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The Size of the rth Smallest Component in
Decomposable Structures with a Restricted Pattern
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In our previous work (2), we derived an asymptotic expression for the probability that a random de-
composable combinatorial structure of size n in the exp-log class has a given restricted pattern. In this
paper, under similar conditions, we provide the probability that a random decomposable combinatorial
structure has a given restricted pattern and the size of its rth smallest component is bigger than k, for
r, k given integers. Our studies apply to labeled and unlabeled structures. We also give several concrete
examples.

Keywords: decomposable combinatorial structures; restricted pattern; exp-log class; singularity analy-
sis; rth smallest component.

1 Introduction
Let C be a class of combinatorial structures. We call F a class of decomposable combinatorial
structures over C if each element of F can be uniquely decomposed into a multiset of elements of
C. The elements of C are called the components.

Traditionally, combinatorial structures are divided into two categories depending whether struc-
tures under consideration are labeled or unlabeled. Let Ck be the number of elements of size k
in C. For labeled structures, the (exponential) generating function of C is C(z) =

∑
k≥0 Ckz

k/k!.
An element of F is formed by taking a multiset of labeled elements of C and performing all
consistent relabellings. It is well known (for example, see (5)) that the exponential generating
function of F is given by

F (z) = exp(C(z)).

For unlabeled structures, the (ordinary) generating function of C is C(z) =
∑
k≥0 Ckz

k. Since
each element of F is obtained by taking a multiset of elements of C, the ordinary generating
function of F is given by (see (5))

F (z) = exp
(
C(z) +

C(z2)
2

+
C(z3)

3
+ · · ·

)
. (1)

It is well known that the asymptotic growth of the coefficients of a generating function is
determined by the behavior of its singularities. In (6), Flajolet and Soria systematically studied
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the distribution of the number of components in a large class of decomposable combinatorial
structures, which they called the exp-log class. Roughly speaking, a decomposable combinatorial
structure is in the exp-log class if the generating function C(z) has a unique singularity ρ on its
circle of convergence and C(z) behaves like log(1− z/ρ) around z = ρ (See Section 2 for a precise
definition). Flajolet and Soria showed that the distribution of the number of components in a
random decomposable structure of size n is asymptotically normal with mean and variance about
log n.

In (2), we studied decomposable combinatorial structures in the exp-log class with a given
restricted pattern, where by a restricted pattern, we mean that the number of components of
certain sizes are specified in advance. Asymptotic expressions were derived for the probability
that a random decomposable structure of size n in the exp-log class has a given restricted pattern.

In this paper, we shall continue our work in (2) to study the probability of a random decom-
posable structure which has a given restricted pattern and a restricted size on its rth smallest
component. Throughout this paper, a random structure is chosen uniformly from a set under
consideration. Panario and Richmond (14) have studied the equivalent subject when there is
no restricted pattern. The similar problem of the distribution of the size of the rth largest
component has been studied by Gourdon (9) in his Ph.D thesis. In addition, many studies
of restricted patterns for particular structures have been done, such as the distribution of cy-
cles in permutations (7; 8) and the distribution of irreducible factors in polynomials over finite
fields (1; 10; 12). Among those studies, singularity analysis of generating function brought in
by Flajolet and Odlyzko (4) already became a powerful tool for extracting relevant asymptotic
information.

The paper is organized as follows. Section 2 starts with the definition of the exp-log class
which covers a large number of decomposable combinatorial structures. We refer to some classical
tools from analytic combinatorics: generating functions and singularity analysis. We also review
two theorems (Theorems 1 and 2) of our previous work (2) and prove two extended theorems
(Theorem 3 and 4) from the previous paper (2) which are applied to prove the theorems in this
paper. In Section 3, the main theorems of this paper are given (Theorem 5 for the labeled case and
Theorem 6 for the unlabeled case). Because the estimates provided by the main theorems depend
on the given restricted pattern, we can simplify our results greatly by setting stricter conditions
on the pattern. The simplified results are presented in Corollaries 1, 2, 3, and 4. In Section 4, we
discuss the first moment of the size of the rth smallest component for a decomposable structure in
the exp-log class with a restricted pattern (Theorem 7 and Corollary 5). Section 5 exemplifies our
results for some decomposable combinatorial structures, including labeled and unlabeled cases.
Finally, some problems for further research are introduced in Section 6.

2 Background and Previous Results

In this paper, we shall restrict our attention to decomposable combinatorial structures in the
exp-log class. As in (2), we use the following definition which is equivalent to that introduced
in (6), and is more convenient for our purpose.

Definition 1 Let 4(ν, θ) be the region |z| ≤ 1 + ν minus the region |arg(z − 1)| ≤ θ, with ν > 0
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and 0 < θ < π/2. We say that C(z) is of logarithmic type with multiplicity constant a > 0 if

C(ρz) = a log
(

1
1− z

)
+R(z)

where the positive constant ρ is the radius of convergence of C(z), R(z) is analytic in 4(ν, θ),
and as z → 1 in 4(ν, θ), R(z) = K + O ((1− z)α) with 0 < α < 1 and K a complex constant.
If the component generating function C(z) is of logarithmic type, we say that the corresponding
structure F is in the exp-log class.

Applying Flajolet-Odlyzko’s transfer theorem (4), we obtain

[zn]C(z) =
1
ρn

a

n

(
1 +O

(
n−α

))
,

where [zn]C(z) denotes the coefficient of zn in C(z).
In the labeled case, it follows from (1) and Flajolet-Odlyzko’s transfer theorem that

[zn]F (z) =
1
ρn

eK

Γ(a)
na−1(1 +O(n−α)). (2)

In the unlabeled case, we require the singular point 0 < ρ < 1 such that the radius of conver-
gence of

C(z2)
2

+
C(z3)

3
+ · · ·

is bigger than ρ. Let

r0 =
C(ρ2)

2
+
C(ρ3)

3
+ · · · .

Then the transfer theorem and (1) entails

[zn]F (z) =
1
ρn
eK+r0

Γ(a)
na−1(1 +O(n−α)).

Now we recall from (2) the definition of restricted pattern.

Definition 2 A restricted pattern for a structure is defined as a mapping S : J 7→ N , where J
is the set of the components’ sizes specified in advance and N is the set of nonnegative integers.
Then S(j) is the number of components of size j in the given restricted pattern S.

To illustrate the above definition, consider permutations whose components are cycles. If J is
the empty set, then there is no restricted pattern and we are dealing with all the permutations.
If the restricted pattern is S(j) = 0 for 1 ≤ j ≤ k, then we are dealing with permutations whose
cycle lengths are all greater than k.

In the rest of the paper we use the following notations from (2) (we recall that Cj is the number
of components of size j):

• |A| denotes the number of elements in a set A;
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• Nk = {1, 2, . . . , k};

• Given a set A of positive integers, h(z;A) =
∏
i∈A

(1− zi)Ci ;

• d(k) =
∑

j∈J∩Nk

S(j);

• CL(z; J) =
∑
j∈J

Cj
zj

j!
and SL(J) =

∏
j∈J

C
S(j)
j

(j!)S(j)S(j)!
;

• CU (z; J) =
∑
j∈J Cjz

j and SU (J) =
∏
j∈J

(Cj+S(j)−1
S(j)

)
;

• m = n −
∑
j∈J

jS(j) denotes the size of the unrestricted part of the structure of size n (one

may think of m as the degree of freedom of a structure of size n with a given restricted
pattern S).

In the previous paper (2), we have obtained the probability that a random decomposable
combinatorial structure with size n has a given pattern when the sizes of the components in
the pattern are negligible compared to n. In the following (Theorems 3 and 4), we extend the
patterns in our theorems to include large size components. As it can be seen, we obtain the same
probability estimates as in our previous work.

Let us first review two theorems from (2) which give the generating functions of the decom-
posable combinatorial structures with given restricted patterns.

Theorem 1 Let S : J 7→ N be a given restricted pattern. The exponential generating function of
labeled structures with size n and restricted pattern S is

L(z;S) = exp (CL(z)− CL(z; J))
∏
j∈J

C
S(j)
j zjS(j)

(j!)S(j)S(j)!
.

Theorem 2 Let S : J 7→ N be a given restricted pattern. The generating function of unlabeled
structures with size n and restricted pattern S is

U(z;S) =

∏
j∈J

(1− zj)Cj

(
Cj + S(j)− 1

S(j)

)
zjS(j)

 exp
(
CU (z) +

CU (z2)
2

+ · · ·
)
.

Then, we extend two theorems from our previous paper (2) for labeled and unlabeled structures.
The extensions below cover large size components in the restricted pattern.

Theorem 3 Let PL(S, n) be the probability that a random decomposable labeled structure with
size n has a restricted pattern S. Let J (1) = {j ∈ J : j ≤ m} and J (2) = {j ∈ J : j > m}.
Suppose |J (1)| = o(m/ logm), j = O(m/ logm) when j ∈ J (1), and m→∞ as n→∞. Then, as
n→∞,

PL(S, n) ∼
(m
n

)a−1

SL(J)ρn−m exp (−CL(ρ; J)) .
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Proof: We know

PL(S, n) =
[zn]L(z;S)

[zn]L(z)
.

Define restricted patterns S(1) and S(2) such that S(1)(j) = S(j) for j ∈ J (1) and S(2)(j) = S(j)
for j ∈ J (2). Let n? = n−

∑
j∈J(2) jS(2)(j). Applying Theorem 1, we obtain

PL(S, n) =
[zn] exp (CL(z)− CL(z; J)) SL(J)zn−m

[zn]L(z)

=
SL(J (1) ∪ J (2))[zm] exp

(
CL(z)− CL(z; J (1))− CL(z; J (2))

)
[zn? ]L(z)

[zn
?

]L(z)
[zn]L(z)

Since m < min{j : j ∈ J (2)}, we can remove the term CL(z; J (2)) without changing the result,
namely,

[zm] exp
(
CL(z)− CL(z; J (1))− CL(z; J (2))

)
= [zm] exp

(
CL(z)− CL(z; J (1))

)
.

Applying (2), we have
[zn

?

]L(z)
[zn]L(z)

∼ ρn−n
?

(
n?

n

)a−1

.

Therefore, we obtain

PL(S, n) ∼ SL(J (2))ρn−n
?

(
n?

n

)a−1

PL(S(1), n?)

For the term PL(S(1), n?), we apply Theorem 1 of (2) to obtain

PL(S(1), n?) ∼
(m
n?

)a−1

SL(J (1))ρn
?−m exp

(
−CL(ρ; J (1))

)
.

Hence,

PL(S, n) ∼ SL(J (2))ρn−n
?

(
n?

n

)a−1 (m
n?

)a−1

SL(J (1))ρn
?−m exp

(
−CL(ρ; J (1))

)
= SL(J)ρn−m

(m
n

)a−1

exp
(
−CL

(
ρ; J (1)

))
.

This completes the proof of Theorem 3.

Theorem 4 Let PU (S, n) be the probability that a random decomposable unlabeled structure with
size n has a restricted pattern S. Suppose 0 < ρ < 1. Let J (1) = {j ∈ J : j ≤ m} and
J (2) = {j ∈ J : j > m}. Suppose |J (1)| = o(m/ logm), j = O(m/ logm) when j ∈ J (1), and
m→∞ as n→∞. Then, as n→∞,

PU (S, n) ∼
(m
n

)a−1

SU (J)ρn−m
∏

j∈J(1)

(1− ρj)Cj .
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Proof: The proof is similar to the one of Theorem 3.

3 The rth Smallest Component with a Given Restricted Pattern

In this section we present our main results about the size of the rth smallest component in a
random decomposable structure with a given restricted pattern. Our results extend those of
Panario and Richmond (14).

Let X [r]
n (S) denote the size of the rth smallest component of a random decomposable combi-

natorial structure of size n having a restricted pattern S. We derive an asymptotic expression
for P (X [r]

n (S) > k). We observe that P (X [r]
n (S) > k) = 0 if d(k) ≥ r where d(k) is defined in

Section 2.

3.1 Labeled Case

In the following, we adopt the convention 00 = 1 and use the notations J (1) and J (2) which are
defined in Theorems 3 and 4.

Theorem 5 Let S be a restricted pattern with |J (1)| = o(m/ logm). Assume j = O(m/ logm)
when j ∈ J (1), r = O(logm), k = o(m/ logm) and m→∞. If k is bounded, we have

P (X [r]
n (S) > k) ∼ PL(S, n) exp(−CL(ρ;Nk \ J))

r−1−d(k)∑
j=0

(CL(ρ;Nk \ J))j

j!
.

If k →∞ (as n→∞), letting G(k) = a log(k) + aγ +K − C(ρ; J ∩Nk), we have

P (X [r]
n (S) > k) ∼ PL(S, n)

exp (CL(ρ; J ∩Nk))
ka exp(aγ +K)

r−1−d(k)∑
j=0

(G(k))j

j!
.

Proof:
To keep track of the size of the rth smallest component, it is convenient to consider augmented

patterns S? : J? 7→ N where J? = J ∪ Nk, S?(j) = S(j) for j ∈ J , and, for j ∈ Nk \ J , S?(j)
is specified below. We note that each structure with the restricted pattern S such that its rth
smallest component has size greater than k corresponds to a structure with an augmented pattern
S? such that

∑
i∈Nk\J

S?(i) ≤ r − 1− d(k). Hence we have

P (X [r]
n (S) > k) =

r−1−d(k)∑
P

i∈Nk\J S
?(i)=0

PL(S?).

Let m? = n −
∑
j∈J∪Nk

jS?(j). Since k = o(m/ logm) and
∑
j∈Nk\J S

?(j) ≤ r − 1 − d(k) =
O(logm), we have m?

n ∼
m
n . Applying Theorem 3 and noticing that

∑
j∈J∩Nk

jS(j) is given by
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the pattern S, we get

P (X [r]
n (S) > k)

∼
r−1−d(k)∑

P
j∈Nk\J S

?(j)=0

(
m?

n

)a−1 ∏
i∈J∪Nk

C
S?(i)
i

(i!)S?(i)S?(i)!
ρn−m

?

exp
(
−CL(ρ; J (1) ∪Nk)

)
∼

(m
n

)a−1

SL(J)ρn−m exp
(
−CL(ρ; J (1))− CL(ρ;Nk \ J)

)
r−1−d(k)∑

P
j∈Nk\J S

?(j)=0

 ∏
i∈Nk\J

C
S?(i)
i ρiS

?(i)

(i!)S?(i)S?(i)!


∼ PL(S, n) exp (−CL(ρ;Nk \ J))

r−1−d(k)∑
P

j∈Nk\J S
?(j)=0

 ∏
i∈Nk\J

C
S?(i)
i ρiS

?(i)

(i!)S?(i)S?(i)!

 . (3)

It follows from (3) and the multinomial formula

(Y1 + Y2 + · · ·+ Yk)j =
∑

a1+a2+···+ak=j

(
j

a1, a2, . . . , ak

)
Y a1

1 Y a2
2 . . . Y ak

k

= j!
∑

a1+a2+···+ak=j

k∏
i=1

Y ai
i

ai!

that

P (X [r]
n (S) > k) ∼ PL(S, n) exp(−CL(ρ;Nk \ J))

r−1−d(k)∑
j=0

(CL(ρ;Nk \ J))j

j!
.

If k is bounded, we are done. If k →∞, we have, using the transfer theorem again,

CL(ρ;Nk) =
k∑
i=1

Ciρ
i/i! = [zk]

1
1− z

C(ρz)

= [zk]
a

1− z
log

1
1− z

+K +O(k−α)

= a log(k) + aγ +K +O(k−α), (4)

where γ is the Euler-Mascheroni constant.
Let G(k) = a log(k) + aγ +K − CL(ρ; J ∩Nk). Then

P (X [r]
n (S) > k) ∼ PL(S, n)

exp (CL(ρ; J ∩Nk))
ka exp(aγ +K)

r−1−d(k)∑
j=0

(G(k))j

j!
.
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When there is no restricted pattern, let X [r]
n denote the size of the rth smallest component

of a labeled decomposable structure of size n. From Theorem 5, we get the following result of
Panario and Richmond (14).

Corollary 1 Let r = O(log n), k = o(n/ log n) and n→∞. If k is bounded, we have

P (X [r]
n > k) ∼ exp(−CL(ρ;Nk))

r−1∑
j=0

CL(ρ;Nk)j

j!
.

If k →∞, we have

P (X [r]
n > k) ∼ k−a exp(−aγ −K))

r−1∑
j=0

(a log k)j

j!

 .

The expression in Theorem 5 can be simplified when r− d(k) and |J ∩Nk| are small compared
with k.

Corollary 2 Using the same notations and conditions as those in Theorem 5, if we further limit
log |J ∩Nk| = o(log k) and r − d(k) = o(log k) with k →∞, we have, as m→∞,

P (X [r]
n (S) > k) ∼ PL(S, n)

exp (CL(ρ; J ∩Nk))
ka exp(aγ +K)

(a log(k))r−1−d(k)

(r − 1− d(k))!
.

Proof:
Since log |J ∩Nk| = o(log k) and CL(ρ; J ∩Nk) = O(CL(ρ;N|J∩Nk|)), applying Equation (4),

we get
CL(ρ; J ∩Nk) = o(log k).

Hence, a log(k) + aγ +K − CL(ρ; J ∩Nk) = a log k(1 + o(1)).
From r − d(k) = o(log k), we have

r−1−d(k)∑
j=0

(CL(ρ;Nk \ J))j

j!
∼ (a log k)r−1−d(k)

(r − 1− d(k))!
.

Now the corollary follows immediately from Theorem 5.

3.2 Unlabeled Case

In the unlabeled case we assume 0 < ρ < 1.

Theorem 6 Let S be a restricted pattern with |J (1)| = o(m/ logm). Assume j = O(m/ logm)
when j ∈ J (1), r = O(logm) and k = o(m/ logm). As m→∞, we have, if k is bounded,

P (X [r]
n (S) > k) ∼ PU (S, n)h(ρ;Nk\J)

r−1−d(k)∑
j=0

[zj ] exp
(
zCU (ρ;Nk \ J) + z2CU (ρ2;Nk \ J)

2
+ · · ·

)
.
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If k →∞, we have

P (X [r]
n (S) > k) ∼ PU (S, n)

e−aγ−K−r0

kah(ρ; J ∩Nk)

r−1−d(k)∑
j=0

[zj ] exp
(
zCU (ρ;Nk \ J) + z2CU (ρ2;Nk \ J)

2
+ · · ·

)
.

Proof:
We define the same augmented pattern S? as the one in the proof of Theorem 5. Let m? =

n−
∑
j∈J∪Nk

jS?(j). We still have m?

n ∼
m
n for the same reason as in the labeled case. Applying

Theorem 4, we get

P (X [r]
n (S) > k) ∼

r−1−d(k)∑
P

j∈Nk\J S
?(j)=0

(
m?

n

)a−1 ∏
j∈J∪Nk

(
Cj + S?(j)− 1

S?(j)

) ∏
j∈J(1)∪Nk

(1− ρj)Cjρn−m
?

∼ PU (S, n)h(ρ;Nk \ J)
r−1−d(k)∑

P
j∈Nk\J S

?(j)=0

∏
j∈Nk\J

(
Cj + S?(j)− 1

S?(j)

)
ρjS

?(j). (5)

The negative binomial theorem states that

(1− ρiz)−Ci =
∑
Xi≥0

(
Ci +Xi − 1

Xi

)
ρiXizXi .

Hence, we get

r−1−d(k)∑
P

j∈Nk\J S
?(j)=0

∏
j∈Nk\J

(
Cj + S?(j)− 1

S?(j)

)
ρjS

?(j) =
r−1−d(k)∑
u=0

[zu]
∏

j∈Nk\J

(1− ρjz)−Cj

=
r−1−d(k)∑
u=0

[zu] exp

− ∑
j∈Nk\J

Cj log(1− ρjz)


=

r−1−d(k)∑
u=0

[zu] exp

∑
i≥1

∑
j∈Nk\J

Cjρ
ijzi/i


=

r−1−d(k)∑
u=0

[zu] exp (z(CU (ρ;Nk)− CU (ρ; J ∩Nk))

+z2CU (ρ2;Nk)− CU (ρ2; J ∩Nk)
2

+ · · ·
)
. (6)

When k →∞, by (4), we have

CU (ρ;Nk) = a log(k) + aγ +K +O(k−α).

Since ρ is the radius of convergence of CU (z), and in the unlabeled case 0 < ρ < 1, CU (ρt) is
bounded for an integer t ≥ 2. We have that CU (ρt;Nk) ∼ CU (ρt) as k →∞.
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Similarly to the derivation of (4) and the above discussion, we get

h(ρ;Nk) = exp

(
k∑
i=1

Ci log(1− ρi)

)
∼ exp

(
−

k∑
i=1

Ciρ
i

)
e−r0

∼ k−a exp(−aγ −K − r0), (7)

where r0 = CU (ρ2)
2 + CU (ρ3)

3 + · · · . Finally, in Equation (5), we do the following substitution

h(ρ;Nk \ J) =
h(ρ;Nk)

h(ρ; J ∩Nk)
,

and the proof is complete.

As in the labeled case, we provide the following two corollaries. The first one is for the special
case J = ∅.
Corollary 3 Let r = o(log n) and k = o(n/ log n). Using the same notations as in Theorem 6,
we have, if k is bounded,

P (X [r]
n > k) ∼ h(ρ;Nk)

r−1−d(k)∑
j=0

[zj ] exp
(
zCU (ρ;Nk) + z2CU (ρ2;Nk)

2
+ · · ·

)
.

If k →∞, we have

P (X [r]
n > k) ∼ e−aγ−K−r0

ka

r−1−d(k)∑
j=0

[zj ] exp
(
az log k + z2CU (ρ2)

2
+ · · ·

)
.

Corollary 4 Assume the same notations and conditions as in Theorem 6. Assume further
log |J ∩Nk| = o(log k) and r − d(k) = o(log k) as k →∞. We then have

P (X [r]
n (S) > k) ∼ PU (S, n)

(a log k)r−1−d(k)

(r − 1− d(k))!kaeaγ+K+r0h(ρ; J ∩Nk)
.

Proof:
Since log |J ∩Nk| = o(log k) and CU (ρ; J ∩Nk) = O(CU (ρ;N|J∩Nk|)), applying (4), we have

CU (ρ; J ∩Nk) = o(log k).

Hence,
CU (ρ;Nk \ J) = a log k(1 + o(1)).

From (6), noticing that r − d(k) = o(log k), we have

r−1−d(k)∑
j=0

[zj ] exp
(
z(CU (ρ;Nk \ J)) + z2CU (ρ2;Nk \ J)

2
+ · · ·

)
∼

r−1−d(k)∑
j=0

[zj ] exp(az log k)

∼ (a log k)r−1−d(k)

(r − 1− d(k))!
.
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Therefore, the corollary follows immediately from Theorem 6.

4 First Moment
In this section, given a restricted pattern S : J 7→ N , we consider the asymptotic behavior of the
average size of the rth smallest component. We only discuss the pattern when J (2) = ∅ where
J (2), defined in Section 2, is the set of the sizes of large components in the pattern S.

Let E(X [r]
n (S)) stand for the first moment of X [r]

n (S). To estimate the first moment, we use
the well-known expression

E(X [r]
n (S)) =

∑
k≥0

P (X [r]
n (S) > k).

Let i[j] denote the size of the jth component in the given restricted pattern. If r ≤
∑
j∈J S(j),

it is clear that P (X [r]
n (S) > k) = 0 when

∑
j∈J∩Nk

S(j) ≥ r. Hence we have

E(X [r]
n (S)) =

i[r]−1∑
k=0

P (X [r]
n > k).

If r >
∑
j∈J S(j), we need to estimate P (X [r]

n (S) > k) when k exceeds the range given in
Theorem 5.

Let bxc be the biggest integer which is smaller than or equal to x. We shall estimate E(X [r]
n (S))

under either of the following two conditions

(C1) a > 1, r = o( logn
log logn ) and log |J | = o(log n),

(C2) a = 1, r = O(1) and |J | = O(log n).

To prove later theorems, we introduce the following lemma.

Lemma 1 Let a, b, and c be positive integers. Suppose a→∞, log b
log a →∞, and c = O(1). Then,

b∑
k=a

(log k)c

k
∼ 1
c+ 1

(log b)c+1.

Proof:
Let us consider the continuous real function f(x) = 1

x (log x)c where x ∈ [a, b]. We have

f ′(x) =
1
x2

(c− log x)(log x)c−1 < 0,

since c is a constant and a→∞. Hence, f(x) is monotonic decreasing and we have∫ b

a

f(k)dk <
b∑

k=a

(log k)c

k
<

∫ b

a

f(k − 1)dk,
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and the proof is done since∫ b

a

f(k)dk ∼
∫ b

a

f(k − 1)dk ∼ 1
c+ 1

(log b)c+1.

For a random decomposable combinatorial structure with a given restricted pattern, the first
moment of the rth smallest component is given by the following theorem.

Theorem 7 Let M = max{j : j ∈ J}. Assume r >
∑
j∈J S(j) and M = o(n/ log n). Define

w = max
{⌊

n
logn log logn

⌋
,M
}

. Under either (C1) or (C2) conditions, and as m → ∞, for both
labeled and unlabeled cases, we have

E(X [r]
n (S)) ∼

w∑
k=0

P (X [r]
n (S) > k).

Proof:
We only prove this theorem for the labeled case since the proof of the unlabeled case is very

similar.
We start with the condition (C1), that is, a > 1, r = o(log n/ log log n) and log |J | = o(log n).

From the definition, we have P (X [r]
n (S) > k) > 0, for any positive k. According to Theorem 5,

we have
w∑
k=0

P (X [r]
n (S) > k) > P (X [r]

n (S) > 0) = PL(S, n).

Let d̂ =
∑
j∈J S(j). From Corollary 2, we have

n∑
k=w+1

P (X [r]
n (S) > k) ≤ nP

(
X [r]
n (S) > w

)
∼ nPL(S, n)O

(
exp(CL(ρ; J ∩Nw))(a logw)r−1−d̂

(r − 1− d̂)!wa

)

≤ nPL(S, n)O

(
exp(CL(ρ; J ∩Nw))ar−1−d̂(log log n)a(log n)r+a−1−d̂

(r − 1− d̂)!na

)
.

In the last line, we use w ≥
⌊

n
logn log logn

⌋
. In this case, the constant a is bigger than 1. According

to condition (C1), we have

exp(CL(ρ; J ∩Nw)) = O(exp(CL(ρ;N|J|))) = O(exp(o(log n))) = O(no(1)),

and
(log n)r+a−1−d̂ = (log n)o(

log n
log log n ) = no(1).
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Hence,
n∑

k=w+1

P (X [r]
n (S) > k) = PL(S, n)o(1),

which is negligible compared with
∑w
k=0 P (X [r]

n (S) > k).
We consider now condition (C2), that is, a = 1, r = O(1) and |J | = log n. We divide this proof

into three parts. In the first part, we prove that

w∑
k=0

P (X [r]
n (S) > k) > exp(−γ −K)

PL(S, n) exp(CL(ρ; J ∩Nb(logn)log log nc))

2(r − 1)!(r − d̂)
(log n)r−d̂.(8)

In the second part, we prove

bn/ lognc∑
k=w

P (X [r]
n (S) > k) = o(PL(S, n) exp(CL(ρ; J ∩Nb(logn)log log nc))(log n)r−d̂). (9)

In the third part, we explain that
∑n
k=n/ logn P (X [r]

n (S) > k) is negligible compared with PL(S, n)

exp(CL(ρ; J ∩Nb(logn)log log nc))(log n)r−d̂.
Before we start the proof, let us first estimate CL(ρ; J ∩ Nk) when k > (log n)log logn. Under

the condition (C2), |J | = O(log n). Then we have

CL(ρ; J ∩Nk) = CL(ρ; J ∩N(logn)log log n) + CL(ρ; J ∩ (Nk \N(logn)log log n))
≤ CL(ρ; J ∩N(logn)log log n) + CL(ρ; (N(logn)log log n+|J| \N(logn)log log n))
= CL(ρ; J ∩N(logn)log log n) + o(1). (10)

Part I: proof of (8).

Applying Lemma 1 and Corollary 2, we get

w∑
k=0

P (X [r]
n (S) > k) >

w∑
k=b(logn)log log nc

P (X [r]
n (S) > k)

>
exp(−γ −K)

2(r − 1)!
exp(CL(ρ; J ∩Nb(logn)log log nc))PL(S, n)

w∑
k=b(logn)log log nc

(log k)r−1−d̂

k

∼ exp(−γ −K)
PL(S, n) exp(CL(ρ; J ∩Nb(logn)log log nc))

2(r − 1)!(r − d̂)
(log n)r−d̂. (11)

Part II: proof of (9).
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Applying that r = O(1) and Corollary 2, we obtain

b n
log n c∑

k=w+1

P (X [r]
n (S) > k) <

n

log n
P (X [r]

n (S) > w)

≤ n

log n
PL(S, n)O

(
exp(CL(ρ; J ∩Nw)) log log n(log n)r−d̂

n

)
.(12)

Now applying (10), we get

C(ρ; J ∩ (Nw \Nb(logn)log log nc)) = o (1) .

Putting this back to (12), we have

b n
log n c∑

k=w+1

P (X [r]
n (S) > k) = PL(S, n)o(exp(CL(ρ; J ∩Nb(logn)log log nc))(log n)r−d̂). (13)

Part III: we prove that
∑n
k=n/ logn P (X [r]

n (S) > k) is negligible.

Let ε = 1
log log logn and w′ =

√
εn

logn . We have

εn
(logw′)r−d̂−1

w′
= o((log n)r−d̂).

Similar to (13), we get

bεnc∑
k=w′

P (X [r]
n (S) > k) = O

(
εnPL(S, n) exp(CL(ρ; J ∩Nw′))

(logw′)r−d̂−1

w′

)
= PL(S, n)o(CL(ρ;Nb(logn)log log nc))(log n)r−d̂). (14)

In order to estimate P (X [r]
n (S) > k) when k = bεnc, we have to go back to the proof of

Theorem 5. Let S be the set of augmented patterns of S as defined in the proof of Theorem 3.
For any S? ∈ S, the corresponding J? satisfies J? = Nbεnc and 0 ≤

∑
j∈J?\J S

?(j) ≤ r − d̂ − 1.
We need to estimate PL(S?, n) for every S? ∈ S. We notice that J ⊂ Nbεnc. We base our analysis
on (C2). Given a = 1, we get the expression of PL(S?, n)

PL(S?, n) ∼ SLρ
n−m?

e−K
∏

j∈Nbεnc\J

C
S?(j)
j

(j!)S?(j)S?(j)!
[zm

?

] exp

 n∑
j=bεnc+1

zj

j


∼ SLρ

n−me−K
∏

j∈Nbεnc\J

(Cjρj)S
?(j)

(j!)S?(j)S?(j)!
[zm

?

]
n∏

j=bεnc+1

∑
i≥0

zij

i!ji

 .
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Recall that m = n −
∑
j∈J jS(j) for a given pattern S. For any S? ∈ S, we have n/m? → 1

since r > d̂ and r = O(1). Let S′ : J ′ 7→ N be an augmented pattern belonging to S and the
corresponding m′ = n−

∑
j∈J′ jS

′(j) such that, for any S? ∈ S, we have

[zm
?

]
n∏

j=bεnc+1

∑
i≥0

zij

i!ji

 ≤ [zm
′
]

n∏
j=bεnc+1

∑
i≥0

zij

i!ji

 .

Following a similar reasoning as the one we used in the proof of Theorem 3 to derive P (X [r]
n (S) >

k), we obtain

P (X [r]
n (S) > bεnc) =

r−1−d̂∑
P

i∈Nbεnc\J S
?(i)=0

PL(S?, n)

≤ SLρ
n−me−K [zm

′
]

m′∏
j=bεnc+1

∑
i≥0

zij

i!ji

 r−1−d̂∑
P

i∈Nbεnc\J S
?(i)=0

∏
j∈Nbεnc\J

(Cjρj)S
?(j)

(j!)S?(j)S?(j)!
.

Again, using the same method as in the proof of Theorem 5, we have

r−1−d̂∑
P

i∈Nbεnc\J S
?(i)=0

∏
j∈Nbεnc\J

(Cjρj)S
?(j)

(j!)S?(j)S?(j)!
=

r−1−d̂∑
i=0

(C(ρ;Nbεnc \ J))i

i!
= O((log n)r−1−d̂).

Hence, we obtain

P (X [r]
n (S) > bεnc) = O

SLρ
n−m(log n)r−1−d̂[zm

′
]

m′∏
j=bεnc+1

∑
i≥0

zij

i!ji


= O

SLρ
n−m(log n)r−1−d̂

∑
Pm′

j=bεnc+1 ijj=m
′

m′∏
j=bεnc+1

1
ij !jij



= O

SLρ
n−m(log n)r−1−d̂

b1/εc∑
h=1

∑
Pm′

j=bεnc+1 ij=hPm′
j=bεnc+1 ijj=m

′

m′∏
j=bεnc+1

1
ij !jij

 .(15)

Since ε = 1/ log log log n, we have (
1
ε

)b 1ε c+1

= o(log n). (16)
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If
∑m′

j=bεnc+1 ij = h,

m′∏
j=bεnc+1

1
ij !jij

= O

(
1

(εn)h

)
. (17)

For integer 0 < k ≤ n, let pn(k) denote the number of solutions, in positive integers, to x1 +x2 +
· · ·+ xk = n. It is well-known that pn(k) =

(
n−1
k−1

)
= O(nk−1).

Applying (17) in (15), since pm′(h) is the upper bound of∑
Pm′

j=bεnc+1 ij=hPm′
j=bεnc+1 ijj=m

′

1,

we obtain

∑
Pm′

j=bεnc+1 ij=hPm′
j=bεnc+1 ijj=m

′

m′∏
j=bεnc+1

1
ij !jij

≤ O

(
1

(εn)h

)
pm′(h) = O

(
1

(εn)h
nh−1

)
.

In the last line, we use nh−1 instead of (m′)h−1 since m′ ≤ n. Hence, applying (16), we have

P (X [r]
n (S) > bεnc) = O

SLρ
n−m(log n)r−1−d̂

b 1ε c∑
h=1

O

(
1

(εn)h
nh−1

) = o

(
SLρ

n−m (log n)r−d̂

n

)
.

From Theorem 3, we know PL(S, n) ∼
(
m
n

)a−1
SLρ

n−m exp (−CL(ρ; J)). Using (10), we get,

CL(ρ; J ∩ (Nn \Nb(logn)log log nc)) = o(1),

namely
PL(S, n) exp(CL(ρ; J ∩Nb(logn)log log nc)) ∼ SLρ

n−m.

We have
n−1∑

k=bεnc

P (X [r]
n (S) > k) ≤ nP (X [r]

n (S) > bεnc)

= o
(
PL(S, n) exp(CL(ρ; J ∩Nb(logn)log log nc))(log n)r−d̂

)
. (18)

This part is completed.
Finally, combining (18) with (11), (13) and (14), we finish our proof.

For some special restricted patterns, the above result can be simplified using Theorems 3 and
4.
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Corollary 5 Suppose r = O(1), a = 1 and J = ∅. Then, for the labeled case,

E(X [r]
n ) ∼ 1

r! exp(γ +K)
(log n)r,

and for the unlabeled case,

E(X [r]
n ) ∼ 1

r! exp(γ +K + r0))
(log n)r.

Proof: We can prove this corollary by applying Theorem 7, Corollary 2, and Corollary 4.

5 Examples.
In this section, we provide several examples which cover some important decomposable combina-
torial structures, such as permutations, children’s yards, and polynomials over finite fields. These
applications may be of interest for practitioners in cryptography; see (3) and (15).
Example 1: (Cycles in Permutations). Permutations are labeled structures which are decom-
posed into cycles. The component generating function is

C(z) = log
1

1− z
,

which is of logarithmic type with ρ = a = 1. Suppose we want to know the probability that a
random permutation of size n has exactly 2 cycles of size 2, 1 cycle of size 4, and the size of its
10th smallest cycle is bigger than blog nc. Applying Theorem 3 and Corollary 2, with S(2) = 2,
S(4) = 1, and r = 10, we have

P (X [10]
n (S) > blog nc) ∼ (log log n)6

23040eγ log n
.

Applying Theorems 3 and 7, Corollary 2, and Lemma 1, we have

E(X [10]
n (S)) ∼

b n
log n log log nc∑

k=0

P (X [10]
n (S) > k)

∼
blognc∑
k=0

P (X [10]
n (S) > k) +

b n
log n log log nc∑
k=blognc+1

P (X [10]
n (S) > k)

∼ O(log n) +
b n

log n log log nc∑
k=blognc+1

PL(S, n)
exp(3/4− γ)

6!
(log k)6

k

∼ O(log n) +
b n

log n log log nc∑
k=blognc+1

exp(−γ)
23040

(log k)6

k

∼ O(log n) +
e−γ

161280
(log n)7

∼ e−γ

161280
(log n)7.
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Example 2: (Children’s Yards). Introduced by Stanley (16) in 1978, Children’s yards are labeled
structures made of rounds (directed cycles) with one child (node) in the center of each round.
The component generating function is

C(z) = z log
1

1− z
= log

1
1− z

+ (z − 1) log
1

1− z
.

Since (z − 1) log(1 − z)−1 → 0 when z → 1, C(z) is of logarithmic type with a = 1 and ρ = 1.
Let us estimate the probability that there is no cycle of size smaller than blog nc and the size of
the blog log ncth smallest cycle is bigger than (log n)log logn. According to Corollary 2, we get

P (X [blog lognc]
n (S) > (log n)log logn) ∼ e−γ(log log n)2blog lognc−2

(log n)log logn(blog log nc − 1)!
.

Example 3: (Irreducible Factors in Polynomials over Finite Fields). A typical unlabeled struc-
ture is the set of polynomials over finite fields. The generating function for polynomials over Fq
is

U(z) = exp
(
C(z) +

C(z2)
2

+ · · ·
)

=
1

1− qz
, with C(z) = log

1
1− qz

+ F (z),

where F (z) is analytic in |z| < q−1/2. Of course, there is a more precise expression for C(z) but
this form is enough for our interests here; see (3).

Let us consider, for example, the restricted pattern S(2) = 1 and S(blog nc) = 1. Then,
what is the probability that the 10th smallest irreducible factor has degree bigger than, say,

√
n?

Applying Corollary 4, we have for each fixed q

P (X [10]
n (S) >

√
n) ∼

(
1− 1

q

)
(log n)6

287! exp(γ + F (1/q) + r0)
√
n
.

6 Future Work

In this paper, we study the size of the rth smallest component for decomposable structures in
the exp-log class with a given restricted pattern. We also provide the first moment for the size
of the rth smallest component. We now give some natural extensions of this work.

First, one could study higher moments for the size of the rth smallest component in the exp-log
class. Panario and Richmond (14) give the equivalent result for the simpler case of the empty
pattern.

Furthermore, it seems plausible that the methods developed in this paper could allow the study
of the rth smallest component of decomposable structures whose component generating functions
are of algebraic-logarithmic type.

Finally, the distribution of the size of the rth largest component is another potential subject
of study. In the largest component case, new methods will have to be provided. Indeed, the
largest sizes among the components in the restricted pattern would exceed the range allowed in
the theorems given in this paper. Gourdon’s fundamental work (9) could be helpful in that study.
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