
2007 Conference on Analysis of Algorithms, AofA 07 DMTCS proc. AH, 2007, 319–332

On the Exit Time of a Random Walk with
Positive Drift†
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We study a random walk with positive drift in the first quadrant of the plane. For a given connected region C of the
first quadrant, we analyze the number of paths contained in C and the first exit time from C. In our case, region C is
bounded by two crossing lines. It is noted that such a walk is equivalent to a path in a tree from the root to a leaf not
exceeding a given height. If this tree is the parsing tree of the Tunstall or Khodak variable-to-fixed code, then the exit
time of the underlying random walk corresponds to the phrase length not exceeding a given length. We derive precise
asymptotics of the number of paths and the asymptotic distribution of the exit time. Even for such a simple walk, the
analysis turns out to be quite sophisticated and it involves Mellin transforms, Tauberian theorems, and infinite number
of saddle points.
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1 Introduction
Let C ⊆ R2

≥0 be a bounded connected region of the first quadrant of the plane with the property that if
an integer lattice point (k1, k2) 6= (0, 0) with non-negative integers k1, k2 is contained in C, then either
(k1 − 1, k2) or (k1, k2 − 1) is in C, too. Let also L(C) denote the set of lattice paths starting at the origin
(0, 0) with steps of the form L = (1, 0) and R = (0, 1) such that they exit region C at the last step D
(exit time). Figure 1 illustrates such a walk and region C (grey area). We shall study both the exit time
distribution and the number of paths.

In this paper, we are particularly interested in regions C that are bounded by two lines of the form
ax1 + bx2 = c1 (with a, b > 0 and a 6= b) and x1 + x2 = c2 (cf. Figure 2). For later use we will assume
(w.l.o.g.) that a = log2

1
p and b = log2

1
q , where 0 < p < q < 1 and p+q = 1; log2 denotes the logarithm

to base 2.

Fig. 1: Lattice paths and binary trees

We should point out that there is an obvious bijection between L and a binary tree T , where every path
in L corresponds to an external node � as illustrated in Figure 1. Note that the shape of C implies some
restrictions on the structure of the binary tree T that appears in this bijection. In our example the path
RLRRL is not the only one that terminates at (2, 3). There are two further paths, namely RRLRL and
LRRRL that have the same endpoint (2, 3). Thus, the endpoint (2, 3) corresponds to three leaves in T .
In what follows we will only consider regions C with the property that if (k1, k2) is an endpoint of lattice
paths then L(C) will contain all

(
k1+k2
k1

)
paths that connect (0, 0) and (k1, k2).

The correspondence between leaves in trees and lattice paths was in fact the starting point of our anal-
ysis. In our recent work (2) we studied Tunstall and Khodak variable-to-fixed codes, see also (9) for a
related result. Briefly, letD be a dictionary of binary phrases – usually a complete prefix free set of binary
words – then a variable-to-fixed length encoder partitions the source string into a concatenation of phrases
that belong to the given dictionary D. If the dictionary D has M entries, then we can encode each phrase
of D by dlog2Me bits. Thus, the source string that is partitioned into phrases of variable lengths (of
D) is finally encoded by a sequence of phrases of fixed length dlog2Me. Of course, we can represent a
dictionary D by a complete binary parsing tree T , that is, the dictionary entries d ∈ D correspond to the
leaves of T .

Tunstall’s code (12) is the best known variable-to-fixed length code; however, it was independently
discovered by Khodak (6). Since then these codes has been studied extensively (cf. the survey article (1).)
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Fig. 2: Lattice paths in a bounded region

Khodak’s construction is particularly simple: Let p and q = 1 − p > p be the probability of the binary
symbols and let r be a given positive parameter. If a node y in a binary tree is connected with the root
by a path of k1 steps to the left and k2 steps to the right then we set P (y) = pk1qk2 . We now consider
the set Y of nodes y (in a potentially infinite binary tree) with P (y) ≥ r. These nodes constitute the
internal nodes of a complete parsing tree that we are looking for, that is, the set of external nodes that are
adjacent to Y corresponds to the dictionary D of the Khodak code. Of course, all external nodes d satisfy
pr ≤ P (d) < r.

Let v = 1/r. Then, it is shown in (2) that in order to analyze the Khodak code, one needs to investigate
the following sums

A(v) =
∑

y:P (y)≥1/v

f(v)

for some function f(v). Since P (y) = pk1qk2 for some nonnegative integers k1, k2 ≥ 0, we conclude
that the above summation set can be expressed, after setting v = 2V , as

k1 log2

1
p

+ k2 log2

1
q
≤ V

which corresponds to the first line of the boundary of region C for our walks L(C). Imposing another
condition on the phrase length (path in the parsing tree), namely, that it cannot exceed, say K, the above
sum becomes

AK(v) =
∑

y:P (y)≥1/v, |y|≤K

f(v)

with the second boundary line becoming k1 + k2 ≤ K as we introduced before.
Note further that by construction

∑
d∈D P (d) = 1. Thus, P (d), d ∈ D, is a probability distribution

on D. Alternatively we can adjust the lattice paths in L(C) with a natural probability distribution. If
y ∈ L(C) consists of k1 steps of the form R and k2 steps of the form L then P (y) := pk1qk2 equals
the probability distribution that is induced by a random walk that starts at (0, 0) and is generated by
independent steps R and L with probabilities p and q.
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While there is a substantial literature on random walks in the first quadrant of the plane (3; 5), the
problem we analyze here seems to be unique and only some partial results were reported thus far; see
Janson (7). Our methodology belongs to analytic algorithmics and is rather sophisticated. After translating
the above sums into a recurrence, we apply the Mellin transform and Tauberian theorem to discover that
we need to handle infinite saddle points on a line (incidently, already encountered in (8)). This leads to
some oscillations in the leading term for the number of paths. We also prove the central limit theorem for
the exit time.

2 Main Results
We will discuss two problems. The first one is a counting problem. Set

CK,V := {(x1, x2) ∈ R2
≥0 : x1 + x2 ≤ K, x1 log2

1
p

+ x2 log2

1
q
≤ V }

Let LK,V be the corresponding set of lattice paths and TK,V be the associated binary tree. The first result
concerns the number of paths

|LK,V | =
∑

k1+k2≤K, k1 log2
1
p+k2 log2

1
q≤V

(
k1 + k2

k1

)
.

In this context it is natural to let K be an integer variable and V a positive real variable.
In the formulation of the theorem we will make use of ssp = ssp(K,V ) defined as

R(ssp) =
p−ssp + q−ssp

p−ssp log 1
p + q−ssp log 1

q

=
K

V log 2

Note that ssp > −1 if and only if K/V <
(
p log2

1
p + 1 log2

1
q

)−1

.
We further set

T (s) =
p−s log2 1

p + q−s log2 1
q

p−s + q−s
−

(
p−s log 1

p + q−s log 1
q

p−s + q−s

)2

and will use the periodic function

QL(s, x) =
L

1− esL
esL〈

x
L 〉 =

∑
m∈Z

1
(−s) + 2πim

L

e
2πim
L x,

where s ∈ C and x, L ∈ R; 〈y〉 = y − byc denotes the fractional part of a real number y.
Finally, we set H = p log(1/p) + q log(1/q) (that can be interpreted as the entropy of the distribution

p, q) and and for later use we set H2 = p log2(1/p) + q log2(1/q).

Theorem 1 Suppose that δ > 0 is given.
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1. Assume that K and V satisfy the constraints

V log 2
H

· (1 + δ) ≤ K ≤ V log 2
min{log(1/p), log(1/q)}

· (1− δ). (1)

If log p/ log q is irrational, then as K,V →∞

|LK,V | =
2V

H
(1 + o(1)). (2)

However, if log p
log q is rational then

|LK,V | =
QL(−1, V log 2)

H
2V +O(2V (1−η)) (3)

for some η > 0, where L > 0 is the largest real number for which log(1/p) and log(1/q) are
integer multiples of L.

2. Next, if
2V log 2

log(1/p) + log(1/q)
· (1 + δ) ≤ K ≤ V log 2

H
· (1− δ), (4)

then

|LK,V | ∼
∑
`≥0

Qδ (ssp, (K − `) log p− V log 2)
(p−ssp + q−ssp)`

· (p−ssp + q−ssp)K2−V ssp√
2πK T (ssp)

, (5)

where ∆ = log q − log p. If log p/ log q = d/r is rational, then (5) simplifies to

|LK,V | ∼
d−r−1∑
j=0

e2πi
j
δQL

(
ssp − 2πij

δ ,K log p− V log 2
)

1− e
2πi jd

d−r

p−ssp+q−ssp

· (p−ssp + q−ssp)K2−V ssp√
2πK T (ssp)

. (6)

3. If
V log 2

max{log(1/p), log(1/q)}
· (1 + δ) ≤ K ≤ 2V log 2

log(1/p) + log(1/q)
· (1− δ). (7)

then (for some η > 0)
|LK,V | = 2K+1 −O(2K(1−η)). (8)

For the second problem we assign to the lattice paths in LK,V a natural probability distribution. Recall
that if y ∈ LK,V consists of k1 steps of the formR and k2 steps of the form L then we set P (y) := pk1qk2

and that this is exactly the probability distribution that is induced by a random walk that starts at (0, 0)
and is generated by independent steps R and L with probabilities p and q. Further, since every path
y eventually leaves CK,V we surely have

∑
y∈LK,V P (y) = 1. Certainly, we can also think of the

corresponding trees TK,V and its external nodes. Our second result concerns the exit time DK,V of this
random walk, that is, the number of steps |y| = k1 + k2 of y ∈ LK,V (cf. Figure 3).

Theorem 2 Let DK,V denote the exit time of the above described random walk and fix δ > 0.
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Fig. 3: The drift in the first and second case of Theorem 2

1. If (1) holds, then we have, as K,V →∞,

DK,V − 1
H log |LK,V |((

H2
H3 − 1

H

)
log |LK,V |

)1/2 d−→ N(0, 1),

where N(0, 1) denotes the standard normal distribution. Furthermore,

EDK,V =
log |LK,V |

H
+

logH
H

+
H2

2H2
+
− logL+ log(1− e−L) + L

2

H
+ o

(
1

log |LK,V |

)
,

where L = 0 if log p/ log q is irrational and L > 0 is defined as in Theorem 1 if log p/ log q is
rational. Further

VarDK,V =
(
H2

H3
− 1
H

)
log |LK,V |+O(1).

2. If (4) or (7) holds, then the distribution of DK,V is asymptotically concentrated at K + 1, that is,

Pr{DK,V 6= K + 1} = O(e−ηK)

as K,V → ∞ for some η > 0. We also have EDK,V = K + 1 + O(e−ηK) and VarDK,V =
O(e−ηK).

In passing we observe that a random walk (that starts at (0, 0) and is generated by independent steps
R and L with probabilities p and q) has an average position (pm, qm) after m steps. Further by approx-
imating this random walk by a Brownian motion it is clear that the deviation from the mean is (almost
surely) bounded by O(

√
m log logm). Thus, if (1) holds then the Brownian motion approximation can

be used to derive the central limit theorem, (see, for example, (7)). The bound coming from k1 + k2 ≤ K
has practically no influence (cf. Figure 3). However, in the second and third case ((4) and (7)), the bound
k1 log 1

p+k2 log 1
q ≤ V is negligible and, thus, the exit time is concentrated atK+1. This also explains the

first threshold K/V ∼ (log 2)/H of Theorem 1. The second threshold K/V ∼ (2 log 2)/(log 1
p + log 1

q )
comes from the fact that

∑
k1+k2≤K

(
k1+k2
k1

)
= 2K+1 − 1 and that∑

k1+k2≤K, k1 log2
1
p+k2 log2

1
q>V

(
k1 + k2

k1

)
(9)



326 Michael Drmota and Wojciech Szpankowski

becomes negligible, that is, O(2K(1−η)), if K/V < (1− δ) · 2/(log2
1
p + log2

1
q ).

The two thresholdsK/V ∼ (log 2)/H andK/V ∼ 2/(log2
1
p+log2

1
q ) are not covered by Theorems 1

and 2. In fact it is possible to characterize the limiting behaviour of |LK,V | and DK,V also in these cases
but the statements (and also the derivations) are very involved and are not discussed here.

3 Analysis of a Recurrence
As above, for any lattice path y we set P (y) = pk1qk2 if y consists of k1 steps R and k2 steps L. We
further set v = 2V . Then k1 log2

1
p + k2 log2

1
q ≤ V is equivalent to P (y) ≥ 1/v. Observe that

AK(v) =
∑

y:P (y)≥1/v, |y|≤K

1

is the number of lattice paths with endpoints contained in CK,V . Due to the binary tree interpretation of
these lattice paths we have

|LK,V | = AK(v) + 1 = AK(2V ) + 1

since the number of external nodes of a binary tree exceeds the number of internal nodes by exactly 1.
For the proof of the limit laws of the exit time we will also make use of the following similar sum

SK(v, z) =
∑

y:P (y)≥1/v, |y|≤K

P (y)z|y|.

that will be analyzed as AK(v).
First, by definition it is clear that AK(v) = 0 and SK(v, z) = 0 for v < 1 and all K ≥ 0, however, for

v ≥ 1 we recursively have

AK+1(v) = 1 +AK(vp) +AK(vq) and SK+1(v, z) = 1 + pzSK(vp, z) + qzSK(vq, z).

From this recursive description we immediately obtain the corresponding relations for the Mellin trans-
forms, namely

A∗K+1(s) = −1
s

+ (p−s + q−s)A∗K(s) (<(s) < −1)

and
S∗K+1(s, z) = −1

s
+ (zp1−s + zq1−s)S∗K(s, z) (<(s) < 0).

Recall that the Mellin transform f∗(s) of a function f(v) is defined by

f∗(s) =
∫ ∞

0

f(v)vs−1dv.

Since A∗0(v) = S∗0 (v, z) = − 1
s we explicitly find

A∗K(s) = −1− (p−s + q−s)K+1

s(1− (p−s + q−s))
and S∗K(s, z) = −1− (z(p1−s + q1−s))K+1

s(1− z(p1−s + q1−s))
.
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In order to find asymptotics of AK(v) as v →∞ we must compute the inverse transform of A∗K(s):

AK(v) =
1

2πi
lim
T→∞

∫ σ+iT

σ−iT
A∗K(s)v−s ds, (10)

where σ < −1.

3.1 First case of Theorem 1
We first assume that we are in the first case of Theorem 1, that is, the relation (1) holds. Then we know
that ssp < −1. We split up the integral (10) into two parts:

I1 = − 1
2πi

lim
T→∞

∫ σ+iT

σ−iT
− 1
s(1− (p−s + q−s))

v−s ds, I2 = − 1
2πi

lim
T→∞

∫ σ+iT

σ−iT

(p−s + q−s)K+1

s(1− (p−s + q−s))
v−s ds.

In order to handle I1 we have to know something about the set of zeros of the denominator. The following
lemma is probably due to Schachinger (10) and independently due to Jacquet, see (11).

Lemma 1 Suppose that 0 < p < q < 1 and set Z = {s ∈ C : p−s + q−s = 1}. Then we have

(i) All s ∈ Z satisfy−1 ≤ <(s) ≤ σ0, where σ0 is a positive solution of 1 + q−s = p−s. Furthermore,
for every integer k there uniquely exists sk ∈ Z with (2k− 1)π/ log p < =(sk) < (2k+ 1)π/ log p
and consequently Z = {sk : k ∈ Z}.

(ii) If log p/ log q is irrational then s0 = −1 and <(sk) > −1 for all k 6= 0.

(iii) If log p/ log q = d/r is rational, where gcd(r, d) = 1 for integers r, d > 0, then we have <(sk) =
−1 if and only if k ≡ 0 mod d. In particular <(s1), . . . ,<(sd−1) > −1 and

sk = sk mod d + (k − (k mod d))
2πi
log p

,

that is, all s ∈ Z are uniquely determined by s0 = −1 and by s1, s2, . . . , sd−1, and their imaginary
parts constitute an arithmetic progression.

This means that if log p/ log q is irrational, then there is only one dominating zero on the critical line
<(s) = −1 and we directly get I1 ∼ 2V /H by an application of the Tauberian theorem of Wiener-Ikehara
(formulated for the Mellin transform) as discussed in (2).

If log p/ log q is rational, then we have to be more careful. We shift the integral to σ > −1 with
σ < min{<s1, . . . ,<sd−1} and obtain

I1 = − lim
T→∞

∑
s′∈Z, <(s′)=−1,|=(s′)|<T

Res(A∗(s) v−s, s = s′)− 1
2πi

lim
T→∞

∫ σ+iT

σ−iT

1
s(1− p−s − q−s)

v−s ds

= − lim
T→∞

∑
s′∈Z, <(s′)=−1,|=(s′)|<T

v−s
′

s′H(s′)
− 1

2πi
lim
T→∞

∫ σ+iT

σ−iT

1
s(1− p−s − q−s)

v−s ds

provided that the series of residues converges and the limit T → ∞ of the last integral exists. Here we
have used the notation H(s) = −p−s log p− q−s log q. Observe that H(−1) = −p log p− q log q equals
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H . We have to face the problem that, both, the series and the integral are not absolutely convergent since
the integrand is only of order 1/s. Nevertheless it is possible to show that these limits exists – we omit
the technical details – and we find (with help of Lemma 1)

I1 =
∑
m∈Z

v1−2πimL

(1− 2πimL )H
+O(v1−η1) = 2V

S(−1, V log 2)
H

+O(v1−η1),

where 0 < η1 = σ + 1 < min{<s1, . . . ,<sd−1}+ 1.
The integral I2 has to be treated in a completely different way. First of all, we shift the integral to the

line σ = ssp < −1 and observe that

(p−ssp + q−ssp)Kv−ssp = vR(ssp) log(p−ssp+q−ssp )−ssp

and that R(ssp) log(p−ssp + q−ssp)− ssp < 1 if ssp 6= −1. Hence, we expect that I2 can be estimated by

I2 = O
(
vR(ssp) log(p−ssp+q−ssp )−ssp

)
= O

(
2V (1−η2)

)
(for some η2 > 0) which is actually true. Again we have to overcome the technical problem that the
integral is not absolutely convergent.

3.2 Second case of Theorem 1
Next we assume that we are in the second case of Theorem 1, that is, the relation (4) holds. Here ssp > −1
and we do not split the integral (10) into two parts. Of course, we again shift the integral to a line σ > −1,
namely to σ = ssp > −1. Note that the zeros Z of the denominator are no singularities of the function
A∗K(s) since the numerator has the same zeros. Nevertheless, the integral

AK(v) = − 1
2πi

lim
T→∞

∫ ssp+iT

ssp−iT

1− (p−s + q−s)K+1

s(1− (p−s + q−s))
v−s ds, (11)

needs a delicate analysis. It is again not absolutely convergent but this is just a technical question. The
second problem comes from the fact that on the line of integration there are infinitely many saddle points.
First note that s = ssp is a saddle point of the mapping s 7→ (p−s+q−s)Kv−s = eK log(p−s+q−s)−sV log 2

and, thus the integral from ssp − iK
1
2−ε to ssp + iK

1
2−ε (for some ε > 0) is asymptotically given by

1√
2πK T (ssp)

(p−ssp + q−ssp)K+12−sspV

ssp(1− (p−ssp + q−ssp))

However, as already noted this is not the only saddle point on this line of integration. Set th = 2πh/(log p−
log q) = −2πih/∆. Then all points s = ssp + ith, h ∈ Z, are saddle points, as already observed in (8).
Consequently, the total contribution of the integral is asymptotically given by∑

h∈Z

1√
2πK T (ssp)

(p−ssp + q−ssp)K+12−sspV p−ith(K+1)2−iV th

(ssp + ith)(1− (p−ssp + q−ssp)p−ith)
.

The representations (5) and (6) follow after a few lines of computation by using the Fourier expansion of
QL(s, x).



Lattice Path Counting 329

3.3 Third case of Theorem 1
If (7) holds then ssp > 0. Thus if we shift the line of integration of the integral (11) to σ = ssp we
have to take into account the residue 2k+1 corresponding to the polar singularity s = 0. The saddle point
machinery for the remaining integral at the line σ = ssp provides the error term.

Alternatively we can directly deal with the sum (9) in an elementary way.

4 Exit Time
In order to treat the exit time DK,V we make again use of the corresponding tree TK,V and the following
useful lemma (cf. (2)).

Lemma 2 Let T be an m-ary tree, let X denote the set of leaves and Y the set of internal nodes. Fur-
thermore, we assume a probability distribution p1, . . . , pm on an m-ary alphabet A and identify a node
in T with a word over A in the usual way. Then we have∑

x∈X
P (x)z|x| = (z − 1)

∑
y∈Y

P (y)z|y| + 1. (12)

This lemma directly implies that the probability generating function of DK(v, z) = E zDK,V (where
v = 2V ) is given by

DK(v, z) = (z − 1)SK(v, z) + 1 (v ≥ 1)

and consequently its Mellin transform has the following representation (for <(s) < 0):

D∗K(s, z) = (z − 1)S∗K(s, z)− 1
s

=
(1− z)(1− z(p1−s + q1−s)K+1)

s(1− z(p1−s + q1−s))
− 1
s
.

Hence, we have for any σ < 0

E zDK,V =
1

2πi
lim
T→∞

∫ σ+iT

σ−iT

(
(1− z)(1− z(p1−s + q1−s)K+1)

s(1− z(p1−s + q1−s))
− 1
s

)
v−s ds.

In the first case of Theorem 2, that is, if (1) holds then we split up the integral into two parts I1(z)+I2(z):

I1(z) =
1

2πi
lim
T→∞

∫ σ+iT

σ−iT

(
(1− z)

s(1− z(p1−s + q1−s))
− 1
s

)
v−s ds,

I2(z) = − 1
2πi

lim
T→∞

∫ σ+iT

σ−iT

(1− z)(z(p1−s + q1−s)K+1

s(1− z(p1−s + q1−s))
v−s ds.

Observe that the residue of the singular value s = 0 in the integrand of I1(z) equals 0 (due to the
additional term −1/s). Thus, s = 0 does not contribute if we shift the line of integration to σ > 0. The
only polar singularity on the real line of the integrand of I1(z0) is s0(z) that is given by the equation
z(p1−s0 + q1−s0) = 1 and has an asymptotic representation of the form

s0(z) = −z − 1
H

+
(

1
H
− H2

2H3

)
(z − 1)2 +O(|z − 1|3) (z → 1).
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The residue of the integrand in I1(z0) at s = s0(z) equals v−s0(z). Of course, there is an analogue to
Lemma 1 for all zeros of the equation z(p1−s + q1−s) = 1. By shifting the line of integration in I1(z) to
the right (and taking care that there is no absolute convergence) one finds

I1(z) = v−s0(z) (1 +O (|z − 1|)) .

In the second integral I2(z) we shift the line of integration to σ = ssp + 1 < 0 and get an negligible
exponentially small error term. Consequently we have

E zDK,V = v−s0(z) (1 +O(|z − 1|)) = v
z−1
H −( 1

H−
H2
2H3 )(z−1)2+O(|z−1|3) (1 +O (|z − 1|))

which proves asymptotic normality by setting z = et (together with a proper scaling). For the derivation
of the mean value (and variance) we refer to (2).

In the second case of Theorem 2 (where (4) or (7) holds) we do not split up the integral into two parts,
which implies that the integrand has no singular points other than s = 0. We shift the line of integration
to σ = ssp + 1 > 0 and obtain (again by taking care that there is no absolute convergence)

E zDK,V = zK+1 +O(|z − 1|v−η) (13)

where η = ssp + 1 > 0. By construction we know that DK,V ≤ K + 1. From (13) we can easily deduce
that DK,V is in fact concentrated at K + 1. By Markov’s inequality (for z < 1) we directly obtain

Pr{DK,V ≤ K} ≤ z−KE
(
zDK,V 1{DK,V ≤K}

)
= z−K

(
E zDK,V − zK+1

)
+ zPr{DK,V ≤ K}

which implies (with z = 1 − 1
K ) the estimate Pr{DK,V ≤ K} = O(v−η). This proves concentration.

We have v = 2V and, thus, v−η = 2−ηV is exponentially small. By using the corresponding tail estimate
of the form Pr{DK,V ≤ K−r} = O(e−r/Kv−η), we can also deal with moments and obtain EDK,V =
K + 1 +O(K2v−η) and VarDK,V = O(K3v−η).
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