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Quantum random walks in one dimension via
generating functions
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We analyze nearest neighbor one-dimensional quantum random walks with arbitrary unitary coin-flip matrices. Using a
multivariate generating function analysis we give a simplified proof of a known phenomenon, namely that the walk has
linear speed rather than the diffusive behavior observed in classical random walks. We also obtain exact formulae for the
leading asymptotic term of the wave function and the location probabilities.
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1 Introduction

The classical random walk is a well-understood system with many important applications to computer sci-
ence. Well-known examples of algorithms based on random walks include algorithms for counting, sampling,
and testing properties such as satisfiability of Boolean formulae or graph connectivity. One of the most basic
and useful random walks is a simple random walk on Z. Here, a single particle moves on the one-dimensional
integer lattice. At each step the particle moves one position to the left or right with equal probability. As the
time t increases, the probability distribution describing the particle’s location can be approximated increasing
well by a normal distribution. The particle’s expected location is at the origin, and its standard deviation is
1
2

√
t, so its distribution is O(

√
t) in probability. That is to say that Pr (x ∈ [−M

√
t,M
√
t])→ 1 uniformly

in t as M →∞.

Throughout the last century mankind has developed an increasing appreciation for the fact that Newton’s
laws alone do not describe our world. Among man’s most recent attempts to harness the power of his quantum
reality has been the field of quantum information theory, bringing with it the potential to devise instruments
of extraordinary power [NC00]. For example, in 1994 Peter Shor [Sho97] discovered an algorithm to factor
numbers on a quantum computer in a number of steps which is polynomial in the length of the number to
be factored. This problem is not known to be solvable in polynomial time on a classical computer. Simi-
larly, in [Gro96], Lov Grover determined a quantum mechanical algorithm reducing the time for searching a
database of N entries from O(N) steps to O(

√
N) steps. Algorithms such as these have brought researchers

from a variety of scientific fields to focus on quantum information theory.

With the application of the classical random walk to information theory, as well as the growing promise
of quantum information theory, it is clearly of interest to define the quantum random walk. This was first
done by Y. Aharanov, L. Davidovich and N. Zagury [ADZ93] who introduced the quantum random walk and
first discussed differences with the classical random walk due to quantum interference. Shortly thereafter,
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David Meyer [Mey96] pointed out that the simple classical random walk described above does not translate
into a quantum framework. Semigroup operators, such as the combination 1

2σ+ + 1
2σ− of shifts defining the

classical simple random walk, are positive operators of norm 1 over the classical state space l1(Z), but fail to
be unitary over the quantum space l2(Z). In fact, it is easy to verify that the only translation-invariant positive
real operators on l2(Z) are trivial (powers of the shift operator).

In order to construct unitary operators that disperse the position of a particle, it is necessary to introduce an
extra degree of freedom, known as chirality. At any position on the lattice the particle’s chirality takes either
the value R (for RIGHT) or L (for LEFT). The elementary states are thus Z × Σ where Σ := {R,L}, and
the state space is l2(Z × Σ) = l2(Z) ⊗ l2(Σ). While this is the convention established by Ambainis et al.
in [ABN+01], we will refer to particles in the LEFT and RIGHT positions with the vector notation

(
1
0

)
and(

0
1

)
, respectively. We will denote the unit basis vector of l2(Z) ⊗ l2(Σ) at position i with LEFT chirality as

e(i, L) and we define e(i, R) analogously. We will order this basis as

. . . e(i− 1, L), e(i− 1, R), e(i, L), e(i, R), e(i+ 1, L), e(i+ 1, R) . . . .

Ambainis et al. focus on the Hadamard walk. This is based on the Hadamard transformation, a unitary
operator on l2(Σ) whose matrix with respect to the standard basis is

U√ 1
2

:=
1√
2

(
1 1
1 −1

)
.

We then extend this transformation to l2(Z) ⊗ l2(Σ) as I ⊗ U√ 1
2

where I is the identity, resulting in a
transformation which acts as the block diagonal matrix:

. . .
...

...
...

. . . U√ 1
2

0 0 . . .

. . . 0 U√ 1
2

0 . . .

. . . 0 0 U√ 1
2

. . .

...
...

...
. . .


We then define a translation operator T̃ which shifts a particle with chirality R to the right one step and

shifts a particle with chirality L to the left one step. More formally, we have

T̃ : e(i, L) 7→ e(i− 1, L), T̃ : e(i, R) 7→ e(i+ 1, R)

and in the basis described above,

T̃ =

0BBBBBBBBBBBBBBBBBB@

. . .
...

...
...

...
...

...
...

...
. . . 0 0 1 0 0 0 0 0 . . .

. . . 0 0 0 0 0 0 0 0 . . .

. . . 0 0 0 0 1 0 0 0 . . .

. . . 0 1 0 0 0 0 0 0 . . .

. . . 0 0 0 0 0 0 1 0 . . .

. . . 0 0 0 1 0 0 0 0 . . .

. . . 0 0 0 0 0 0 0 0 . . .

. . . 0 0 0 0 0 1 0 0 . . .
...

...
...

...
...

...
...

...
. . .

1CCCCCCCCCCCCCCCCCCA
in which every fourth diagonal alternates in 0’s and 1’s and all other entries are 0. We then define the operator
W̃ as W̃ = T̃ · (I ⊗ U√ 1

2
). As each of T̃ and I ⊗ U√ 1

2
are unitary, W̃ is unitary as well. This unitary

composition of operators represents one step of the Hadamard walk.
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These days, it is not so hard to compute the 200th power of a large matrix. Computing the 200th power
of W and plotting the square moduli of the entries of the row whose index is (0,R) yields a graph of the
probabilities, starting from a single particle in state e(0, R) to be in position k at time 200 (see Figure 1).
(Note: The range of the particle is 0 to 200, in accordance with the adjustment made in Section 2. Also note
that the upper envelope is the prediction made by Theorem 2.1, excluding the cos2(ρ) term.)

Fig. 1: Time t = 200 probability (p↓↑ + p↓↓) values by location and their upper envelope obtained by dropping the
cos2(ρ) term

Such illustrations appear in earlier works on QRW such as [ABN+01]. One may generalize the QRW,
replacing U√ 1

2
by any unitary matrix U . Except for degenerate choices of U , such as diagonal matrices,

the picture remains roughly the same. To be more precise, given a 2 × 2 unitary matrix U , define width =
width(U) to be the magnitude of either diagonal entry. For example, the real orthogonal matrix

Uc :=
(

c
√

1− c2√
1− c2 −c

)

has width(Uc) = c.
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2 Further notation and main results

Given c, we define the interval

J :=
[

1− c
2

,
1 + c

2

]
. (2.1)

Let us relabel our chiralities as {↑, ↓} instead of {L,R} (to avoid collision of notation with the literature).
We will also change the shift operator so that one chirality moves right but the other stands still instead of
moving left. Doing this removes periodicity from the QRW, which reduces the algebraic complexity of our
computations. Letting T denote this shift operator, we then define the general unitary nearest-neighbor QRW
on Z1 to be the operator

W := T · (I ⊗ U) .

For any chiralities ξ0 and ξ, let ψξ0ξ(r, s) denote the amplitude at time s of state (r, ξ) given a delta function
at (0, ξ0) at time zero. Let pξ0,ξ(r, s) := |ψξ0,ξ(r, s)|2 denote the corresponding probabilities. Our results
may be stated as follows.

Theorem 2.1 (asymptotics inside the interval J) Given a general unitary walk with transformation U , let
c denote width(U) and define J by (2.1). Assume that 0 < c < 1. Let λ := r

s . Then there are phase functions
ρξ0,ξ(r, s) described in equation (3.11) below, such that

p↓↓(r, s) ∼ 2
π

λ
√

1− c2

(1− λ)s
√
−((1− c2)− 4λ+ 4λ2)

cos2(ρ↓↓(r, s)) (2.2)

p↑↑(r, s) ∼ 2
π

(1− λ)
√

1− c2

λs
√
−((1− c2)− 4λ+ 4λ2)

cos2(ρ↑↑(r, s)) (2.3)

p↓↑(r, s) ∼ 2
π

√
1− c2

s
√
−((1− c2)− 4λ+ 4λ2)

cos2(ρ↓↑(r, s)) (2.4)

p↑↓(r, s) ∼ 2
π

√
1− c2

s
√
−((1− c2)− 4λ+ 4λ2)

cos2(ρ↑↓(r, s)) (2.5)

uniformly as λ varies over any compact subset of the interior of J .

Theorem 2.2 (rapid decay beyond J) Consider the quantities pξ0,ξ for a general unitary QRW with 0 <

c < 1. For each compact K ⊆ Jc and each integer N > 0 there is a C > 0 such that for any chiralities ξ0
and ξ,

pξ0,ξ(r, s) ≤ Cs−N

whenever λ = r/s ∈ K.

Such results have appeared already in the literature. The first rigorous proof of this result (in the special
case of the Hadamard QRW) appears in [ABN+01, Theorems 1 and 2]. A better analysis, giving asymptotics
near the endpoints of J as well, is given in [CIR03]. The main purpose of this paper is to give a greatly
simplified analysis via generating functions, which illuminates the reason for the observed phenomena and
which will serve as a basis for analyses of generalizations to higher dimensions, more varied increments,
introduction of barriers, and so forth.

The work of [ABN+01] spurred on much related analysis, including that in [AAKV01], [Kem05], [CFG02],
and [BMSS02]. The new methods of [CIR03] have simplified analysis and results. Certain generalizations
of Hadamard QRW’s to more general unitary QRW’s were already introduced in [Kon05]. Throughout this
paper, we often restrict our attention to the work of Ambainis et al. [ABN+01] for means of comparison,
as their paper has served as a benchmark since they rediscovered the quantum random walk for its use in
quantum computing [Sev03].
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3 Proofs

3.1 Generating functions

For any fixed pair of chiralities (ξ0, ξ) ∈ {↑, ↓} × {↑, ↓} we can form the bivariate generating function
Fξ0,ξ(x, y) :=

∑
r,s∈Z+ ψξ0,ξ(r, s)x

rys, enumerating paths from (0, 0) with chirality ξ0 to (r, s) with chi-
rality ξ by position (indexed by r ∈ N) and time (indexed by s ∈ N). We then form the generating matrix
F(x, y), defined as:

F(x, y) :=
(

F↑↑(x, y) F↓↑(x, y)
F↑↓(x, y) F↓↓(x, y)

)
Let us write M for the diagonal matrix of monomials

M :=
(

1 0
0 x

)
.

Although we do not consider it in this paper, these notions generalize as follows. Let v(1), . . .v(k) ∈ Zd be
any k integer vectors. Let M denote the diagonal matrix with jth diagonal entry xv(j) = x

v(j)1
1 . . . x

v(j)d
d .

Then the QRW on Zd with increment v(j) on chirality j, with unitary chirality operator U has generating
matrix

Fξ0,ξ(x, y) :=
∑

r∈Zd,s∈Z+

ψξ0,ξ(r, s)x
rys .

A simple application of the transfer matrix method yields the following proposition.

Proposition 3.1 For any QRW in any dimension,

F(x, y) = (I − yMU)−1 .

2

The formula for the entries of the inverse of a matrix allows us to write the entries of F as rational functions,
all with the same denominator H := det(I − yMU). The numerators will in general differ, thus we have

F =
G
H
.

Any unitary matrix U with width(U) = c may be written as

U =
(

ceiα
√

1− c2eiβ√
1− c2eiγ −cei(β+γ−α)

)
.

Computing G and H explicitly for this matrix U leads to

G(x, y) =
(

1 + ce(β+γ−α)ixy eβixy
√

1− c2
eγiy
√

1− c2 1− ceαiy

)
(3.1)

and
H(x, y) = 1− ceαiy + ce(β+γ−α)ixy − e(β+γ)ixy2 . (3.2)

In the case that U = Uc is real, this specializes to

Gc =
(

1 + cxy xy
√

1− c2
y
√

1− c2 1− cy

)
,

Hc = 1− cy + cxy − xy2 .
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To see why the only physically relevant parameter is c, observe that the general denominator which we denote
Hc,α,β,γ satisfies

Hc,α,β,γ(x, y) = Hc

(
ei(β+γ−2α)x, eiαy

)
(3.3)

while the entries of the general numerator Gc,α,β,γ(x, y) are equal to unit complex multiples of Gc(ei(β+γ−2α)x, eiαy).
It follows that the coefficients of the generating function Fc,α,β,γ for a general unitary matrix have the same
magnitudes as the coefficients of Fc.

3.2 Asymptotics from generating functions

Derivation of the asymptotics of ars when the generating function is rational is well understood for many
cases including the one at hand. The theory was developed in [PW02] and further explained in [PW07]. In
those works, a number of concepts are introduced including classification of critical points of pole varieties
and conditions under which these can always be found. In our case, the only necessary notation is as follows.

Given a rational generating function F (x, y) = G(x, y)/H(x, y), let V denote the complex (affine) alge-
braic curve {(x, y) ∈ C2 : H(x, y) = 0}. For (x0, y0) ∈ V , denote

dir (x0, y0) :=
yHy

xHx

∣∣∣∣
x=x0,y=y0

. (3.4)

For a, b > 0, let Da,b denote the closed polydisk {(x, y ∈ C2 : |x| ≤ a, |y| ≤ b}, let Ca denote the circle
{x ∈ C : |x| = a}, and let Ta,b denote the torus Ca × Cb. Let

V1 := V ∩ T1,1

denote the intersection of V with the unit torus. Define

Q(x, y) := −y2H2
yxHx − yHyx

2H2
x − x2y2(H2

yHxx +H2
xHyy − 2HxHyHxy) . (3.5)

The main result we need is the upcoming Theorem 3.2. Theorems 2.1 and 2.2 follow from this result
together with a short computation that evaluates the expression (3.6) given in Theorem 3.2. We stress that
Theorem 3.2 is essentially proved in [PW02]. Therefore, the behavior of one-dimensional QRW as described
in Theorem 2.1 and Theorem 2.2 emerge with almost no work. However, because the hypotheses of [PW02,
Theorem 3.1] require V1 to be finite, they exclude the present case. We therefore give a proof of Theorem 3.2
that adapts the proof of [PW02, Theorem 3.1] to the infinite case.

Theorem 3.2 Suppose that the following conditions hold:

(i) F is analytic on D1,1−ε;

(ii) |x| = 1⇒ |y| = 1 on V;

(iii) For each x the set {y1(x), . . . , yk(x)} of values for which H(x, y) = 0 is finite;

(iv) Hy is nonvanishing on V ∩ T1,1.

Then the following two conclusions hold.

1. If λ := r
s is not in the image under dir of V1, then ars is rapidly decreasing. Specifically, as λ varies

over a compact set disjoint from the range of dir , for every integer N > 0 there is a C > 0 such that
ars ≤ Cs−N .
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2. Conversely, let Λ be a compact subset of the range of dir such that for any λ ∈ Λ, the set Ξ(λ) of
points (x, y) ∈ V1 for which dir (x, y) = λ is finite and neither Q nor G vanishes there. Then

ars ∼
∑

(x,y)∈Ξ(r/s)

G(x, y)√
2π

x−ry−s

√
−yHy

sQ(x, y)
(3.6)

as r, s→∞, uniformly as r/s varies over Λ.

PROOF: The following successive estimates for ars mimic the reasoning in [PW02], though they occur in a
different order due to differing geometry. We will write down the estimates and then see what is needed to
justify them in our case.

ars =
(

1
2π

)2 ∫
C1

∫
C1−ε

x−r−1y−s−1F (x, y) dy dx . (3.7)

ars =
(

1
2π

)2
[∫

C1

∫
C1+ε

x−r−1y−s−1F (x, y) dy dx (3.8)

−
∫
C1

(∫
C1+ε

−
∫
C1−ε

)
x−r−1y−s−1F (x, y) dy dx

]
.

ars =
1

2π

∫
C1

x−r−1
∑
j

y−s−1
j Res(F ; y = yj) dx+O((1 + ε)−s) . (3.9)

ars =
1

2π

∫
C1

x−r−1
∑
j

y−s−1
j

G(x, yj(x))
Hy(x, yj(x))

+O((1 + ε)−s) dx . (3.10)

The first of these is Cauchy’s integral formula. It is valid as long as F is analytic on D1,1−ε, which is
guaranteed by hypothesis (i). The second is true whenever F is analytic on the torus T1,1+ε as well, which
is guaranteed by hypothesis (ii). In the third equation, we have set yj = yj(x) to enumerate the values of y
making H(x, y) = 0 for the given value of x. The third equation is true as long as F (x, ·) has finitely many
poles on the annulus 1− ε < |y| < 1+ ε for every x ∈ C1. This is guaranteed by hypothesis (iii). The fourth
of these is true as long as the poles of H(x, ·) are always simple, which is guaranteed by hypothesis (iv).

We now observe that V1 is a smooth 1-manifold and that

η := x−1y−1 G

∂H/∂y
dx

pulls back to a smooth form on V1. In fact, smoothness of the form and the manifold follow from hypothe-
sis (iv) and the implicit function theorem. We therefore arrive at

ars =
1

2π

∫
V1

x−ry−sη +O((1 + ε)−s) .

It now follows from Proposition 1 of Chapter VIII of [Ste93] that the integral is rapidly decreasing when the
function log y+λ log x on V1 has no critical points (any branch of the log will yield the same critical points).
Critical points of log y + λ log x on V1 are exactly those (x, y) ∈ V1 for which dir (x, y) = λ, so the first
conclusion of the theorem is established.

Continuing, suppose now that there are critical points {(xl, yl) : 1 ≤ l ≤ L}. A partition of unity argument
together with Proposition 1 of [Ste93, Chapter VIII] shows that ars− 1

2π

∑L
l=1 Ξl is rapidly decreasing, where

Ξl :=
∫
Nl
x−ry−sη
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and Nl is a neighborhood of (xl, yl) in V1. The assumption Q 6= 0 is equivalent to the critical point for the
phase function log y + λ log x to be quadratically nondegenerate. It remains to plug in a standard stationary
phase estimate for Ξl. Lemma 4.3 of [PW02] does exactly this: it evaluates the stationary phase integral Ξl
and shows it to differ from

x−rl y−sl G(xl, yl)

√
−ylHy(xl, yl)
sQ(xl, yl)

by a rapidly decreasing quantity. This establishes the second conclusion of the theorem. 2

3.3 Application of asymptotics methods to QRW

We now establish the hypotheses of Theorem 3.2 and apply it to the generating function for QRW. Observe
first, using the relation (3.3) and the subsequent discussion, that it suffices to prove both Theorem 2.2 and
Theorem 2.1 in the real case, U = Uc. Thus we assume throughout this section that α = β = γ = 0 and
U = Uc.

Proposition 3.3 The power series F is absolutely convergent on D1 ×D1−ε for any ε > 0.

PROOF: This is equivalent to finiteness of the sums
∑
s(1 − ε)s

∑
r |ψξ0,ξ(r, s)| for each ξ0, ξ. Since |ψ| is

bounded by 1, the inner sum is bounded by the number of nonzero terms which is s + 1. Hence the sums
converge. 2

Proposition 3.4 For any QRW in any dimension, if (x, y) ∈ V and |xj | = 1 for all j then |y| = 1.

PROOF: When |xj | = 1 for all j, the monomial matrix M is unitary. Therefore the matrix MU is also
unitary and the eigenvalues of MU all have modulus 1. Since Hc,α,β,γ = det(I − yMU), we see that
Hc,α,β,γ vanishes precisely when 1

y is an eigenvalue of MU . Thus |y| = 1. 2

Proposition 3.5 For QRW on Z1 with matrix Uc for 0 < c < 1, the quantity Hy is nonvanishing on V1.

PROOF: Solving H = 0, Hy = 0, for example by using Maple to compute a Gröbner basis for [H ,

diff(H,y)], shows that there are precisely two pairs (x, y); the possible values of y are not on the unit
circle except in the degenerate case c = 1. 2

Lemma 3.6 Let (x(λ), y(λ)) be any point (x, y) where H(x, y) = 0 and dir (x, y) = λ. Then

(x(λ), y(λ)) ∈ T1,1 ⇐⇒ λ ∈ J .

PROOF: First assume (x(λ), y(λ)) ∈ T1,1. If we let X and Y be the arguments of x and y respectively, then
implicit differentiation of the equation

eiX =
1− ceiY

eiY (eiY − c)
results in

−dir (x, y) = −xHx

yHy
=
d(log y)
d(log x)

=
dY

dX
= − 1

ceiY

1−ceiY + 1 + eiY

eiY −c
= −

(
1 +

c2 − 1
2− 2c · cos(Y )

)

when (x, y) is on the unit torus. Thus λ = 1 +
c2 − 1

2− 2c · cos(Y )
. It is not hard from here to check that as y

varies over the unit circle, λ is decreasing in Re {y}, so that the minimum value of λ is λ(1) = (1 − c)/2,
while the maximum is λ(−1) = (1 + c)/2, proving that the image of V1 under dir is equal to J .
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For the other direction, we choose λ ∈ J and solve for all possible points (x(λ), y(λ)). These solve
H(x, y) = 0 and K(x, y) := xHx − λyHy = 0. A convenient way to solve these simultaneous polynomial
equations is with Maple’s Groebner package. The command Basis([H,K], plex(y,x)) results in a
reduced Groebner basis whose first polynomial is the polynomial satisfied by x over Z[λ]:

λ(1− λ)c2x2 − [(1− c2)− (4− 2c2)λ+ (4− 2c2)λ2]x+ λ(1− λ)c2 .

Viewed as a polynomial in x, the roots are conjugate (possibly equal) if and only if the discriminant is
nonpositive, which happens exactly when λ ∈ J . The product of the roots is the ratio of the constant to the
quadratic coefficient, in this case 1, therefore λ ∈ J implies the two conjugate roots are on the unit circle,
hence by Proposition 3.4, |x| = |y| = 1 for all critical points. 2

PROOF OF THEOREM 2.2: This is immediate from Lemma 3.6 and the first conclusion of Theorem 3.2
once one observes that the hypotheses of Theorem 3.2 are satisfied. The first hypothesis was verified in
Proposition 3.3, the second in Proposition 3.4, the third follows whenever H has no factor P (x), and the
fourth is Proposition 3.5. 2

PROOF OF THEOREM 2.1: Having verified the hypotheses of Theorem 3.2, it remains to compute (3.6) in the
case where λ ∈ J . The hypothesis Q 6= 0 is then equivalent to λ being in the interior of J . Assuming this,
we finish the computation as follows.

Consider the first estimate (2.2) in Theorem 2.1. Recalling that G↓↓(x, y) = 1− cy and observing that the
two summands in (3.6) are conjugates, we see that

ψ↓↓(r, s) ∼ 2Re

{
1− cy√

2π
x−ry−s

√
−yHy

sQ(x, y)

}

where Q is given in (3.5). Letting

ρ↓↓(r, s) := Arg

(
1− cy√

2π
x−ry−s

√
−yHy

sQ(x, y)

)
, (3.11)

allows us to rewrite this as

p↓↓(r, s) ∼
2
π

cos2 ρ↓↓(r, s)
∣∣∣∣(1− cy)2 −yHy

sQ(x, y)

∣∣∣∣ .
Instead of solving for x and y and plugging into expressions for Hy and Q, the computations are simplified
by finding directly the minimal polynomial for w := (1− cy)2 −yHy

sQ(x,y) .

Recalling that (x, y) satisfies H(x, y) = K(x, y) = 0, we introduce a variable z := 1/(sQ) so that w may
be expressed as the first coordinate of the simultaneous root (w, x, y, z) of four polynomials: H,K, zsQ− 1
and w + (1 − cy)2yHyz. To obtain a polynomial in w alone, we use the Basis command with term order
plex(x, y, z, w), resulting in the polynomial

r2(1− c2) + 4
(
s(1 + c)

2
− r
)(

r − s(1− c)
2

)
(s− r)2w2 .

After dividing by s2 and letting λ = r
s , it follows that

|w| =
√

1− c2λ
(1− λ)s

√
−((1− c2)− 4λ+ 4λ2)

.

This proves (2.2). The computations for the other three cases are slight variations, the only difference being
the value of Gξ0,ξ(x, y). 2
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