. The
probability density function fK(t) and the moments of a Kumaraswamy distributed random variableK =
K(r, u) are given by

fK(t) = rutr−1(1− tr)u−1, E(Ks) =
Γ(u+ 1)Γ(1 + s

r )
Γ(u+ 1 + s

r )
, s ∈ N.

2.3 Limiting distribution results for m tending to infinity and c 6= 0

First we turn our attention to the case c ∈ N and a/d ≤ 1. In this case the expected value of Xn,dm

converges to infinity as m tends to infinity regardless of the growth of n = n(m).

Theorem 3 The limiting distributions of Xn,dm, counting the number of white balls, when all black
balls have been removed, starting with n white and d · m black balls, with ball replacement matrix
M =

(−a 0
c −d

)
, a, c, d ∈ N, a/d ≤ 1, are for m→∞ and arbitrary n = n(m), given as follows,

Xn,dm

gn,m

(d)−−→ X, X
(d)
= W (

d

a
, 1), (2)

whereW (r, u) denotes a Weibull distributed random variable with parameters r and u. The normalization
values gn,m are given as follows,

gn,m =


gn,m = gn,m(a, c, d) =

n+m cd
d−a

m
a
d

, for a/d < 1,

gn,m =
n

m
+ c logm, for a/d = 1,

(3)

Remark 2 The Weibull distribution is a continuous probability distribution. The probability density func-
tion fW (t) and the moments of a Weibull distributed random variable W = W (r, u) are given by

fW (t) =
r

u

(x
u

)r−1

e−(t/u)r

, t ≥ 0, E(W s) = usΓ(1 +
s

r
), s ∈ N.

For a/d > 1 we observe a different behavior ofXn,m, as suggested by closer inspection of the expected
value E(Xn,m) (and also the value f [1]

n,m, as given by Lemma 2). In the cases n ∼ ma/d and n = o(ma/d),
the expected value tends to a constant as n = n(m) tends to infinity.

Note that for c 6= p ·a, p ∈ N, the limit laws for n ∼ ma/d and n = o(ma/d) seem to be sensitive to the
introduction of mandatory additional rules which are necessary in order to avoid leaving the state space
S. Therefore concerning the regions n ∼ ma/d and n = o(ma/d), with n → ∞, we restrict ourselves to
well-defined urns, c = p · a, p ∈ N, and start with a · n white balls and d ·m black balls.

Theorem 4 The limiting distribution of Xan,dm, with ball replacement matrix M =
(−a 0

c −d

)
, a, d ∈ N,

c = p · a with p ∈ N, and a/d > 1, is for m→∞ and n = n(m) given as follows,

1. For ma/d = o(n)
m

a
dXan,dm

an

(d)−−→ X, X
(d)
= W (

d

a
, 1),

where W (r, u) denotes a Weibull distributed random variable with parameters r and u.
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2. For n ∼ ma/d all moments of the random variable Xan,dm converge, E(Xs
an,dm)→

∑s
l=0 Λs,l,

Λs,s = asΓ(1+
as

d
), Λs,l =

∞∑
k=1

Γ(k + al
d )

k!d

( s∑
i=l+1

(
i

l + 1

)
(−a)i−l−1λs,i,k+dk

(
i

l

)
ci−lλs,i,k−1

)
,

for 1 ≤ l ≤ s− 1 and

Λs,0 =
∞∑

k=1

s∑
i=1

ciλs,i,k,

with λs,k,m essentially given by Lemma 1 on page 386 (setting λs,s,0 = as).

3. For n = o(ma/d) all the moments of the random variable Xan,dm converge, E(Xs
a,d)→ Λs,0,

Λs,0 =
∞∑

k=1

s∑
i=1

ciλs,i,k,

with λs,k,m essentially given by Lemma 1 on page 386 (setting λs,s,0 = as).

For c 6= p · a and a/d > 1 and ma/d = o(n) we have the same results as in the case c = p · a.

m
a
dXn,dm

n

(d)−−→ Xa,d, fXa,d
(t) =

d

a
t

d
a−1e−t

d
a , t ≥ 0.

Remark 3 Up to now we have not been able to show that for the instances n ∼ ma/d and n = o(ma/d)
the limits of the moments define unique distributions (by establishing suitable growth estimates on the
moments and applying Carleman’s criterion). Thus we state in Theorem 4 for case 2. and 3. only a
moment’s convergence result.

2.4 The case c = 0

For c = 0 we do not have to separate between cases a/d ≤ 1 and a/d > 1. The limit laws are covered
by our earlier results, namely Theorem 2 for m fixed and n → ∞, and Theorem 4 for m → ∞ and
n = m(n), where Theorem 4 stays valid for a/d ≤ 1, if c = 0. Concerning the region n = o(ma/d) and
m→∞, we can specify our earlier result as follows.

Corollary 1 In the case c = 0 the random variable Xan,dm is, for n = o(ma/d) and m→∞, asymptot-
ically zero,

Xan,dm
(d)−−→ X, P{X = 0} = 1.

Unfortunately, we have not been able to show that for the remaining instance n ∼ ma/d the limits of the
moments define unique distributions. In the special case a = d = 1, the well known sampling without
replacement urn, one can be much more precise by using exact results for the probabilities:

P{Xn,m = k} =

(
n+m−1−k

m−1

)(
n+m

m

) .

An application of Stirling’s formula for the Gamma function leads then to local limit theorems.
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Corollary 2 For the ordinary sampling urn with ball replacement matrix M =
(−1 0

0 −1

)
, one obtains

local limit laws for Xn,m. E. g., it holds that in the region n ∼ m and m → ∞, the random variable
Xn,m is asymptotically geometrically distributed,

P{Xn,m = k} → 1
2k+1

, k ∈ N ∪ {0}.

3 Sketch of the proof of the limit laws
For our proof of the limit laws for Xn,m, stated in Theorems 2 up to 4, with the method of moments we
need a precise description of the structure of the moments.

3.1 The elementary approach: a recursive description of the moments
We consider the urn model with ball replacement matrix M =

(−a 0
c −d

)
, with arbitrary but fixed parame-

ters a, d ∈ N and c ∈ N0. Let Xn,m = Xn,m(a, c, d) denote the random variable counting the number of
white balls when the number of black balls reaches zero. By definition the probability generating function
hn,m(v) =

∑
k≥0 P{Xn,m = k}vk satisfies the following recurrence.

hn,m(v) =
n

n+m
hn−a,m(v) +

m

n+m
hn+c,m−d(v), (4)

with initial values hn,0(v) = vn, n ∈ N0. It is natural to start with n white balls and d ·m black balls
in order to secure that the urn is well defined with respect to m and to avoid specifications of more initial
values. Therefore we will restrict ourselves to the random variable Xn,dm. Note that by construction the
number of black balls can never be below zero in this case.

When relying on the so-called method of moments, we have to give precise estimates for the ordinary
moments e[s]n,m = E(Xs

n,dm) of Xn,dm. The moments satisfy for n ≥ a the recurrence

e[s]n,m =
n

n+ dm
e
[s]
n−a,m +

dm

n+ dm
e
[s]
n+c,m−1, (5)

with initial values e[s]n,0 = ns, n ∈ N0.
We have to circumvent situations where the number of white balls may drop below zero. Hence the

most natural choices for the parameters a and c are c = p ·a with p ∈ N0. In these cases we start with a ·n
white balls in order to obtain well defined urns. Then, the recurrence for the moments holds for n ≥ 1
and one obtains in principle exact results for arbitrarily high moments, especially the expectation and the
variance.

If a > 1 and c 6= p · a the urn is no longer well defined. Therefore we have to introduce extra rules in
order to specify what to do in case of 0 ≤ n < a. We define that any layer 0, 1, . . . , a − 1 is reflective
in the sense of weighted paths: from points (i, j) with 0 ≤ j ≤ a − 1 only the points (i − d, j + c) can
be reached (in the context of the pills problem it means that only large pills will be consumed below a
certain amount a of small pills). This means we have to deal with a reflective stripR consisting of points
R = {(i, j)| 0 ≤ j ≤ a− 1, i ∈ N0}.

Due to the reflective region the initial values get more complicated and we cannot hope to explicitly
obtain the moments E(Xs

n,dm) anymore. Therefore we introduce values f [s]
n,m, which will be used to
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approximate the moments e[s]n,m := E(Xs
n,dm) for all s ∈ N. The values f [s]

n,m are defined by the recurrence

(n+md)f [s]
n,m = nf

[s]
n−a,m +mdf

[s]
n+c,m−1, (6)

for m > 1, n ∈ Z, with f [s]
n,0 := ns. It is crucial that we allow n to be negative in order to deal with

the reflective strip R in the case of a > 1 and c 6= p · a. The key point is the observation that f [s]
n,m

can be obtained by the Ansatz f [s]
n,m =

∑s
k=0 λs,k,mn

s, e. g. f [s]
n,m can be expressed as a polynomial of

degree s in n. For c = p · a, p ∈ N0, and starting with a · n white balls, the sequence f [s]
n,m is exactly

the moment sequence e[s]n,m ≡ f
[s]
n,m, whereas for c 6= p · a we will use f [s]

n,m as an approximate value for
e
[s]
n,m. A similar approach was used by Brennan and Prodinger for the calculation of the expectation and

the variance in the case a = d = 1 and some other cases.

Lemma 1 The values f [s]
n,m, determined by (6), satisfy the expansion f [s]

n,m =
∑s

k=0 λs,k,mn
k, where

λs,s,m =
1(

m+ as
d

m

) , λs,l,m =
m−1∑
k=0

(
m
k

)(m+ al
d

k

)µs,l,m−k, for 1 ≤ l ≤ s− 1, (7)

with

µs,l,m :=
1

md+ al

s∑
k=l+1

(
k

l − 1

)
(−a)k−l−1λs,k,m +

dm

dm+ al

s∑
k=l+1

(
k

l

)
ck−lλs,k,m−1. (8)

For l = 0 we have

λs,0,m =
m−1∑
k=0

µs,0,k, with µs,0,m :=
s∑

k=1

λs,k,mc
k. (9)

The initial values are given by λs,s,0 = 1 and λs,l,0 = 0 for 0 ≤ l ≤ s− 1.

Proof: We use the Ansatz f [s]
n,m =

∑s
k=0 λs,k,mn

s to determine the sequence f [s]
n,m. From the recurrence

(6) we get

(n+ dm)
s∑

k=0

λs,k,mn
k = n

s∑
k=0

λs,k,m(n− a)k + dm

s∑
k=0

λs,k,m−1(n+ c)k. (10)

Hence we obtain from (10) a system of recurrences by comparison of coefficients of nl, with l = 0, .., s+1,
from which one can deduce the stated results for λs,l,m. For example λs,s,m is determined by the following
recurrence,

dmλs,s,m + λs,s−1,m = −saλs,s,m + λs,s−1,m + dmλs,s,m−1.

We have
dmλs,s,m = dmλs,s,m−1 − asλs,s,m, (dm+ as)λs,s,m = dmλs,s,m−1,

and consequently,

λs,s,m =
dm

dm+ as
λs,s,m−1, λs,s,m =

m!
(m+ as

d )m
=

1(
m+ as

d
m

) .
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2

Next we will provide explicit expressions for f [1]
n,m, which are obtained by straight forward computa-

tions using Lemma 1.

Lemma 2 The values f [1]
n,m are given by

f [1]
n,m =

n(
m+ a

d
m

) +
c

1− a
d

(m+ a
d(

m+ a
d

m

) − a

d

)
, for

a

d
6= 1,

f [1]
n,m =

n

m+ 1
+ cHm, for

a

d
= 1.

(11)

Lemma 2 has the consequence that for a/d = 1 there is a transition of the behavior of f [1]
n,m. For a/d ≤ 1

we always have f [1]
n,m →∞ for max{n,m} → ∞, since at least one of the two terms converge to infinity.

For a/d > 1 this condition is not true anymore. For m→∞ we have the expansion

f [1]
n,m =

Γ(1 + a
d )n

m
a
d

+
cΓ(1 + a

d )
(1− a

d )m
a
d−1

+O(1). (12)

Hence for a/d > 1 and m = o(n
a
d ) the value f [1]

n,m tends to infinity and we can normalize by multiplying
with m

a
d /n, whereas for m ∼ n a

d or n = o(m
a
d ) it holds that f [1]

n,m remains bounded.
Let ∆[s]

n,m := e
[s]
n,m − f [s]

n,m denote the difference between the s-th moment of Xn,dm and the approx-
imative value f [s]

n,m for a ∈ N. By definition ∆[s]
n,m satisfies a recurrence relation of the form (6) and

∆[s]
n,0 = 0 for all n ≥ 0 and s ≥ 1. For c = p · a the values ∆[s]

n,m ≡ 0.

The limiting distributions are obtained as follows. Lemma 1 provides an asymptotic expansion of f [s]
n,m

of the form f
[s]
n,m ∼ f [s] · gs

n,m, with f [s] being independent of n and m. By using

e
[s]
n,m

gs
n,m

=
∆[s]

n,m

gs
n,m

+
f

[s]
n,m

gs
n,m

, (13)

and suitable growth estimates on ∆[s]
n,m, we obtain

e[s]
n,m

gs
n,m
∼ f [s]

n,m

gs
n,m
∼ f [s]. The last step is to prove that the

sequence (f [s])s∈N defines a unique distribution, using Carlemans Criterion. The complete proofs will be
contained in the full version of this work, which will also include the case m fixed and c ∈ −N, and other
extensions of this approach. We want to remark that for c ∈ −N the moments of Xn,dm do not have the
same regular form: e. g. M =

(−1 0
−1 −1

)
and E(Xn,1) = n

2 − 1 + 1
n+1 .

4 Conclusion
With our methods a full characterization of the limiting distribution of Xn,m should be possible. For
the readers convenience we have collected our findings in the following table. Note that the distributions
marked with an asterisk are conjectural.
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n→∞: m→∞: m→∞: m→∞:
m fixed m = o(n

a
d ) m ∼ n a

d n = o(m
a
d )

a/d ≤ 1 and c ∈ N Kuramaswamy Weibull Weibull Weibull
a/d > 1 and c ∈ N Kuramaswamy Weibull Discrete* Discrete*
a, d ∈ N and c = 0 Kuramaswamy Weibull Discrete* Degenerate

The authors are currently trying to identify the distributions for the regions where the moments of Xn,m

converge. Furthermore it seems possible to extend the analysis of this class of diminishing urns to more
general urn models. The authors are trying to extend this study to three types of balls.
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