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Binary unlabeled ordered trees (further called binary trees) were studied at least since Euler, who enumerated them.

The number of such trees with n nodes is now known as the Catalan number. Over the years various interesting

questions about the statistics of such trees were investigated (e.g., height and path length distributions for a randomly

selected tree). Binary trees find an abundance of applications in computer science. However, recently Seroussi

posed a new and interesting problem motivated by information theory considerations: how many binary trees of a

given path length (sum of depths) are there? This question arose in the study of universal types of sequences. Two

sequences of length p have the same universal type if they generate the same set of phrases in the incremental parsing

of the Lempel-Ziv’78 scheme since one proves that such sequences converge to the same empirical distribution. It

turns out that the number of distinct types of sequences of length p corresponds to the number of binary (unlabeled

and ordered) trees, Tp, of given path length p (and also the number of distinct Lempel-Ziv’78 parsings of length

p sequences). We first show that the number of binary trees with given path length p is asymptotically equal to

Tp ∼ 22p/(log2 p)(1+O(log−2/3 p)). Then we establish various limiting distributions for the number of nodes (number

of phrases in the Lempel-Ziv’78 scheme) when a tree is selected randomly among all trees of given path length p.

Throughout, we use methods of analytic algorithmics such as generating functions and complex asymptotics, as well

as methods of applied mathematics such as the WKB method and matched asymptotics.
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1 Introduction

Trees are the most important nonlinear structures that arise in computer science. Applications are in

abundance (cf. [15, 17]); in this paper we discuss a novel application of binary unlabeled ordered trees

(further called binary trees) in information theory (e.g., counting Lempel-Ziv’78 parsings and universal

types). Tree structures have been the object of extensive mathematical investigations for many years,

and many interesting facts have been discovered. Enumeration of binary trees, which are of principal

importance to computer science, has been known already by Euler. Nowadays, the number of such trees

built on n nodes is called the Catalan number.

Since Euler and Cayley, various interesting questions concerning statistics of randomly generated bi-

nary trees were investigated (cf. [9, 15, 17, 24, 26, 27]). In the standard model, one selects uniformly a

tree among all binary unlabeled ordered trees built on n nodes, T ∗
n (where |T ∗

n | =
(

2n
n

)

1
n+1 =Catalan

number). For example, Flajolet and Odlyzko [6] and Takacs [26] established the average and the limiting

distribution for the height (longest path), while Louchard [18, 19] and Takacs [25, 26, 27] derive the lim-

iting distribution for the path length (sum of all paths from the root to all nodes). As we indicate below,

these limiting distributions are expressible in terms of the Airy’s function (cf. [1, 2]).
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While deep and interesting results concerning the behavior of binary trees in the standard model were

uncovered, there are still many important unsolved problems of practical importance. Recently, Seroussi

[22], when studying universal types for sequences and distinct parsings of the Lempel-Ziv scheme, asked

for the enumeration of binary trees with a given path length. Let Tp be the set of binary trees of given path

length p. Seroussi observed that the cardinality of Tp corresponds to the number of possible parsings of

sequences of length p in the Lempel-Ziv’78 scheme, and the number of universal types (that we discuss

below). We shall first enumerate Tp (cf. also Seroussi [23]), and then compute the limiting distribution of

the number of nodes (phrases in the LZ’78 scheme) when a tree is selected uniformly among Tp. To the

best of our knowledge these problems were never addressed before, with the exception of [22]. We show

below that they are much harder than the corresponding problems in the more standard T ∗
n model.

As mentioned above, the problem of enumerating binary trees of a given path length arose in Seroussi’s

research on universal types. The method of types [4] is a powerful technique in information theory,

large deviations, and analysis of algorithms. It reduces calculations of the probability of rare events to a

combinatorial analysis. Two sequences (over a finite alphabet) are of the same type if they have the same

empirical distribution. For memoryless sources, the type is measured by the relative frequency of symbol

occurrences, while for Markov sources one needs to count the number of pairs of symbols. It turns out (cf.

[12]) that the number of sequences of a given Markovian type can be counted by enumerating Eulerian

paths in a multigraph. Recently, Seroussi [22] introduced universal types (for individual sequences and/or

for sequences generated by a stationary and ergodic source). Two sequences of the same length p are said

to be of the same universal type if they generate the same set of phrases in the incremental parsing of the

Lempel-Ziv’78 scheme. It is proved that such sequences have the same asymptotic empirical distribution.

But, every set of phrases defines uniquely a binary tree of path length p [11, 22] (with the number of

phrases corresponding to the number of nodes in the Tp model). For example, strings 10101100 and

01001011 have the same set of phrases {1, 0, 10, 11, 00} and therefore the corresponding binary trees are

the same. Thus, enumeration of Tp leads to counting universal types and different LZ’78 parsings of

sequences of length p.

Let us now summarize our main results. It is easy to see that the generating function B(z, w) =
∑

n,p≥0 b(n, p)znwp of the number b(n, p) of binary trees with n nodes and path length p satisfies the

following functional equation [15]

B(z, w) = 1 + zB2(zw,w). (1.1)

Observe that this equation is asymmetric with respect to z and w. When enumerating trees in T ∗
n , we set

w = 1 to get the well known algebraic equation B(z, 1) = 1 + zB2(z, 1) that can be explicitly solved

as B(z, 1) =
(

1 −
√

1 − 4z
)

/(2z) leading to the Catalan number. A randomly (uniformly) selected tree

from T ∗
n has path length Ln that is asymptotically distributed as Airy’s distribution [25, 26], that is,

Pr{Ln/
√

2n3 ≤ x} → W (x)

where W (x) is the Airy distribution function defined by its moments [7]. The Airy distribution arises in

surprisingly many contexts, such as parking allocations, hashing tables, trees, discrete random walks, area

under Brownian bridge, etc. [7, 8, 16, 18, 19, 25, 26, 27].

Setting z = 1 in (1.1) we arrive at

B(1, w) = 1 + B2(w,w)
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which is not algebraically solvable. Observe that the coefficient of B(1, w) at wp of
∑∞

n=0 b(n, p) enu-

merates binary trees with given path length p. We denote the set of all such binary trees as Tp and study

in this paper its combinatorial and statistical properties. We shall show (and also give explicitly the error

term, which involves the Airy function) that

Tp := |Tp| =
1

(log2 p)
√

πp
2

2p
log2 p (1+c1 log−2/3 p+c2 log−1 p+O(log−4/3 p))

for large p, where c1 and c2 are explicitly computable constants. Seroussi first conjectured the form of

the leading term in the exponent of the above asymptotic result, proved an upper bound of that form,

and has recently obtained [23] a proof for the matching lower bound, using information-theoretic and

combinatorial arguments for t-ary trees.

In this paper we further analyze the random variable Np representing the number of nodes in a randomly

selected tree from the assembly Tp. We show that (Np − E[Np])/
√

Var [Np] is asymptotically normal.

Finally, after deriving various asymptotic expansions for Bn(w) =
∑

p≥0 wpb(n, p), we analyze the

number of trees b(n, p) with n nodes and path length p for various ranges of n and p. We also obtain b(n, p)
in the asymptotic matching regions for various scales. In passing, we point out that Tp = |Tp| corresponds

to the number of distinct universal types in Seroussi’s sense and the number of distinct parsings of binary

sequences of length p, while b(n, p) enumerates the number of Lempel-Ziv’78 parsings with n phrases.

Observe that then Np represents the number of phrases in LZ’78 parsing of a sequence of length p in the

Tp model.

The functional equation (1.1) falls into the class of quicksort-like nonlinear functional equations (cf.

[10, 8, 17, 13, 20, 21]) that is still not fully analyzed (with some exceptions like the linear probing algo-

rithm [8, 16]). Nonlinear functional equations of type (1.1) are not particularly suitable for analytic tools

which work fine for linear functional equations (cf. [9, 24]). Therefore, we turn to methods of applied

mathematics such as matched asymptotics and the WKB method [3]. These make certain assumptions

about the forms of some asymptotic expansions and their asymptotic matching. When stating our main

results (see Result 3 in section 2), we discuss the assumptions in more detail. The methods we use are ana-

lytic methods that are especially suitable for problems that cannot be solved exactly by transform methods

(cf. [13, 14]).

The WKB method [3, 24] was named after the physicists Wentzel, Kramers and Brillouin. It assumes

that the solution, B(ξ;n), to a recurrence, functional equation or differential equation has the following

asymptotic form

B(ξ;n) ∼ enφ(ξ)

[

A(ξ) +
1

n
A(1)(ξ) +

1

n2
A(2)(ξ) + · · ·

]

, n → ∞

where φ(ξ) and A(ξ), A(1)(ξ), . . . are unknown functions. These functions must be determined from the

equation itself, often in conjunction with another tool known as the asymptotic matching principle (cf.

[3]).

The outline for the paper is as follows: In Section 2 we present our main results and their consequences.

In particular, we enumerate the number of binary trees of given path length and count the number of nodes

in a randomly selected tree in the Tp model. Derivations are given in Sections 3–8. Numerical studies are

discussed in Section 9.
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2 Summary of Results

We let b(n, p) denote the number of binary trees with n nodes and path length p. This function satisfies

the recurrence relation

b(n, p) =
∑

k+ℓ=n−1

∑

r+s+n−1=p

b(k, r)b(ℓ, s), n ≥ 1

with the boundary conditions

b(0, 0) = 1; b(0, p) = 0, p ≥ 1.

The generating function

Bn(w) =

∞
∑

p=0

b(n, p)wp

becomes

Bn+1(w) = wn
n
∑

ℓ=0

Bℓ(w)Bn−ℓ(w), n ≥ 0 (2.1)

with B0(w) = 1. Furthermore, the double generating function

B(z, w) =

∞
∑

n=0

∞
∑

p=0

b(n, p)wpzn =

∞
∑

n=0

znBn(w)

satisfies the functional equation

B(z, w) = 1 + zB2(zw,w). (2.2)

We shall mostly analyze (2.1), and then obtain asymptotic results for b(n, p) by expanding the Cauchy

integral (cf. [24])

b(n, p) =
1

2πi

∫

C

Bn(w)w−p−1dw. (2.3)

Here C is any closed loop about the origin in the w-plane.

We can solve (2.2) when w = 1, noting that B(0, 1) = 1, to obtain

B(z, 1) ≡ a(z) =
1

2z

[

1 −
√

1 − 4z
]

and thus
∞
∑

p=0

b(n, p) =
1

2πi

∫

C

a(z)

zn+1
dz = Bn(1) =

1

n + 1

(

2n

n

)

(2.4)

is the Catalan number. This gives the total number of trees with n nodes, regardless of the total path

length. By expanding (2.2) about w = 1, with

Bn(w) = an + bn(w − 1) +
1

2
cn(w − 1)2 + O((w − 1)3) (2.5)

B(z, w) = a(z) + b(z)(w − 1) +
1

2
c(z)(w − 1)2 + O((w − 1)3) (2.6)
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we are led to

b(z) = Bw(z, 1) =
2z2B(z, 1)Bz(z, 1)

1 − 2zB(z, 1)
=

2z2a(z)a′(z)

1 − 2za(z)

and thus

bn = B′
n(1) ≡

∞
∑

p=1

pb(n, p) = 4n − 3n + 1

n + 1

(

2n

n

)

, n ≥ 0. (2.7)

This gives the average total path length. Higher-order moments can be obtained in a similar manner. In

particular, we obtain

cn = B′′
n(1) =

∞
∑

p=2

p(p − 1)b(n, p)

= −4n

(

13

2
n + 4

)

+

(

2n

n

)[

10

3
n2 +

44

3
n + 2 +

2

n + 1

]

, n ≥ 0. (2.8)

Asymptotically, for n → ∞, we obtain from (2.4), (2.9) and (2.10) via Stirling’s formula

an =
4n

√
πn3/2

[1 + O(n−1)]

bn = 4n

[

1 − 3√
πn

+ O(n−1)

]

cn = 4n

[

10

3
√

π
n3/2 − 13

2
n + O(

√
n)

]

.

(2.9)

The constants bn and cn are related to the first two moments of the Airy distribution (cf. [7] and [25]).

We can easily show that for each j

B
(j+1)
n (1)

B
(j)
n (1)

= O(n3/2), n → ∞. (2.10)

It is known [18, 19, 25, 26] that the distribution of the total path length Ln, that is,

Pr{Ln = p} =
b(n, p)

∞
∑

p=0

b(n, p)

(2.11)

follows an Airy distribution as n → ∞, and most of the mass occurs in the range p = O(n3/2). In

particular,

E[Ln] =
√

πn3/2 + O(n),

Var [Ln] =

(

10

3
− π

)

n3 + O(n5/2).

More precisely,

Pr{Ln/
√

2n3 ≤ x} d→Pr{A ≤ x}
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where
d→ denotes convergence in distribution and A is the random variable possessing the Airy distribu-

tion. It is characterized by moments [7]

E[Ar] =
−Γ(−1/2)

Γ((3r − 1)/2)
Ωr

where Ωr are determined by the recurrence

2Ωr = (3r − 4)rΩr−1 +

r−1
∑

j=1

(

r

j

)

ΩjΩr−j , r ≥ 1

with Ω0 = −1. Following Flajolet and Louchard [7] we observe that

∑

r≥0

Ωr
wr

r!
= − Φ2/3(w)

Φ−1/3(w)
, Φν = 2F0

(

1

2
+ ν,

1

2
− ν;

3

2
w

)

where

2F0(a, b; z) = 1 +
a · b
1!

z +
a(a + 1) · b(b + 1)

2!
z2 + · · ·

is the generalized hypergeometric function (cf. [1]), and the above is a formal power series (that actually

diverges).

A more difficult problem studied in this paper is to investigate the distribution of the number of nodes

in trees of a fixed path length p, that is, for the ensemble Tp. Let Np be the number of nodes for a tree

uniformly generated from Tp. It is a random variable distributed as

Pr{Np = n} =
b(n, p)

∞
∑

n=0

b(n, p)

. (2.12)

We shall compute this distribution asymptotically, and also obtain the asymptotic structure of b(n, p) for

various ranges of n and p. We note that the sums in (2.11) and (2.12) are actually finite, since b(n, p) is

only non-zero in the range

n
∑

J=2

⌊log2 J⌋ = pmin(n) ≤ p ≤ pmax(n) =

(

n

2

)

. (2.13)

Here pmin and pmax are the minimal and maximal total path lengths possible in a tree with n nodes.

If we view the problem as having p fixed and varying n, then b(n, p) is non-zero in the range n ∈
[nmin(p), nmax(p)] where

nmin(p) = min{n :

(

n

2

)

≥ p}

and

nmax(p) = max

{

n :

n
∑

J=2

⌊log2 J⌋ ≤ p

}

.
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Asymptotically, for n → ∞, [pmin, pmax] ∼
[

n log2 n,
n2

2

]

and, for p → ∞, [nmin, nmax] ∼
[

√

2p,
p

log2 p

]

.

We now summarize our main results. Our derivations are quite complicated, and are delayed until

Sec. 3– 8. In passing, we should add that we use ideas of applied mathematics, such as linearization and

asymptotic matching. We shall make certain assumptions about the forms of the asymptotic expansions,

as well as the asymptotic matching between the various scales. In particular, we shall use the WKB

method discussed in the introduction.

We next formulate our main result concerning the cardinality of Tp.

Result 1 The total number of trees of path length p is, for p → ∞

|Tp| =

∞
∑

n=0

b(n, p) =
1

(log2 p)
√

πp
exp

[

2p log 2

log2 p

(

1 − 3

2
A0

log 2

a1/3
Q−2/3 + M(Q)Q−1 + O(Q−4/3)

)]

(2.14)

where Q = log p and

M(Q) = (log Q)(1 + A1 log 2) − log log 2 + (k2 − A1 log a) log 2, (2.15)

A0 =
2

3
41/3|r0| = 2.4743 . . . , A1 =

1

log 2
− 1

3
= 1.1093 . . . , (2.16)

a = 2(log 2)2 = .96090 . . . , r0 = max{z : Ai(z) = 0} = −2.3381 . . . ,

Here k2 ≈ 3.696 is obtained by numerically solving a nonlinear integral equation, and Ai(·) is the Airy

function [2], defined as a solution of the differential equation f ′′ − zf = 0 that decays as z → ∞.

It follows that the exponential growth rate of the total number of trees of path length p is

log

[

∑

n

b(n, p)

]

∼ p

log p
2(log 2)2 (2.17)

with the correction terms involving the least negative root of the Airy function. This result was also

recently obtained by Seroussi [23]. We will indicate how to formally obtain further terms in the asymptotic

series in (2.14).

Next, we discuss the random variable Np. Let

N (p) := E[Np] =

∞
∑

n=0

nb(n, p)

∞
∑

n=0

b(n, p)

, V(p) := Var [Np] =

∞
∑

n=0

(n −N (p))2b(n, p)

∞
∑

n=0

b(n, p)

.
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Result 2 With the notation as above, we find that

N (p) =
p

Q
log 2

[

1 − log 2

a1/3

A0

Q2/3
+

M(Q) − A1 log 2

Q
+ O(Q−4/3)

]

, (2.18)

V(p) =
p

Q5/3

(log 2)A0

6a1/3

[

1 − 3A1

A0

(

a

Q

)1/3

+ O(Q−2/3)

]

, (2.19)

where A0, A1 are defined in (2.16) and M(Q) is given by (2.15). Furthermore, the limiting distribution

of Np is Gaussian, that is,

Pr{Np = n} =
b(n, p)

∞
∑

n=0

b(n, p)

∼ 1
√

2πV(p)
exp

[

− (n −N (p))2

2V(p)

]

, (2.20)

for p → ∞ and n −N (p) = O(V1/2(p)) = O(
√

p(log p)−5/6).

We note that while the most important scale for (2.11) is p = O(n3/2), that for (2.12) is

p = n log2 n + O[n(log n)1/3],

which is close to the lower limit pmin(n) (or upper limit nmax(p)) of the support of b(n, p).
The above results are derived through the following main technical result. It gives detailed asymptotic

results for the solution Bn(w) to (2.1) as n → ∞, for various ranges of w.

This main result makes certain assumptions about the forms of various asymptotic expansions and

the matching between them. Specifically, the result in item (a) below assumes that the function in (3.1)

has the limiting behavior in (3.5). The result in (b) is based upon the WKB expansion in (4.9), while

(2.20) assumes the asymptotic matching between the ranges in (a) and (b). To obtain the result in (c)

we assumed that the function in (5.2) has an expansion of the form (5.101). The asymptotic matching

assumption between ranges (b) and (c) determines a multiplicative constant in (2.21) The result in part (d)

assumes the limit in (6.5), and (2.29) (respecively, (2.30)) assumes asymptotic matching between ranges

(d) and (e) (respectively, (e)). The expansion in region (e) assumes the WKB form in (7.1).

Result 3 Consider binary trees with path length equal to p. Let Bn(w) be its generating function satisfy-

ing (2.1). Then for n → ∞ we have the following asymptotic expansions.

(a) far right region: n → ∞, w ≫ 1

Bn(w) ∼ w(n
2)2n−1B∗(w) (2.21)

where B∗(w) satisfies

B∗(w) = 1 +
1

4w
+

1

2w2
+ O(w−3), w → ∞; (2.22)

B∗(w) ∼ d1

√
w − 1 exp

(

d0

w − 1

)

, w → 1+, (2.23)
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d0 =

∫ log 2

0

ξ

eξ − 1
dξ = .58224 . . . , d1 =

4√
2π

ed0/2 = 2.1350 . . . . (2.24)

The numerical calculation of B∗(w) is discussed in Sections 3 and 9.

(b) right region: w = 1 + β/n, 0 < β < ∞

Bn(w) ∼
√

β

n
ĝ(β) exp[nΦ(β)], (2.25)

where

Φ(β) = log 2 +
β

2
+

1

β

∫ log 2

− log(1− 1
2 e−β)

ξ

eξ − 1
dξ ≡ log 2 +

β

2
+ φ(β),

ĝ(β) =
4√
π

e−β2/4e−β/2

(

1 − e−β

2 − e−β

)3/2

exp

[

1

2
βφ(β) +

1

2
β log

(

1 − 1

2
e−β

)]

.

(c) central region: w = 1 + a/n3/2, −∞ < a < ∞

Bn(w) =
1

n + 1

(

2n

n

)

+
4n

n3/2

[

C(a) +
1√
n

C(1)(a) + O(n−1)

]

, (2.26)

where

C(a) = (−a)D̄((−a)2/3) = Y 3/2D̄(Y ), Y = (−a)2/3, a < 0,

D̄(Y ) =
1

2πi

∫

Br

esY

[

2
√

s + 42/3 Ai′(4−1/3s)

Ai(4−1/3s)

]

ds.

Here Br is a vertical contour on which ℜ(s) > 0, and
√

s is analytic for ℜ(s) > 0 and positive for s
real and positive. An alternate expression for the leading term is, for a = −Y 3/2 < 0,

Bn(w) ∼ 4n

n3/2
(−a)

d

dY

[

1

2πi

∫

Br

42/3

s

Ai′(4−1/3s)

Ai(4−1/3s)
esY ds

]

=
4n+1

n3/2
(−a)

∞
∑

j=0

exp(−|rj |41/3Y )
(2.27)

where 0 > r0 > r1 > r2 > . . . and rj are the roots of Ai(z) = 0. The correction term has the

integral representation, for a < 0,

C(1)(a) = −aD̄1(Y ) =
Y 2

2πi

∫

Br

esY E∗(s)ds, (2.28)

E∗(s) = −5

2
s + 8

(

h′(s)

h(s)

)2

− 4

h2(s)

∫ ∞

s

(h′(v))3

h(v)
dv

= −5

2
s + 10

(

h′(s)

h(s)

)2

+ 4

(

h′(s)

h(s)

)2

log[h(s)] − s log[h(s)]

− 1

h2(s)

∫ ∞

s

h2(v) log[h(v)]dv, h(s) = Ai(4−1/3s).
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For a > 0 we let a = y3/2 with y > 0 and the leading term is

Bn(w) ∼ 4n

n3/2

(

a

π241/3

∫ ∞

0

eτy

h(ωτ)h(ω2τ)
dτ − 4a

π

∫ ∞

0

ℜ
[

eπi/6 h′(ωτ)

h(ωτ)
eω2τy

]

dτ

)

(2.29)

where ω = exp(2πi/3).

(d) left region: w = 1 − γ/n, 0 < γ < ∞

Bn(w) ∼ 4n

n
exp[ν0n

1/3γ2/3 + ν1γ log n]F0(γ),

F0(γ) = 4γF1(γ),

ν0 = 41/3r0 = −41/3|r0|, ν1 = −1

3
,

(2.30)

where F1(·) satisfies the non-linear integral equation

eγ − 1

γ
F1(γ) =

∫ 1

0

F1(γx)F1(γ − γx)e−γH(x)/3dx,

H(x) = x log x + (1 − x) log(1 − x)

(2.31)

and behaves, for γ → 0+, as

F1(γ) = 1 − 2

3
γ log γ + α1γ + O(γ)

where

α1 =
7

2
− γE + log[h′(s0)] −

1

4[h′(s0)]2

∫ ∞

s0

h2(v) log[h(v)]dv = 2.9622 . . . ,

s0 = 41/3r0, γE = Euler′s constant = .57721 . . . .

(2.32)

For γ → ∞ we have

F1(γ) ∼ 1√
2π log 2

ek2γ

√
γ

exp

[(

1

3
− 1

log 2

)

γ log γ

]

(2.33)

where k2 ≈ 3.696 is found numerically (cf. Sections 6 and 9).

(e) far left region: n → ∞, 0 < w ≪ 1

Bn(w) ∼ en(log2 n) log wen[g(w)+B∗

0 (w,n)]nlog2 w(2πn)−1/2

× eg(w)w2+ 1
log 2 eB∗

0 (w,n)+B∗

1 (w,n)

√

− log2 w − B∗
1(w, n) − 1

4
B∗

2(w, n).
(2.34)
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Here

B∗
0(w, n) =

∞
∑

k=−∞

k 6=0

gk(w)e2πi(log2 n)k

B∗
1(w, n) =

2πi

log 2

∞
∑

k=−∞

kgk(w)e2πi(log2 n)k

B∗
2(w, n) =

2πi

log 2

∞
∑

k=−∞

[

2πi

log 2
k2 − k

]

gk(w)e2πi(log2 n)k

(2.35)

and g(w) has the asymptotic expansion

g(w) = log 4 + 41/3r0(1 − w)2/3 +

(

1

log 2
− 1

3

)

(w − 1) log(1 − w)

−k2(w − 1) + o(w − 1), w → 1−.

(2.36)

The numerical calculation of g(w) is discussed in Sections 7 and 9. The sum in B∗
0 omits the term

k = 0 and the non-constant Fourier coefficients gk(w) satisfy gk(w) = o(w − 1) as w → 1−. Numerical

studies show that unless w is very small, the gk(·) are very small and we can use the approximation

Bn(w) ≈ wn log2 ne(n+1)g(w)nlog2 wn−1/2w2+ 1
log 2

√

− log2 w

2π
. (2.37)

This corresponds to neglecting B∗
j in (2.34) for j = 0, 1, 2.

We comment that our analysis suggests that yet another scale exists, which has n → ∞ and w → 0
simultaneously, and where a different expansion for Bn(w) is needed. We have not been able to analyze

this scale, but it is not needed to obtain the asymptotic results for the number of trees of a given total

path length. For this the important range is the asymptotic matching region between the left and far left

regions, corresponding to w → 1−, but n(1 − w) = γ → +∞. Since we have explicit analytic results

for g(w) as w → 1−, and gk(w) → 0 for k 6= 0, we can use the above results to obtain the explicit

expressions in (2.14) - (2.20). To obtain the distribution of the path length in trees with n (→ ∞) nodes,

the central region (c) is the most important, and the leading term corresponds to (the transform of) the

Airy distribution.

We next give results for b(n, p) for n and p → ∞, and summarize the main results as items (A)-(E)

below. Going from (A) to (E) corresponds to increasing n or decreasing p.

Result 4 Consider binary trees built over n nodes with path length p. Let b(n, p) denote the number of

such trees. Then we have the following for p, n → ∞.

(A)

n → ∞, p =

(

n

2

)

− L, L = O(1), L ≥ 0

b(n, p) ∼ 2n−1 1

2πi

∫

C

wL−1B∗(w)dw (2.38)

where C is a closed loop with |w| > 1 and B∗(w) is as in (a) in Result 3.
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(B)

p, n → ∞ with Λ = p/n2 ∈
(

0,
1

2

)

b(n, p) ∼
√

2

π
β∗e

−β∗/2

(

1 − e−β∗

2 − e−β∗

)3/2 [

1 − 2Λ − 1

2eβ∗ − 1

]−1/2

×2n+1

n2
exp

(

n

[

β∗(1 − 2Λ) − log

(

1 − 1

2
e−β∗

)]) (2.39)

where β∗ ≡ β∗(Λ) is defined implicitly by

β2
∗

(

1

2
− Λ

)

+ β∗ log

(

1 − 1

2
e−β∗

)

=

∫ log 2

− log(1− 1
2 e−β∗)

ξ

eξ − 1
dξ.

(C)

p, n → ∞ with Ω = p/n3/2 ∈ (0,∞)

b(n, p) ∼ −4n

n3

(

1

3Ω

)1/3 ∞
∑

j=0

{[

56

9

42/3r2
j

Ω3
+

64

81

45/3r5
j

Ω5

]

Ai

(

r2
j 42/3

34/3Ω4/3

)

+

(

1

3Ω

)1/3
[

40

3

41/3rj

Ω2
+

64

27

44/3r4
j

Ω4

]

Ai′

(

r2
j 42/3

34/3Ω4/3

)}

exp

(

−8|rj |3
27Ω2

)

.

(2.40)

Here rj < 0 are the roots of the Airy function.

(D)

p, n → ∞ with Θ = p/n4/3 ∈ (0,∞)

b(n, p) ∼ 4n

n13/6
n−γ∗/3 29

34
√

π

|r0|9/2

Θ5
F1(γ∗) exp

[

−16n1/3|r0|3
27Θ2

]

,

γ∗ =
32

27

|r0|3
Θ3

(2.41)

where F1(·) satisfies (2.31) (cf. item (d) in Result 3).

(E)

p, n → ∞ with p = n log2 n + αn, α = O(1)

b(n, p) ≈ nlog2 w∗

2πn

w
2+ 1

log 2
∗

√

α + w2
∗g

′′(w∗)
eg(w∗)

√

− log2 w∗

× exp [ng(w∗) − nα log w∗]

(2.42)

where w∗ = w∗(α) is the solution to w∗g
′(w∗) = α.
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From item (C) the Airy distribution can be recovered by dividing by the expansion of an in (2.6). Then

(2.37) becomes of the form n−3/2 times the Airy density.

In obtaining (2.42) we used (2.34) in (2.3) and neglected the non-constant terms in the Fourier series,

which are numerically small. Then we evaluated the integral by the saddle point method (cf. [24]).

A refined approximation that uses also the non-constant terms in the Fourier series’ in (2.35), can be

obtained by using (2.34) in (2.3). We can also obtain an O(n−1/2) correction term to the Airy distribution

in (2.40) by using the correction term (i.e., C(1)(a)) in (2.26) in asymptotically inverting (2.3). Our

approximation(s) to b(n, p) involve the unknown functions B∗(w), F1(γ) and g(w), whose numerical

calculation we discuss in Section 9.

In view of the complexity of the results in items (A)-(E), we can get more insight into the structure

of b(n, p) by giving formulas that apply in the asymptotic matching regions between the various scales.

We summarize these below, with the notation (AB) denoting the asymptotic matching region between the

scales in (A) and (B) , and so on. Note that the (AB) result can be obtained by either expanding (2.38) as

L → ∞ (using (2.23)), or by expanding (2.39) as Λ →
(

1
2

)−
.

Result 5 The following matching asymptotics hold:

(AB)

n, p → ∞; L =

(

n

2

)

− p → ∞, Λ = p/n2 → 1

2

b(n, p) ∼ 2n

πn2

(

2d0

1 − 2Λ

)1/2
1√

1 − 2Λ
exp

(

n
√

2d0(1 − 2Λ) − 1

2

√

2d0

1 − 2Λ

)

(2.43)

where d0 is given in (2.24).

(BC)

n, p → ∞; Λ = p/n2 → 0, Ω = p/n3/2 → ∞

b(n, p) ∼ 4n

n2

9
√

3

2π
Λ2 exp

(

−3

4
nΛ2

)

=
4n

n3

9
√

3

2π
Ω2 exp

(

−3

4
Ω2

)

. (2.44)

(CD)

n, p → ∞; Ω = p/n3/2 → 0, Θ = p/n4/3 → ∞

b(n, p) ∼ 4n

n13/6

|r0|9/2

Θ5

29

34
√

π
exp

[

−16n1/3|r0|3
27Θ2

]

=
4n

n3

|r0|9/2

Ω5

29

34
√

π
exp

[

−16|r0|5
27Ω2

]

.

(2.45)

(DE)

n, p → ∞; Θ = p/n4/3 → 0, α = p/n − log2 n → ∞
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b(n, p) ∼ 1

n13/6

|r0|3
Θ7/2

1

π
√

log 2

64

9
√

3
exp

{

n log 4 − γ∗
3

log n

+

(

1

3
− 1

log 2

)

γ∗ log γ∗ + k2γ∗ −
16

27

n1/3|r0|3
Θ2

} (2.46)

where γ∗ is given below (2.41).

We will show in Section 8 that the asymptotic matching region (DE) leads to the Gaussian distribution

in (2.20). Note that in each of the four matching regions, our results are completely explicit functions of n
and p. The result in (BC) (resp., (CD)) gives the right (resp., left) tail of the Airy distribution in (2.40). The

right tail has not been characterized this precisely in previous studies [5] (cf. also [7, 18, 19, 25, 26, 27]).

3 Far Right Region

We consider (2.1) for a fixed w > 1 and n → ∞. We set

Bn(w) = w(n
2)2n−1B̄n(w) (3.1)

to find that (2.1) becomes

B̄n+1(w) =
1

4

n
∑

ℓ=0

w−ℓ(n−ℓ)B̄ℓ(w)B̄n−ℓ(w)

=
1

4
[2B̄0(w)B̄n(w) + 2w1−nB̄1(w)B̄n−1(w)

+2w4−2nB̄2(w)B̄n−2(w) + · · · ]. (3.2)

But B0(w) = B1(w) = 1 and B2(w) = 2w so that (3.1) yields

B̄0(w) = 2, B̄1(w) = 1, B̄2(w) = 1 (3.3)

and (3.2) becomes

B̄n+1(w) = B̄n(w) =
1

2
w1−nB̄n−1(w) +

1

4
w4−2nB̄n−2(w) + O(w−3n) (3.4)

whose asymptotic solution is

B̄n(w) = B∗(w) + O(w−n) (3.5)

for some function B∗(·).
From (2.1) we obtain the first few Bn(w) as

B1(w) = 1, B2(w) = 2w, B3(w) = w2 + 4w3

B4(w) = 4w4 + 2w5 + 8w6

B5(w) = 6w6 + 8w7 + 8w8 + 4w9 + 16w10 (3.6)
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(b) ℑ[B∗(w)]

Fig. 1: Plots of ℜ[B∗(w)] and ℑ[B∗(w)] for 1.5 < |w| < 4.

and it is easy to inductively establish that for w → ∞ and fixed n

Bn(w) = 2n−1w(n
2) + 2n−3w(n

2)−1 + 2n−2w(n
2)−2 + O

(

w(n
2)−3

)

, (3.7)

for n ≥ 4. By comparing (3.7) to (3.1) with (3.5) we conclude that

B∗(w) = 1 +
1

4w
+

1

2w2
+ O(w−3), w → ∞. (3.8)

In section 4 we will argue, by asymptotic matching, that as w ↓ 1 we have

B∗(w) ∼ d1

√
w − 1 exp

(

d0

w − 1

)

, w → 1+ (3.9)

where the constants d0 and d1 are given in (2.24). We have not been able to determine B∗(w) analytically

except for its behaviors as w → ∞ and w ↓ 1. It can easily be obtained numerically by fixing w > 1 and

iterating (3.2) until B̄n(w) settles to a limit to some prescribed accuracy.

In Table 1, we give B∗(w) for w in the range [1.04, 5]. We note that the convergence of this procedure

becomes very slow (and B∗(w) becomes very large) when w exceeds 1 only slightly. This is certainly

consistent with the asymptotic analysis, that predicts another scale where n → ∞ with n(w − 1) fixed.

Our analysis thus far assumed that w is real. However, the same arguments show that (3.1) remains

valid for complex w with |w| > 1. We can also use (3.2) to calculate B∗(w) for complex w with |w| > 1.

In Figure 1 we plot ℜ[B∗(w)] and ℑ[B∗(w)] for 1.5 < |w| < 4. These surfaces are viewed from the +u
perspective, where w = u + iv.

With (3.1) and (3.5) we can infer the behavior of b(n, p) for p close to pmax(n) =
(

n
2

)

. Setting

L =

(

n

2

)

− p = O(1)

we obtain from (2.3)

b(n, p) ∼ 2n−1

2πi

∫

C

wL−1B∗(w)dw, n → ∞, (3.10)
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Tab. 1:

w B∗(w)

5 1.0757

4.5 1.0884

4 1.1060

3.5 1.1319

3 1.1735

2.5 1.2500

2 1.4306

1.8 1.5922

1.6 1.9184

1.4 2.8430

1.2 10.088

1.18 13.502

1.16 19.502

1.14 31.426

1.12 59.739

1.10 148.17

1.08 587.3

1.06 5981

1.04 6.55 × 105
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where C is a closed contour on which |w| > 1. We can use (3.8) to compute (3.10) for L = 0, 1, 2, . . . ,
and in Section 4 we will obtain the asymptotic behavior of the integral as L → ∞.

4 Right Region

We consider the limit w ↓ 1 and n → ∞ with

n(w − 1) = β = O(1), β > 0. (4.1)

We let

Bn(w) = f(β;n) = f(n(w − 1);n) (4.2)

with which (2.1) becomes

f

(

β +
β

n
;n + 1

)

= 2

(

1 +
β

n

)n n/2
∑

ℓ=0

Bℓ

(

1 +
β

n

)

f

(

β

(

1 − ℓ

n

)

;n − ℓ

)

. (4.3)

We used the symmetry of the sum in (2.1) to truncate the upper limit on the sum in (4.3) at ℓ = n/2. To be

more precise, we should distinguish the cases where n is odd or even, but it will become apparent that for

n → ∞ the asymptotically dominant terms in (4.3) are those with ℓ = O(1), and the terms near ℓ = n/2
are exponentially smaller than the dominant ones. We also note that in (4.3) we re-wrote only the second

factor in the convolution sum in (2.1) using the scaling in (4.1) and (4.2).

The behavior of Bℓ(w) for fixed ℓ and w → 1 follows from (2.5), and we have

Bℓ

(

1 +
β

n

)

= aℓ + bℓ
β

n
+ O(n−2) (4.4)

where

aℓ =
1

ℓ + 1

(

2ℓ

ℓ

)

, bℓ = 4ℓ − 3ℓ + 1

ℓ + 1

(

2ℓ

ℓ

)

(4.5)

and these have the generating functions

∞
∑

ℓ=0

aℓz
ℓ =

1

2z

[

1 −
√

1 − 4z
]

(4.6)

∞
∑

ℓ=0

bℓz
ℓ =

1

z

[

1 −
√

1 − 4z
]

+
1

1 − 4z
− 3√

1 − 4z
. (4.7)

We also have

(

1 +
β

n

)n

= eβ

[

1 − β2

2n
+ O(n−2)

]

, n → ∞. (4.8)

We assume, for fixed β > 0 and n → ∞, that f(β;n) has an expansion of the WKB form

f(β;n) = enΦ(β)n−1/2

[

g(β) +
1

n
g(1)(β) + O(n−2)

]

. (4.9)
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The factor n−1/2 must be included in order to asymptotically match to another expansion that applies for

w − 1 = O(n−3/2). This is the “central region” analyzed in section 5. In section 9 we provide numerical

justification for the ansatz (4.9). The numerical studies suggest, however, that the ratio of the correction

term to the leading term in (4.9) is larger than O(n−1), perhaps O(n−1/2). Thus the series in (4.9) may

actually be in powers of n−1/2 rather than n−1. However, this will not affect our calculation of Φ(β) and

g(β).
We use (4.4) and (4.9) in (4.3) and extend the limit on the sum from n/2 to ∞. We note that

exp

[

(n + 1)Φ

(

β +
β

n

)]

(n + 1)−1/2

[

g

(

β +
β

n

)

+
1

n + 1
g(1)

(

β +
β

n

)

+ O(n−2)

]

= enΦ(β)eβΦ′(β)+Φ(β)n−1/2

[

1 +
1

n

(

βΦ′(β) +
1

2
β2Φ′′(β)

)][

1 − 1

2n

]

×
[

g(β) +
1

n
(g(1)(β) + βg′(β)) + O(n−2)

]

(4.10)

and

n/2
∑

ℓ=0

Bℓ

(

1 +
β

n

)

f

(

β

(

1 − ℓ

n

)

;n − ℓ

)

=

n/2
∑

ℓ=0

[

Bℓ(1) +
β

n
B′

ℓ(1) + O(n−2)

]

1√
n − ℓ

exp

[

(n − ℓ)Φ

(

β − βℓ

n

)]

×
[

g(β) +
1

n
(g(1)(β) − ℓβg′(β)) + O(n−2)

]

= enΦ(β)n−1/2
∞
∑

ℓ=0

e−βℓΦ′(β)

[

aℓ +
β

n
bℓ

] [

1 +
ℓ

2n

]

e−ℓΦ(β)

×
[

1 +
β2ℓ2

2n
Φ′′(β)

] [

1 +
βℓ2

n
Φ′(β)

] [

g(β) +
1

n
(g(1)(β) − ℓβg′(β)) + O(n−2)

]

. (4.11)

Dividing (4.3) by 2(1 + β/n)n and letting n → ∞ we obtain, after cancelling the common factor

n−1/2 exp[nΦ(β)], the limiting equation

1

2
e−βeβΦ′+Φ =

∞
∑

ℓ=0

aℓe
−ℓ(βΦ′+Φ). (4.12)

The above is a non-linear ODE for the function Φ(β), which is in view of (4.9) the exponential growth

rate of Bn(w) on the β-scale. Using (4.6) to evaluate the sum in (4.12) leads to, after some simplification,

1

2
e−β =

1

2

[

1 −
√

1 − 4e−(βΦ)′
]

(4.13)

or

(βΦ)′ = log 4 + 2β − log(2eβ − 1). (4.14)
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Equation (4.14) integrates to

Φ(β) = log 4 + β − 1

β

∫ β

0

log(2ev − 1)dv

= log 2 +
β

2
− 1

β

∫ β

0

log

(

1 − 1

2
e−v

)

dv

= log 2 +
β

2
+ φ(β) (4.15)

where

φ(β) = − 1

β

∫ β

0

log

(

1 − 1

2
e−v

)

dv =
1

β

∫ log 2

− log(1− 1
2 e−β)

ζ

eζ − 1
dζ. (4.16)

We note that Φ(β) = c/β is a homogeneous solution to (4.14), but such solutions must be discarded since

asymptotic matching to the central region (w−1 = O(n−3/2)) will force Φ(β) to be bounded as β → 0+

(in fact Φ(0) = log 4).

We next determine g(β) in (4.9). Using (4.8), (4.10), and (4.11) in (4.3), we obtain, at order enΦn−1/2 ·
n−1, the linear equation

1

2
e−βe(βΦ)′

[

βg′ +

(

β2

2
Φ′′ + βΦ′ +

β2

2
− 1

2

)

g

]

= −βg′
∞
∑

ℓ=0

ℓaℓe
−ℓ(βΦ)′ + βg

∞
∑

ℓ=0

bℓe
−ℓ(βΦ)′

+g

∞
∑

ℓ=0

aℓ

(

ℓ

2
+

β2ℓ2

2
Φ′′ + ℓ2βΦ′

)

e−ℓ(βΦ)′ . (4.17)

Note that in view of (4.12) g(1) drops out of (4.17). The latter is a simple first order linear ODE since we

have determined Φ.

To integrate (4.17) we define the sums

Sj(β) =

∞
∑

ℓ=0

ℓjaℓe
−ℓ(βΦ)′ ; j = 0, 1, 2 (4.18)

T0(β) =

∞
∑

ℓ=0

bℓe
−ℓ(βΦ)′ . (4.19)

Setting

z = e−(βΦ)′ =
1

4
e−β(2 − e−β)

we have

∞
∑

ℓ=0

zℓaℓ = S0(β) =
2

2 − e−β
. (4.20)
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By differentiating (4.6) we have

∞
∑

ℓ=0

ℓzℓaℓ = S1(β) =
z√

1 − 4z

(

1

1 +
√

1 − 4z

)2

=
1

4

(

1

1 − e−β
− 2

2 − e−β

)

. (4.21)

Also, by differentiating S0 with respect to β we obtain

S′
0(β) = −

∞
∑

ℓ=0

ℓ(βΦ)′′aℓe
−ℓ(βΦ)′ = −(βΦ)′′S1(β) (4.22)

and then

S′′
0 (β) = [(βΦ)′′]2S2(β) − (βΦ)′′′S1(β). (4.23)

Using (4.20) - (4.23) in (4.17) and noting that β2

2 Φ′′ + βΦ′ = β
2 (βΦ)′′ leads to

1

2
e−βe(βΦ)′

[

βg′ +

(

β

2
(βΦ)′′ +

β2

2
− 1

2

)

g

]

= βgT0 +
S′

0

(βΦ)′′
βg′ − S′

0

2(βΦ)′′
g

+
β

2

1

(βΦ)′′
[S′′

0 + (βΦ)′′′S1]g. (4.24)

But, (4.12) yields 1
2e−βe(βΦ)′ = S0 and then we set

g(β) =
√

βĝ(β) (4.25)

with which (4.24) becomes

[

S0 −
S′

0

(βΦ)′′

]

ĝ′(β)

ĝ(β)
= T0 −

S0

2
[β + (βΦ)′′] +

S′′
0 + S1(βΦ)′′′

2(βΦ)′′
. (4.26)

From (4.14) and (4.20) we obtain

S′
0 = − 2e−β

(2 − e−β)2
= −(βΦ)′′′ (4.27)

and

S0 −
S′

0

(βΦ)′′
=

1

1 − e−β
. (4.28)

Also, (4.7) yields

T0(β) =
4

2 − e−β
+

1

(1 − e−β)2
− 3

1 − e−β
. (4.29)
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Combining (4.27) - (4.29) in (4.26) and multiplying the equation by 1 − e−β leads to

ĝ′(β)

ĝ(β)
= −3 +

1

1 − e−β
+

4(1 − e−β)

2 − e−β
− 1 − e−β

2 − e−β

(

β + 2 − 2

2 − e−β

)

+
1

2
(1 − e−β)e−β

[

1

(1 − e−β)2
− 2

(2 − e−β)2

]

(4.30)

and this integrates to

ĝ(β) = (const.) e−β2/4e−β/2

(

1 − e−β

2 − e−β

)3/2

exp

[

β

2
log

(

1 − 1

2
e−β

)

+
β

2
φ(β)

]

(4.31)

where const. is an arbitrary constant and φ(β) is defined by (4.15).

We next assume that (4.9) asymptotically matches to the expansion for w > 1; we write this condition

symbolically as

enΦ(β)

√

β

n
ĝ(β)

∣

∣

∣

∣

∣

β→∞

∼ w(n
2)2n−1B∗(w)

∣

∣

∣

∣

∣

∣

w→1

. (4.32)

The matching condition applies on some intermediate scale where β = n(w − 1) → ∞ but w → 1. For

β → ∞ we have

Φ(β) =
β

2
+ log 2 − 1

β

∫ ∞

0

log

(

1 − 1

2
e−v

)

dv + O

(

e−β

β

)

,

βφ(β) → −
∫ ∞

0

log

(

1 − 1

2
e−v

)

dv ≡ d0 = .58224 . . . (4.33)

and thus

ĝ(β) ∼ (const.) e−β2/4e−β/2ed0/22−3/2, β → ∞. (4.34)

For w → 1, we have

w(n
2) =

(

1 +
β

n

)

n(n−1)
2

= enβ/2e−β2/4e−β/2

[

1 + O

(

β3

n

)]

. (4.35)

Using (4.33) - (4.35) in (4.32) we see that the matching is possible provided that

B∗(w) ∼ (const.)√
2

√
w − 1 ed0/2 exp

(

d0

w − 1

)

, w → 1+. (4.36)

We also give numerical evidence for this behavior in Section 9. We will show in Section 5 that asymptot-

ically matching the β-scale expansion (4.9), as β → 0+, to the central region expansion (that applies for

n3/2(w − 1) = a = O(1)), as a → +∞, determines the constant in (4.31) and (4.36) as

const. =
4√
π

. (4.37)
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With (4.36) and (4.37) we obtain (2.25).

We comment that using the following ansatz

f(β;n) ∼ enΦ(β)nΨ(β)g(β) (4.38)

in (4.3), which is slightly more general than (4.9), we would find that Φ(β) is as in (4.15), that

Ψ(β) = Ψ0 is a constant,

and then

g(β) = β−Ψ0 ĝ(β)

where ĝ is as in (4.31). Then matching to the a-scale result will show that Ψ0 = − 1
2 and fix the multi-

plicative constant as in (4.37). Using (4.38) and matching to the expansion for w > 1 would yield

B∗(w) ∼ d1(w − 1)−Ψ0 exp

(

d0

w − 1

)

, w → 1.

Finally, we use (4.9) to calculate b(n, p) from the Cauchy formula (2.3). We write

w−p−1 =

(

1 +
β

n

)−p−1

= exp

[

− p

n
β +

p

2n2
β2 + O

(

pβ3

n3

)]

. (4.39)

Thus if we let p, n → ∞ in such a way that p/n2 is fixed, then enΦ(β) and e−pβ/n grow at the same linear

rate in n, for β = O(1). Then (2.3) will have saddle point(s) where

Φ′(β) =
1

2
+ φ′(β) = Λ ≡ p

n2
,

or
1

2
− Λ − 1

β
log

(

1 − e−β

2

)

=
1

β2

∫ log 2

− log(1− 1
2 e−β)

ζ

eζ − 1
dζ. (4.40)

This transcendental equation has a unique real solution β = β∗ = β∗(Λ) that satisfies

β∗ → ∞ as Λ ↑ 1

2
, β∗ → 0+ as Λ → 0+.

In view of pmax(n) in (2.13) we need only consider Λ ∈
(

0, 1
2

)

. The steepest descent directions at

β = β∗ are arg(β − β∗) = ±π
2 and then (4.39) and (4.40) lead to the estimate

b(n, p) ∼
√

β∗

n2
ĝ(β∗)e

Λβ2
∗
/2 1
√

2πφ′′(β∗)
exp

[

n

(

log 2 +
β∗

2
+ φ(β∗) − Λβ∗

)]

. (4.41)

In view of (4.40) we have

φ(β∗) =

(

1

2
− Λ

)

β∗ − log

(

1 − 1

2
e−β∗

)

(4.42)



336 Charles Knessl and Wojciech Szpankowski

and (4.15) yields

φ′′(β∗) =
1

β∗

[

1 − 2Λ − 1

2eβ∗ − 1

]

. (4.43)

Combining (4.31) and (4.37) with (4.42) and (4.43), (4.41) becomes

b(n, p) ∼ 2n+1

n2

√
2

π
β∗e

−β∗/2

(

1 − e−β∗

2 − e−β∗

)3/2 [

1 − 2Λ − 1

2eβ∗ − 1

]−1/2

× exp

{

n

[

β∗(1 − 2Λ) − log

(

1 − 1

2
e−β∗

)]}

, (4.44)

which establishes (2.39).

Finally we discuss the asymptotic matching between (4.44), as Λ ↑ 1
2 , and (3.10), as L → ∞. We can

solve (4.40) for β∗ asymptotically, as β∗ becomes large. We have

φ(β) =
d0

β
− 1

2β
e−β + OR(e−2β), β → ∞ (4.45)

and thus (4.40) becomes

Λ − 1

2
= − d0

β2
+

(

1

2β
+

1

2β2

)

e−β + OR(e−2β). (4.46)

Here again OR means roughly of the order, and neglects factors algebraic in β. Inverting the relation in

(4.46) we find that

β∗ ∼
√

2d0

1 − 2Λ

[

1 − 1

4d0

(

√

2d0

1 − 2Λ
+ 1

)

exp

(

−
√

2d0

1 − 2Λ

)]

, Λ ↑ 1

2
. (4.47)

Using (4.47) in (4.44) the right side becomes

√
2d02

n

πn2(1 − 2Λ)
exp

[

−1

2

√

2d0

1 − 2Λ
+ n

√

2d0

√
1 − 2Λ

]

. (4.48)

We show that (4.48) agrees with (3.10) as L → ∞. To expand (3.10) for L large we argue that there is

a saddle in the range w ∼ 1 and approximate B∗(w) by (3.9), which leads to the integral

2n−1

2πi
d1

∫

C

wL−1
√

w − 1 exp

(

d0

w − 1

)

dw. (4.49)

This has a saddle where
d

dw

[

L log w +
d0

w − 1

]

= 0 ⇒

w = wS ≡ 1 +
d0

2L
+

√

d0

L

√

1 +
d0

4L
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and then the standard estimate for (4.49) is

2n−1d1√
2π

√
wS − 1

[

2d0w
2
S

(wS − 1)3
− L

]−1/2

exp

[

L log wS +
d0

wS − 1

]

. (4.50)

For L → ∞ we can further simplify (4.50) using

wS = 1 +

√

d0

L
+

d0

2L
+ O(L−3/2) (4.51)

and then we note that

L =

(

n

2

)

− p =
n2

2
− p − n

2
= n2

(

1

2
− Λ

)

− n

2
. (4.52)

With (4.51), (4.50) simplifies to

2n

L

d1

√
d0

4
√

π
exp

(

2
√

Ld0 −
d0

2

)

=
2n

L

√
d0√
2π

exp(2
√

Ld0). (4.53)

But, if we use (4.52) in (4.53) and expand for Λ → 1
2 , n → ∞ with n

(

1
2 − Λ

)

→ ∞, we obtain precisely

(4.48). This verifies the asymptotic matching between the L-scale and Λ-scale results.

5 Central Region

In this section we analyze (2.1) for w − 1 = O(n−3/2) and then obtain an expansion for b(n, p) that

applies for p = O(n3/2). We define a by

w − 1 =
a

n3/2
, −∞ < a < ∞. (5.1)

At times we will need to separately consider the cases a < 0 and a > 0.

We set

Bn(w) = 4n

[

an4−n +
1

n3/2
C̄n(a)

]

=
1

n + 1

(

2n

n

)

+
4n

n3/2
C̄n(n3/2(w − 1)) (5.2)

and note that (2.4) yields

C̄n(0) = 0. (5.3)

Since an satisfies the recurrence

an+1 =

n
∑

ℓ=0

aℓan−ℓ, a0 = 1, (5.4)
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using (5.2) in (2.1) leads to

4

(n + 1)3/2
C̄n+1

(

(

1 +
1

n

)3/2

a

)

= an+14
−n
[(

1 +
a

n3/2

)n

− 1
]

+2
(

1 +
a

n3/2

)n n
∑

ℓ=0

aℓ4
−ℓ

(n − ℓ)3/2
C̄n−ℓ

(

(

1 − ℓ

n

)3/2

a

)

+
(

1 +
a

n3/2

)n n
∑

ℓ=0

[

1

ℓ(n − ℓ)

]3/2

C̄ℓ

(

(

ℓ

n

)3/2

a

)

C̄n−ℓ

(

(

1 − ℓ

n

)3/2

a

)

. (5.5)

We can also write Bn(w) as a Taylor series about w = 1, setting

Bn(w) =

∞
∑

j=0

Mj,n

j!
(w − 1)j . (5.6)

In view of (2.5) we have M0,n = an, M1,n = bn, and M2,n = cn. By multiplying (2.1) by w−n,

differentiating N times with respect to w and setting w = 1, we obtain

N
∑

i=0

(

N

i

)

(−1)N−i (n + N − i − 1)!

(n − 1)!
Mi,n+1 =

n
∑

ℓ=0

N
∑

j=0

(

N

j

)

Mj,ℓMN−j,n−ℓ. (5.7)

We will obtain asymptotic approximations to C̄n(a), or, equivalently, Mj,n. In subsection 5.1 we shall

analyze (5.7), while in subsection 5.2 we analyze (5.5). Then in subsection 5.3 we will use the results

to obtain the approximation to b(n, p). We can also get analogous results by analyzing the functional

equation (2.2) for the double transform; we discuss this further in Appendix A.

5.1 Moment equations

We consider (5.7). For n → ∞ we write

Mi,n ≡ 4nM̃i,n = 4nn
3
2 (i−1)

[

mi +
1√
n

m̄i + O(n−1)

]

(5.8)

and (2.9) shows that

m0 =
1√
π

, m̄0 = 0, m1 = 1, m̄1 = − 3√
π

, m2 =
10

3
√

π
, m̄2 = −13

2
. (5.9)

Isolating the terms with i = N , i = N − 1, and j = 0, j = N in (5.7) and using (5.8) we obtain

M̃N,n+1 − nNM̃N−1,n+1 +

N−2
∑

i=0

(

N

i

)

(−1)N−i (n + N − i − 1)!

(n − 1)!
M̃i,n+1 (5.10)

=
1

2

n
∑

ℓ=0

M̃0,ℓM̃N,n−ℓ +
1

4

N−1
∑

j=1

(

N

j

) n
∑

ℓ=0

M̃j,ℓM̃N−j,n−ℓ.
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Using (5.8) in the double sum in (5.10) we obtain

N−1
∑

j=1

(

N

j

) n
∑

ℓ=0

M̃j,ℓM̃N−j,n−ℓ ∼
N−1
∑

j=1

(

N

j

) n
∑

ℓ=0

n
3
2 (j−1)(n − ℓ)

3
2 (N−j−1)mjmN−j (5.11)

∼
N−1
∑

j=1

mjmN−j

[
∫ 1

0

x
3
2 (j−1)(1 − x)

3
2 (N−j−1)dx

]

n
3
2 Nn−2.

Here we approximated the inner sum by an integral via the Euler-MacLaurin formula. By definition (5.8),

we have M̃0,ℓ = aℓ4
−ℓ and we write

n
∑

ℓ=0

aℓ4
−ℓM̃N,n−ℓ =

n
∑

ℓ=0

aℓ4
−ℓ
[

M̃N,n−ℓ − M̃N,n

]

+ M̃N,n

n
∑

ℓ=0

aℓ4
−ℓ. (5.12)

Using the generating function a(z) below (2.3) and the estimate in (2.9) we find that

n
∑

ℓ=0

aℓ4
−ℓ = 2 − 2√

πn
+ O(n−3/2). (5.13)

Again by (5.8) and the Euler-MacLaurin formula we obtain

n
∑

ℓ=0

aℓ4
−ℓ
[

M̃N,n−ℓ − M̃N,n

]

∼ n
3
2 Nn−2mN

1√
π

∫ 1

0

1

x3/2

[

(1 − x)
3
2 (N−1) − 1

]

dx. (5.14)

We also have

M̃N,n+1 − nNM̃N−1,n+1 = (n + 1)
3
2 (N−1)

[

mN +
1√

n + 1
m̄N + O(n−1)

]

(5.15)

− nN(n + 1)
3
2 (N−2)

[

mN−1 +
1√

n + 1
m̄N−1 + O(n−1)

]

= mNn
3
2 Nn− 3

2 − NmN−1n
3
2 Nn−2 + O

(

n
3
2 Nn− 5

2

)

.

Using (5.11) - (5.15) in (5.10), dividing by n
3
2 Nn−2, and letting n → ∞ we obtain the limiting equation

− NmN−1 = − 1√
π

mN + mN
1

2
√

π

∫ 1

0

(1 − x)
3
2 (N−1) − 1

x3/2
dx

+
1

4

N−1
∑

j=1

(

N

j

)

mjmN−j

∫ 1

0

x
3
2 (j−1)(1 − x)

3
2 (N−j−1)dx, (5.16)

which applies for N ≥ 1. Setting

uN = mN+1 (5.17)
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and replacing N by N + 2 in (5.16) we obtain

− (N + 2)uN = − 3

2
√

π
(N + 1)uN+1

∫ 1

0

y
3
2 N+ 1

2√
1 − y

dy

+
1

4

N
∑

i=0

(N + 2)!

(i + 1)!(N + 1 − i)!
uiuN−i

∫ 1

0

x
3
2 i(1 − x)

3
2 (N−i)dx. (5.18)

Here we also used
∫ 1

0

(1 − x)
3
2 (N−1) − 1

x3/2
dx = 2 − 3

∫ 1

0

N − 1√
x

(1 − x)
1
2 (3N−5)dx, (5.19)

which follow by integration by parts.

Equation (5.18) can be recast by defining

D(y) =

∞
∑

j=0

uj

(j + 1)!
y

3
2 j , y > 0. (5.20)

Multiplying (5.18) by y
3
2 N/(N + 2)! and summing over n, we obtain

−D(y) = − 1

y
√

π

∫ y

0

D′(v)√
y − v

dv +
1

4y

∫ y

0

D(v)D(y − v)dv. (5.21)

In view of (5.6) we have the corresponding leading order approximation to Bn(w) (for n → ∞ with a
fixed) as

Bn(w) ∼
∞
∑

j=0

4nn
3
2 (j−1) mj

j!
(w − 1)j

=
4n

n3/2

∞
∑

j=0

mj

j!
aj

=
4n

n3/2





1√
π

+ a

∞
∑

j=0

mj+1

(j + 1)!
aj





=
4n

n3/2

[

1√
π

+ aD(a2/3)

]

, a > 0. (5.22)

We can simplify (5.18) by setting

uN =
(N + 1)!

Γ
(

3
2N + 1

)VN , V0 = 1 (5.23)

and using the identities
∫ 1

0

x
3
2 i(1 − x)

3
2 (N−i)dx = B

(

3

2
i + 1,

3

2
(N − i) + 1

)

=
Γ
(

3
2 i + 1

)

Γ
(

3
2 (N − i) + 1

)

Γ
(

3
2N + 2

)

∫ 1

0

1√
1 − x

x
3
2 N+ 1

2 dx = B

(

3

2
N +

3

2
,
1

2

)

=
√

π
Γ
(

3
2N + 3

2

)

Γ
(

3
2N + 2

) , (5.24)
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where B(·, ·) and Γ(·) are the Beta and Gamma functions, respectively. Using (5.23) and (5.24), (5.18)

becomes

VN+1 =

(

3

2
N + 1

)

VN +
1

4

N
∑

i=0

ViVN−i, V0 = 1. (5.25)

Since the Vi are all positive, (5.25) shows that VN+1 ≥
(

3
2N + 1

)

VN and and thus

VN ≥
(

3

2

)N Γ
(

N + 2
3

)

Γ
(

2
3

) , N ≥ 0. (5.26)

This estimate shows that the VN grow faster than exponentially, and thus (5.25) cannot be easily solved

by generating functions, despite the non-linearity having the form of a convolution sum.

We can also rewrite (5.18) by introducing D̄(Y )

D̄(Y ) =

∞
∑

j=1

Y
3
2 (j−1) mj

j!
(−1)j =

∞
∑

i=0

Y
3
2 i ui

(i + 1)!
(−1)i+1 (5.27)

and then similarly to (5.22) we find that

Bn(w) ∼ 4n

n3/2

[

1√
π
− aD̄((−a)2/3)

]

, −a = Y 3/2 > 0. (5.28)

This gives a leading order approximation to Bn(w) for n → ∞ and a fixed a < 0. We also note that

∞
∑

L=0

mL

L!
aL = m0 +

∞
∑

L=1

mL

L!
(−a)L−1(−a)(−1)L =

1√
π
− aD̄(Y ). (5.29)

Using (5.27) in (5.18) leads to the non-linear integral equation

Y D̄(Y ) = − 1√
π

∫ Y

0

D̄′(v)√
Y − v

dv +
1

4

∫ Y

0

D̄(v)D̄(Y − v)dv. (5.30)

Note that this differs from (5.21) only by the sign of the left-hand side. However, (5.30) is susceptible to

solution by a Laplace transform, whereas (5.21) is not.

Introducing

D∗(s) = L{D̄(Y )} =

∫ ∞

0

e−sY D̄(Y )dY, (5.31)

where L is the Laplace transform operator, and noting that

L{Y D̄(Y )} = −D′
∗(s), D̄(0) = −m1 = −1,

L
{

D̄′(Y ) ∗ 1√
Y

}

= [sD∗(s) − D̄(0)]

√

π

s

(where ∗ denotes convolution) we obtain

−D′
∗(s) = −√

sD∗(s) +
1

4
D2

∗(s) −
1√
s
. (5.32)
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This Riccatti equation is easily solved by setting

D∗ = 2
√

s + U(s), U(s) = 4
F ′(s)

F (s)
, (5.33)

which leads to the Airy equation

F ′′(s) =
s

4
F (s). (5.34)

The only solution with acceptable behavior as s → +∞ is given by

F (s) = (const.) Ai(4−1/3s) (5.35)

where Ai(·) is the Airy function. Using (5.35) in (5.33) and inverting the Laplace transform, we obtain

the integral representation

D̄(Y ) =
1

2πi

∫

Br

esY

[

2
√

s + 42/3 Ai′(4−1/3s)

Ai(4−1/3s)

]

ds, Y = (−a)2/3 (5.36)

which applies only for a < 0. Here Br is any vertical contour in which ℜ(s) > r0 = max{z : Ai(z) =
0}. We can also write (5.36) as

D̄(Y ) =
1

2πi

d

dY

{
∫

Br

esY

[

2√
s

+
42/3

s

Ai′(4−1/3s)

Ai(4−1/3s)

]

ds

}

=
d

dY





2√
πY

+ 42/3
∞
∑

j=0

1

rj
e41/3rjY





=
1√
πa

+ 4

∞
∑

j=0

e41/3rjY . (5.37)

Here 0 > r0 > r1 > r2 > . . . where rj are the roots of the Airy function Ai(·), and we evaluated the

integral as a residue series, by closing the Br contour in the left half-plane.

By using (5.37) in (5.28) we obtain the leading order approximation

Bn(w) ∼ 4n+1

n3/2
(−a)

∞
∑

j=0

e−41/3|rj |Y , Y = (−a)2/3 > 0. (5.38)

We note that (5.38) is consistent with the fact that Bn(1) = an ∼ 4n/(n3/2
√

π) as n → ∞. It is well

known that as z → −∞

Ai(z) ∼ 1√
π

(−z)−1/4 sin

(

2

3
(−z)3/2 +

π

4

)

(5.39)

and thus the roots rj satisfy

|rj | ∼
(

3jπ

2

)2/3

, j → ∞. (5.40)
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Thus, as Y → 0+ (w → 1−), we can approximate the sum in (5.38) by the Euler-MacLaurin formula

with
∞
∑

j=0

e−41/3|rj |Y ∼ 1

Y 3/2

∫ ∞

0

exp[−(3xπ)2/3]dx =
−1

4
√

πa
.

We next derive a representation valid for a > 0, and show that as a → ∞ the a-scale expansion

asymptotically matches to the β-scale result, as β → 0+. We can get a rough idea of the behavior of the

central region approximation as a = y3/2 → +∞ by using the integral equation (5.21) and a WKB-type

expansion. Let us assume that

D(y) ∼ K(y)eΨ(y), y → ∞ (5.41)

where Ψ(y) ≫ log[K(y)]. We use (5.41) to approximate the various terms in (5.21). Expecting that

Ψ′(y) > 0 and Ψ′(y) → ∞ as y → ∞, we have

∫ y

0

1√
v
D′(y − v)dv ∼

∫ y

0

1√
v
(K ′eΨ + KΨ′eΨ)(y − v)dv

∼
∫ ∞

0

eΨ(y) e
−vΨ′(y)

√
v

[(

1 +
1

2
v2Ψ′′(y)

)

(Ψ′(y) − vΨ′′(y))(K(y) − vK ′(y)) + K ′(y)

]

dv

∼
√

Ψ′(y)πK(y)eΨ(y) + K(y)eΨ(y)

∫ ∞

0

e−vΨ′

√
v

[

K ′

K
− vΨ′′ − vΨ′K

′

K
+

1

2
v2Ψ′′Ψ′

]

dv

= K(y)eΨ(y)
√

π

[√
Ψ′ +

K ′

K

1√
Ψ′

− 1

2(Ψ′)3/2

(

Ψ′′ + Ψ′K
′

K

)

+
3

8

Ψ′′

(Ψ′)3/2

]

. (5.42)

The non-linear term in (5.21) we approximate as

∫ y

0

D(v)D(y − v)dv = 2

∫ y/2

0

D(v)D(y − v)dv

∼ 2

∫ ∞

0

D(v)eΨ(y)e−vΨ′(y)K(y)dv

∼ 2D(0)K(y)eΨ′(y) 1

Ψ′(y)
. (5.43)

Recalling that D(0) = u0 = m1 = 1, we use (5.42) and (5.43) in (5.21). After multiplying by −y we

obtain, to leading order,

yK(y)eΨ(y) ∼
√

Ψ′(y)K(y)eΨ(y)

so that

Ψ(y) =
y3

3
=

a2

3
. (5.44)

At the next order, after cancelling the common factors KeΨ, we are led to

0 = − 1

2Ψ′
+

K ′

K

1√
Ψ′

− 1

2(Ψ′)3/2

[

Ψ′′ + Ψ′K
′

K

]

+
3

8

Ψ′′

(Ψ′)3/2
(5.45)
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and thus

K ′

K
=

1

4

Ψ′′

Ψ′
+

1√
Ψ′

=
1

2y
+

1

y
=

3

2y

so that K(y) = (const.)′y3/2 = (const.)′a. We thus have formally obtained

C̄n(a) ∼ (const.)′a2ea2/3, a → +∞ (5.46)

for some constant (const.)′. We note that C̄n(a) ∼ aD(a2/3) dominates the first term in the right side of

(5.2). In view of (5.2), (4.2) and (4.9) the asymptotic matching of the a- and β-scales requires that

4n

n3/2
C̄n(a)

∣

∣

∣

∣

a→∞

∼ enΦ(β)n−1/2g(β)

∣

∣

∣

∣

β→0+

. (5.47)

From (4.15), (4.25), and (4.31) we have

Φ(β) = log 4 +
β2

3
+ O(β3), g(β) ∼ (const.) β2. (5.48)

Since β = a/
√

n we see that the matching is indeed possible provided that

const.′ = const. (5.49)

where the latter constant is the one that arose in Section 4. We note that our formal analysis suggests that

the non-linear integral equation (5.21) may be approximated by a linear one for y → ∞. The non-linear

term does not affect the exponential growth rate Ψ = y3/3, but it does affect the algebraic growth rate

K ∝ y3/2.

To determine the remaining constant, we continue (5.37) into the range a > 0. Since Y = (−a)2/3,

this corresponds to arg(Y ) = ± 2π
3 . We define

h(s) = Ai(4−1/3s). (5.50)

By deforming the Bromwich contour in (5.37) to a piecewise linear contour that goes from s = e−2πi/3∞
to s = 0 and then from s = 0 to s = e2πi/3∞ = ω∞, and parameterizing the two pieces, we are led to

D̄(Y ) − 1√
πa

=
4

2πi

∫ ∞

0

[

ω
h′(ωτ)

h(ωτ)
eωτY − ω2 h′(ω2τ)

h(ω2τ)
eω2τY

]

dτ. (5.51)

Since ℜ(ω), ℜ(ω2) < 0, these integrals converge for Y > 0. We can also write the approximation to

Bn(w) for w = 1 + O(n−3/2) as

Bn(w) ∼ 4n+1

πn3/2
(−a)

∫ ∞

0

ℜ
[

eπi/6 h′(ωτ)

h(ωτ)
eωτY

]

dτ. (5.52)

We shall use the Wronskian identity (cf. [1, 3])

Ai(ωz)ω2Ai′(ω2z) − ωAi′(ωz)Ai(ω2z) =
i

2π
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which in terms of h(·) becomes

eπi/6 h′(ωτ)

h(ωτ)
+ e−πi/6 h′(ω2τ)

h(ω2τ)
= − 1

2π41/3

1

h(ωτ)h(ω2τ)
. (5.53)

The integral

I1 =

∫ ∞

0

eπi/6 h′(ωτ)

h(ωτ)
eωτY dτ, Y > 0

may be continued analytically into the range arg(Y ) ∈
(

−π
6 , 5π

6

)

, while

I2 =

∫ ∞

0

e−πi/6 h′(ω2τ)

h(ω2τ)
eω2τY dτ, Y > 0

may be similarly continued into the range arg(Y ) ∈
(

− 5π
6 , π

6

) (

in this range arg(ω2Y ) ∈
(

− 3π
2 ,−π

2

))

.

Using (5.53) we write I1 = I3 + I4 where

I3 = − 1

2π41/3

∫ ∞

0

eωτY

h(ωτ)h(ω2τ)
dτ (5.54)

I4 = −
∫ ∞

0

e−πi/6 h′(ω2τ)

h(ω2τ)
eωτY dτ. (5.55)

Since Ai(·) satisfies (cf. [1])

Ai(z) ∼ 1

2
√

π
z−1/4 exp

(

−2

3
z3/2

)

, | arg z| < π (5.56)

we see that both h(ωτ) and h(ω2τ) grow faster than exponentially as τ → +∞, and thus I3 defines

an entire function of Y . The integral I4 may be viewed as defining an analytic function in the range

arg(Y ) ∈
(

−π
6 , 5π

6

)

or arg(Y ) ∈
(

− 13π
6 ,− 7π

6

)

. Now we let arg(Y ) = − 2π
3 and set

Y = ω2y = ω2a2/3 (5.57)

where a is real and positive. We have thus shown that I1 + I2 = I2 + I3 + I4. This continues the right

side of (5.52) to a > 0 and shows that

4

π
(−a)

∫ ∞

0

ℜ
[

eπi/6 h′(ωτ)

h(ωτ)
eωτY

]

dτ =
a

π241/3

∫ ∞

0

eτy

h(ωτ)h(ω2τ)
dτ (5.58)

− 4a

π

∫ ∞

0

ℜ
[

eπi/6 h′(ωτ)

h(ωτ)
eω2τy

]

dτ.

Next we estimate the right side as a = y3/2 → +∞. The second integral can be expanded by Watson’s

lemma, and is O(a/y) = O(
√

y). The first integral we evaluate by Laplace’s method, first using (5.56) to

approximate the integrand for τ → +∞, with

h(ωτ)h(ω2τ) = |h(ωτ)|2 ∼ (4−1/3τ)−1/2

4π
exp

[

4

3
(4−1/3τ)3/2

]

.
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Here we also used the reflection principle, since Ai(z) is real for real z. We thus have

42/3

4π2

∫ ∞

0

eτy

|h(ωτ)|2 dτ ∼ 42/3

π

∫ ∞

0

eτye−
2
3 τ3/2

2−1/3
√

τdτ

∼ 2

π

√

y2

∫ ∞

−∞

exp

[

y3

3
− 1

4y
(τ − y2)2

]

dτ

=
4√
π

y3/2 exp

(

y3

3

)

. (5.59)

Here we used the Laplace method to find that the major contribution to the integral came from τ = y2.

Since this is asymptotically large, it is permissible to first approximate the integrand for τ large. We note

that the right side of (5.59) is also the expansion of D(y) as y → +∞. Thus, this calculation verifies that

obtained formally by the WKB ansatz (5.41), and also determines the constant as

const. =
4√
π

. (5.60)

The leading term on the a-scale for a > 0 is thus given by 4n/n3/2 times the right side of (5.58), and this

is precisely the result in (2.29).

We next calculate the correction term m̄i in (5.8). We shall show that this corresponds to C(1)(a) if

C̄n(a) has the expansion C̄n(a) = C(0)(a)+n−1/2C(1)(a)+O(n−1). We return to (5.10) and use (5.8).

For n → ∞ we have

N
∑

i=0

(

N

i

)

(−1)N−i (n + N − i − 1)!

(n − 1)!
M̃i,n+1 = M̃N,n+1 − nNM̃N−1,n+1

+

(

N

2

)

n(n + 1)M̃N−2,n+1 + O
(

n
3
2 N−3

)

= n
3
2 (N−1)

[

mN +
1√
n

(m̄N − NmN−1)

+
1

n

(

m̃N +
3

2
(N − 1)mN − Nm̄N−1 +

(

N

2

)

mN−2

)

+ O(n−3/2)

]

(5.61)

where m̃N is the third term in the expansion in (5.8), i.e.,

M̃N,n = n
3
2 (N−1)

[

mN +
1√
n

m̄N +
1

n
m̃N + O(n−3/2)

]

.

We next estimate more precisely (5.12):

1

2

n
∑

ℓ=0

aℓ[M̃N,n−ℓ − M̃N,n] +
1

2
M̃N,n

n
∑

ℓ=0

aℓ4
−ℓ. (5.62)

From (5.13) and (5.8) we obtain

1

2
M̃N,n

n
∑

ℓ=0

aℓ4
−ℓ = n

3
2 (N−1)

[

mN +
1√
n

m̄N +
1

n
m̃N − 1√

πn
mN + O(n−3/2)

]

.
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To obtain the first term in (5.62) we use an intermediate limit, writing to sum as

n
∑

ℓ=0

aℓ4
−ℓ[M̃N,n−ℓ − M̃N,n] (5.63)

=

n
∑

ℓ=0

aℓ4
−ℓn

3
2 (N−1)

{

(

1 − ℓ

n

)
3
2 (N−1) [

mN +
m̄N√
n − ℓ

]

− mN − m̄N√
n

+ O(n−1)

}

.

Now, by Euler-MacLaurin

n
∑

ℓ=0

aℓ4
−ℓn

3
2 (N−1) m̄N√

n

[

(

1 − ℓ

n

)
3
2 N−2

− 1

]

∼ 1√
π

n
3
2 N− 5

2 m̄N (5.64)

×
∫ 1

0

1

x3/2

[

(1 − x)
3
2 N−2 − 1

]

dx

where we used aℓ4
−ℓ ∼ 1/[

√
πℓ3/2]. The remaining terms in (5.63) must be estimated more precisely, as

we need both the O(n
3
2 N−2) leading term (as in (5.14)) and the O(n

3
2 N− 5

2 ) correction. Breaking up the

sum into two pieces we obtain

n
∑

ℓ=0

aℓ4
−ℓ

[

(

1 − ℓ

n

)
3
2 (N−1)

− 1

]

=

L−1
∑

ℓ=0

aℓ4
−ℓ

[

(

1 − ℓ

n

)
3
2 (N−1)

− 1

]

(5.65)

+

n
∑

ℓ=L

aℓ4
−ℓ

[

(

1 − ℓ

n

)
3
2 (N−1)

− 1

]

≡ S1 + S2.

Here L satisfies the asymptotic bounds L → ∞ but L/n → 0 as n → ∞. We use a binomial approxima-

tion in the first sum and approximate aℓ for ℓ → ∞ in the second. Thus

S1 =

L−1
∑

ℓ=0

aℓ4
−ℓ

[

−3

2
(N − 1)

ℓ

n
+ O

(

ℓ2

n2

)]

= −3

2

N − 1

n

L−1
∑

ℓ=0

ℓaℓ4
−ℓ + O

(

L3/2

n2

)

= −3

2

N − 1

n

L
∑

ℓ=0

ℓaℓ4
−ℓ + O

(

1

n
√

L
,
L3/2

n2

)

. (5.66)
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Using (2.4) we have

L
∑

ℓ=0

ℓaℓ4
−ℓ =

L
∑

ℓ=0

(ℓ + 1)4−ℓaℓ −
L
∑

ℓ=0

4−ℓaℓ

=

L
∑

ℓ=0

(

2ℓ

ℓ

)

4−ℓ − 2 + oL(1)

=
2(L + 1)

4L+1

(

2L + 2

L + 1

)

− 2 + oL(1)

=
2
√

L√
π

− 2 + OL

(

1√
L

)

. (5.67)

To evaluate S2 we use Euler-MacLaurin to find that

S2 =

n
∑

ℓ=L

[

1√
π

ℓ−3/2 + O(ℓ−5/2)

]

[

(

1 − ℓ

n

)
3
2 (N+1)

− 1

]

=
1√
π

1√
n

∫ 1

L/n

1

x3/2

[

(1 − x)
3
2 (N−1) − 1

]

dx + O

(

1

n
√

L

)

=
1√

π
√

n

∫ 1

0

1

x3/2

[

(1 − x)
3
2 (N−1) − 1

]

dx +
3√
π

(N − 1)

√
L

n
+ O

(

1

n
√

L

)

. (5.68)

Combining (5.66) - (5.68) and letting L → ∞ in such a way that L3/2/n → 0 we have shown that

1

2
(S1 + S2) =

1

2
√

πn

∫ 1

0

1

x3/2

[

(1 − x)
3
2 (N−1) − 1

]

dx +
3

2

N − 1

n
+ O(n−3/2). (5.69)

Next, we expand the last sum in (5.10) as

N−1
∑

j=1

(

N

j

) n
∑

ℓ=0

M̃j,ℓM̃N−j,n−ℓ =

N−1
∑

j=1

(

N

j

)

n
3
2 N−3

[

mjmN−j

n
∑

ℓ=0

(

ℓ

n

)
3
2 (j−1)(

1 − ℓ

n

)
3
2 (N−j−1)

+
2√
n

mjm̄N−j

n
∑

ℓ=0

(

ℓ

n

)
3
2 (j−1)(

1 − ℓ

n

)
3
2 (N−j)−2

+ O(n−1)

]

= n
3
2 N−2

N−1
∑

j=1

mjmN−j

(

N

j

)
∫ 1

0

x
3
2 (j−1)(1 − x)

3
2 (N−j−1)dx

+n
3
2 N− 5

2

N−1
∑

j=1

2mjm̄N−j

(

N

j

)
∫ 1

0

x
3
2 (j−1)(1 − x)

3
2 (N−j)−2dx + O(n

3
2 N−3). (5.70)

Combining (5.61), (5.62) - (5.64), (5.69) and (5.70) we see that at O
(

n
3
2 N−2

)

we regain (5.16). At
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O
(

n
3
2 N− 5

2

)

we obtain, multiplying by 4,

2N(N − 1)mN−2 − 4Nm̄N−1 = − 2√
π

(3N − 4)m̄N

∫ 1

0

(1 − x)
3
2 N−3

√
x

dx (5.71)

+ 2

N−1
∑

j=1

(

N

j

)

mjm̄N−j

∫ 1

0

x
3
2 (j−1)(1 − x)

3
2 (N−j)−2dx.

This holds for N ≥ 2. Here we also rewrote the integral in (5.64) using integration by parts. Note that

when N = 2 (5.71) becomes

4m0 − 8m̄1 = − 8√
π

m̄2 + 8m1m̄1

and this is consistent with (5.9).

We solve (5.71). Note that once mN is known this is a linear equation for m̄N . We set

D̄1(Y ) =

∞
∑

L=1

m̄L

L!
(−1)LY

3
2 (L−1) (5.72)

and recall the definition of D̄(Y ) in (5.27). Since m0 = 1/
√

π, we have

∞
∑

N=2

2N(N − 1)mN−2
(−1)N

N !
Y

3
2 (N−1) = 2

∞
∑

L=0

mL

L!
(−1)LY

3
2 (L+1)

= 2

[

Y 3/2

√
π

+ Y 3D̄(Y )

]

. (5.73)

Also,

−4

∞
∑

N=2

Nm̄N−1
(−1)N

N !
Y

3
2 (N−1) = 4

∞
∑

L=1

m̄L

L!
(−1)LY

3
2 L = 4Y 3/2D̄1(Y ), (5.74)

∞
∑

N=2

(−1)N2Y
3
2 (N−1)

N−1
∑

j=1

mjm̄N−j

j!(N − j)!

∫ 1

0

x
3
2 (j−1)(1 − x)

3
2 (N−j−1) dx√

1 − x

= 2Y 3/2

∫ 1

0

D̄(Y x)
D̄1(Y − Y x)√

1 − x
dx, (5.75)
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and

− 2√
π

∞
∑

N=2

(3N − 4)
(−1)N

N !
Y

3
2 (N−1)m̄N

∫ 1

0

(1 − x)
3
2 N−3

√
x

dx

= − 2√
π

∫ 1

0

1
√

x(1 − x)

1

1 − x

∞
∑

N=2

3(N − 1) − 1

N !
(−1)Nm̄N (Y − Y x)

3
2 (N−1)dx

= − 2√
π

∫ 1

0

1√
x(1 − x)3/2

[2(Y − Y x)D̄1(Y − Y x) − D̄1(Y − Y x) − m̄1]dx

= − 4√
π

∫ 1

0

Y
√

x(1 − x)
D̄′

1(Y − Y x)dx +
2√
π

∫ 1

0

D̄1(Y − Y x) − D̄1(0)√
x(1 − x)3/2

dx

= − 4Y√
π

∫ Y

0

D̄′
1(Y − v)√
v
√

Y − v
dv +

2Y√
π

∫ Y

0

D̄1(v) − D̄1(0)√
Y − v v3/2

dv. (5.76)

Combining (5.72) - (5.76) in (5.71) the equation transforms to (after dividing by Y )

2Y 1/2

√
π

+ 2Y 2D̄(Y ) + 4Y 1/2D̄1(Y )

= 2

∫ Y

0

D̄1(v)√
v

D̄(Y − v)dv − 4√
π

∫ Y

0

1√
Y − v

d

dv

[

D̄1(v) − D̄1(0)√
v

]

dv. (5.77)

To solve (5.77) we define

E∗(s) =

∫ ∞

0

e−sY D̄1(Y )√
Y

dY (5.78)

and note that
∫ ∞

0

e−sY

∫ Y

0

1√
Y − v

d

dv

[

D̄1(v) − D̄1(0)√
v

]

dv dY =

√

π

s

∫ ∞

0

e−sY d

dY

[

D̄1(Y ) − D̄1(0)√
Y

]

dY

=
√

πs

∫ ∞

0

e−sY

[

D̄1(Y ) − D̄1(0)√
Y

]

dY

=
√

πs E∗(s) − πD̄1(0). (5.79)

Since D̄1(0) = −m̄1 = 3/
√

π, the Laplace transform of (5.77) becomes

1

s3/2
+ 2D′′

∗ (s) − 4E ′
∗(s) = [2D∗(s) − 4

√
s]E∗(s) + 12. (5.80)

Recalling that h(s) = Ai(4−1/3s) we write (5.33) as

D∗(s) = 2
√

s + 4
h′(s)

h(s)
(5.81)

whose derivatives yield

D′
∗(s) =

1√
s

+ s − 4

(

h′(s)

h(s)

)2

(5.82)
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and

D′′
∗ (s) = − 1

2s3/2
+ 1 − 2s

h′(s)

h(s)
+ 8

(

h′(s)

h(s)

)3

, (5.83)

where we used the fact that h′′(s) = 1
4sh(s). Using (5.81) - (5.83) in (5.80) we obtain, after some

rearrangement,

E ′
∗(s) + 2

h′(s)

h(s)
E∗(s) = −5

2
− s

h′(s)

h(s)
+ 4

(

h′(s)

h(s)

)3

(5.84)

or

d

ds
[h2(s)E∗(s)] = −5

2
h2(s) − sh(s)h′(s) + 4

(h′(s))3

h(s)
. (5.85)

The general solution of (5.85) may be written as

E∗(s) =
c∗

h2(s)
+

1

h2(s)

∫ ∞

s

[

5

2
h2(v) + vh(v)h′(v) − 4

(h′(v)3

h(v)

]

dv. (5.86)

But, h(s) decays exponentially as s → ∞ and so h−2 grows. Thus, if E∗(s) is to be a proper Laplace

transform, we must set c∗ = 0. Use of integration by parts and the fact that h(s) satisfies (5.34) leads to
∫ s

vh(v)h′(v)dv = 4

∫ s

h′(v)h′′(v)dv = 2(h′(s))2

∫ s

h2(v)dv = sh2(s) − 2

∫ s

vh(v)h′(v)dv = sh2(s) − 4(h′(s))2

and thus (5.86) simplifies to

E∗(s) = −5

2
s + 8

(

h′(s)

h(s)

)2

− 4

h2(s)

∫ ∞

s

(h′(v))3

h(v)
dv. (5.87)

We have thus established (2.26), since for a < 0

Bn(w) =

∞
∑

j=0

Mj,n
(w − 1)j

j!

=
4n

n3/2





∞
∑

j=0

mj
aj

j!
+

1√
n

∞
∑

j=0

m̄j
aj

j!
+ O(n−1)





=
4n

n3/2



m0 +

∞
∑

j=1

mj
aj

j!
+

1√
n

∞
∑

j=1

m̄j
aj

j!
+ O(n−1)





=
4n

n3/2

[

1√
π
− aD̄((−a)2/3) +

1√
n

(−a)D̄1(Y ) + O(n−1)

]

=
4n

n3/2

[

1√
π

+ Y 3/2D̄(Y ) +
1√
n

Y 3/2D̄1(Y ) + O(n−1)

]

. (5.88)
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In order to asymptotically match the a-scale result to that valid for w − 1 = O(n−1) with w < 1, we

will need the behavior of D̄1(Y ) as Y = (−a)2/3 → ∞. Thus we must locate the singularity of E∗(s)
with the largest real part, or an appropriate saddle point. The Laplace transform of the leading term D̄(Y )
had simple poles at 41/3rj where rj were the negative roots of the Airy function, with the pole at 41/3r0

determining the asymptotic behavior as Y → ∞ (a → −∞) (cf. (5.37)). The dominant singularity in

E∗(s) is also at 41/3, r0. but (5.87) shows that the structure is more complicated, as there is a double pole

combined with a logarithmic branch point at s = s0 ≡ 41/3r0.

We expand (5.87) near the dominant singularity at s0. Integrating by parts we obtain

∫ ∞

s

(h′(v))3

h(v)
dv =

∫ ∞

s

(h′(v))2d[log h(v)] (5.89)

= −(h′(s))2[log h(s)] − 1

2

∫ ∞

s

vh′(v)h(v)[log h(v)]dv

and
∫ ∞

s

vh(v)h′(v)[log h(v)]dv =

∫ ∞

s

vh(v)[log h(v)]dh(v) (5.90)

= −sh2(s)[log h(s)] −
∫ ∞

s

{h2(v)[log h(v)] + vh(v)h′(v) log h(v) + vh(v)h′(v)}dv

which may be rewritten as

2

∫ ∞

s

vh(v)h′(v)[log h(v)]dv = − sh2(s)[log h(s)] + 2(h′(s))2

−
∫ ∞

s

h2(v)[log h(v)]dv. (5.91)

Using (5.89) - (5.91) in (5.87) we obtain

E∗(s) = − 5

2
s + 10

(

h′(s)

h(s)

)2

+ 4

(

h′(s)

h(s)

)2

log h(s)

− s log h(s) − 1

h2(s)

∫ ∞

s

h2(v)[log h(v)]dv. (5.92)

We let τ = s − s0 and expand (5.92) about τ = 0. We have h(s0) = h′′(s0) = 0 and

∫ ∞

s

h2(v)[log h(v)]dv =

∫ ∞

s0

h2(v)[log h(v)]dv −
∫ s

s0

h2(v)[log h(v)]dv

=

∫ ∞

s0

h2(v)[log h(v)]dv + O(τ3 log τ),

and then (5.92) yields

E∗(s) =
4

τ2
log(h′(s0)τ) +

10

τ2
−
∫∞

s0
h2(v)[log h(v)]dv

(h′(s0))2τ2
+ O(log τ), τ → 0. (5.93)
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Here

h′(s0) = 4−1/3Ai′(4−1/3s0) = 4−1/3Ai′(r0). (5.94)

Defining

κ ≡ 10 + 4 log(h′(s0)) −
1

(h′(s0))2

∫ ∞

s0

h2(v)[log h(v)]dv (5.95)

we have

D̄1(Y ) =

√
Y

2πi

∫

Br

esY E∗(s)ds

=
√

Y exp(−|r0|41/3Y )
1

2πi

∫

Br+

eτY

[

4 log τ

τ2
+

κ

τ2
+ O(log τ)

]

dτ (5.96)

where ℜ(τ) > 0 on Br+. Evaluating explicitly the integrals in (5.96) shows that

D̄1(Y ) = Y 3/2 exp(−|r0|41/3Y )

[

−4 log Y + κ + 4 − 4γE + O

(

log Y

Y

)]

, Y → ∞ (5.97)

where γE is the Euler constant.

Combining (5.97) with (5.38) we have shown that as Y → ∞ the two term approximation on the

a-scale behaves as

Bn(w) =
4n

n3/2

[

1√
π
− aD̄(Y ) − a√

n
D̄1(Y ) + O(n−1)

]

(5.98)

∼ 4n

n3/2
exp

[

−41/3|r0|(−a)2/3
]

{

−4a +
a2

√
n

(

−8

3
log(−a) + κ + 4 − 4γE

)}

. (5.99)

This expression will be used in Section 6.

To summarize, we have used the moment equations (5.7) to get the two-term approximation (5.98) to

Bn(w), valid for a = n3/2(w − 1) = O(1) and a < 0. For a > 0 we must use (5.51) and (5.58) with

y = a2/3.

5.2 Analysis of the basic recurrence

We consider (2.1), which on the a-scale becomes (5.5). Using (2.9) we obtain

an+14
−n
[(

1 +
a

n3/2

)n

− 1
]

=
4√
π

a

n2
+

2√
π

a2

n5/2
+ O(n−3). (5.100)

We expand C̄n(a) in (5.2) as

C̄n(a) = C(0)(a) +
1√
n

C(1)(a) + O(n−1) (5.101)
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and then estimate the various terms in (5.5). We note that C(j)(0) = 0 for all j ≥ 0, in view of (5.3).

By (5.101) and the Euler-MacLaurin formula we have

n
∑

ℓ=0

[

1

ℓ(n − ℓ)

]3/2

C̄ℓ

(

(

ℓ

n

)3/2

a

)

C̄n−ℓ

(

(

1 − ℓ

n

)3/2

a

)

=
1

n2

∫ 1

0

C(0)(x3/2a)C(0)((1 − x)3/2a)

[x(1 − x)]3/2
dx

+
2

n5/2

∫ 1

0

C(0)(x3/2a)C(1)((1 − x)3/2a)

x3/2(1 − x)2
dx + O(n−3). (5.102)

Note that the integrals converge since C(j)(0) = 0, and that the boundary effects near x = 0 and x = 1
do not appear until the third (O(n−3)) term in the expansion.

Next we write the first sum in the right side of (5.5) as

n
∑

ℓ=0

aℓ4
−ℓ(n − ℓ)−3/2C̄n−ℓ

(

(

1 − ℓ

n

)3/2

a

)

=

n
∑

ℓ=0

aℓ4
−ℓ 1

n3/2

[

(

1 − ℓ

n

)−3/2

C(0)

(

(

1 − ℓ

n

)3/2

a

)

− C(0)(a)

]

+

n
∑

ℓ=0

aℓ4
−ℓ 1

n2

[

(

1 − ℓ

n

)2

C(1)

(

(

1 − ℓ

n

)3/2

a

)

− C(1)(a)

]

+
C(0)(a)

n3/2

n
∑

ℓ=0

aℓ4
−ℓ +

C(1)(a)

n2

n
∑

ℓ=0

aℓ4
−ℓ +

C(2)(a)

n5/2

n
∑

ℓ=0

aℓ4
−ℓ + O(n−3). (5.103)

The last three terms in (5.103) may be estimated using (5.13). By Euler-Maclaurin we have

n
∑

ℓ=0

aℓ4
−ℓ

[

(

1 − ℓ

n

)−2

C(1)

(

(

1 − ℓ

n

)3/2

a

)

− C(1)(a)

]

∼ 1√
n

1√
π

∫ 1

0

1

x3/2

[

C(1)((1 − x)3/2a)

(1 − x)2
− C(1)(a)

]

dx (5.104)
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where we approximated aℓ for ℓ → ∞. An argument completely analogous to (5.65) shows that

n
∑

ℓ=0

aℓ4
−ℓ

[

(

1 − ℓ

n

)−3/2

C(0)

(

(

1 − ℓ

n

)3/2

a

)

C(0)(a)

]

(5.105)

=

L
∑

ℓ=0

aℓ4
−ℓ

{

3

2

ℓ

n
[C(0)(a) − aC(0)′(a)] + O

(

ℓ2

n2

)}

+

n
∑

ℓ=L+1

1√
π

[ℓ−3/2 + O(ℓ−5/2)]

[

(

1 − ℓ

n

)−3/2

C(0)

(

(

1 − ℓ

n

)3/2

a

)

− C(0)(a)

]

= [C(0)(a) − aC(0)′(a)]
3

2n

L
∑

ℓ=0

ℓaℓ4
−ℓ

+
1√
πn

∫ 1

L/n

x−3/2[(1 − x)−3/2C(0)((1 − x)3/2a) − C(0)(a)]dx + O

(

L3/2

n2
,

1

n
√

L

)

∼ 1√
πn

∫ 1

0

x−3/2[(1 − x)−3/2C(0)((1 − x)3/2a) − C(0)(a)]dx

+[C(0)(a) − aC(0)′(a)]
3

2n

[

L
∑

ℓ=0

ℓaℓ4
−ℓ − 2

√

L

π

]

∼ 1√
πn

∫ 1

0

x−3/2[(1 − x)−3/2C(0)((1 − x)3/2a) − C(0)(a)]dx − 3

n
[C(0)(a) − aC(0)′(a)].

Here we also used (5.67). Multiplying (5.5) by

w−n =
(

1 +
a

n3/2

)−n

= 1 − a√
n

+
a2

2n
+ O(n−3/2)

and using (5.100) yields

4

(n + 1)3/2

(

1 +
a

n3/2

)−n

C̄n+1

(

(

1 +
1

n

)3/2

a

)

− an+14
−n

[

1 −
(

1 +
a

n3/2

)−n
]

=
4

n3/2

[

1 − 3

2n
+ O(n−2)

] [

1 − a√
n

+
a2

2n
+ O(n−3/2)

]

(5.106)

×
[

C(0)(a) +
1√
n

C(1)(a) +
1

n

(

C(2)(a) +
3

2
aC(0)′(a)

)]

− 4√
πn3/2

[

a√
n
− a2

2n
+ O(n−3/2)

]

=
4

n3/2
C(0)(a) +

4

n2

[

−aC(0)(a) − a√
π

+ C(1)(a)

]

+
4

n5/2

[

−aC(1)(a) +
a2

2
√

π
+

a2

2
C(0)(a) +

3

2
aC(0)′(a) − 3

2
C(0)(a) + C(2)(a)

]

+ O(n−3).
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Comparing (5.106) with (5.102) + 2 × (5.103), using (5.104), (5.105) and (5.13), we find at O(n−2)

− 4aC(0)(a) − 4√
π

a = − 4√
π

C(0)(a) +
2√
π

∫ 1

0

1

x3/2

[

C(0)((1 − x)3/2a)

(1 − x)3/2
− C(0)(a)

]

dx

+

∫ 1

0

C(0)(x3/2a)C(0)((1 − x)3/2a)

x3/2(1 − x)3/2
dx (5.107)

and at O(n−5/2)

− 4aC(1)(a) +
2√
π

a2 + 2a2C(0)(a) = − 4√
π

C(1)(a) +
2√
π

∫ 1

0

1

x3/2

[

C(1)((1 − x)3/2a)

(1 − x)2
− C(1)(a)

]

dx

= 2

∫ 1

0

C(0)(x3/2a)C(1)((1 − x)3/2a)

x3/2(1 − x)2
dx. (5.108)

Thus, the leading term in (5.101) satisfies the non-linear integral equation (5.107) and the correction term

satisfies the linear equation (5.108).

We can analyze these equations for a < 0 by setting

C(0)(a) = (−a)D̄((−a)2/3) = Y 3/2D̄(Y ). (5.109)

Then (5.107) becomes

4a2D̄(Y ) − 4√
π

a =
4√
π

aD̄(Y ) + a2

∫ 1

0

D̄(Y x)D̄(Y − Y x)dx

− 2a√
π

∫ 1

0

D̄(Y − Y x) − D̄(Y )

x3/2
dx. (5.110)

Integrating by parts and using D̄(0) = −1 we obtain

∫ 1

0

x−3/2[D̄(Y − Y x) − D̄(Y )]dx = 2 + 2D̄(Y ) − 2Y

∫ 1

0

x−1/2D̄′(Y − Y x)dx. (5.111)

Using (5.111) in (5.110), dividing by 4a2/Y and noting that Y 3/2 = −a, we see that (5.110) is the same

as (5.30). Similarly, we set

C(1)(a) = (−a)D̄1((a)2/3) = Y 3/2D̄1(Y ) (5.112)

in (5.108). Using also (5.109) this yields

4a2D̄1(Y ) +
2√
π

a2 − 4√
π

aD̄1(Y ) − 2a3D̄(Y ) (5.113)

= − 2a√
π

∫ 1

0

1

x3/2

[

D̄1(Y − Y x)√
1 − x

− D̄1(Y )

]

dx + 2a2

∫ 1

0

D̄(Y x)D̄1(Y − Y x)√
1 − x

dx.
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Dividing (5.113) by a2/
√

Y = Y 5/2 leads to

4
√

Y D̄1(Y ) +
2√
π

√
Y +

4√
πY

D̄1(Y ) + 2Y 2D̄(Y ) (5.114)

= 2

∫ Y

0

D̄1(v)√
v

D̄(Y − v)dv +
2√
πY

∫ Y

0

1

v3/2

[

D̄1(Y − v)

√

Y

Y − v
− D̄1(Y )

]

dv.

But the last term in (5.114) is

2√
πY

Z Y

0

1

v3/2

"

D̄1(Y − v)

r

Y

Y − v
− D̄1(0)

r

Y

Y − v
− D̄1(Y ) + D̄1(0)

 

r

Y

Y − v
− 1

!

+ D̄1(0)

#

dv

=
4√
πY

D̄1(0) − 4√
πY

Z Y

0

(

D̄1(0) − D̄1(Y ) +

r

Y

Y − v
[D̄1(Y − v) − D̄1(0)]

)

d(v−1/2)

=
4√
πY

D̄1(Y ) +
4√
πY

Z Y

0

1√
v

d

dv

»

D̄1(Y − v) − D̄1(0)√
Y − v

–

dv (5.115)

where we integrated by parts and used

∫ 1

0

(

1√
1 − x

− 1

)

dx

x3/2
= 2.

Using (5.115) in (5.114) we regain equation (5.77). We have thus shown the equivalence of the moment

method and the perturbation expansion of this subsection. Note also that (5.107) and (5.108) apply also

for a ≥ 0.

5.3 Transform inversion

We now use the results of subsections 5.1 and 5.2 to obtain an approximation to b(n, p).
We use (2.3) and evaluate the Cauchy integral asymptotically. We assume that

Ω ≡ pn−3/2 = O(1), 0 < Ω < ∞ (5.116)

and with (5.1) we have

w−p−1dw =
(

1 +
a

n3/2

)−1−Ωn3/2
da

n3/2
=

e−aΩ

n3/2
[1 + O(n−3/2)]da. (5.117)

Thus the scale w − 1 = O(n−3/2) in the transform space translates to (5.116) in the (n, p) space, and

(5.117) and (5.98) lead to

b(n, p) =
4n

n3

1

2πi

∫

Bra

[

1√
π

+ C(0)(a) +
1√
n

C(1)(a) + O(n−1)

]

e−aΩda

∼ 4n

n3

1

2πi

∫

Bra

[

1√
π
− aD̄(Y )

]

e−aΩda

=
4n

n3
(−a)

1

(2πi)2

∫

Bra

[

d

dY

∫

Br

4

s

h′(s)

h(s)
esY ds

]

e−aΩda. (5.118)
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Here we take ℜ(a) < 0 on the vertical contour Bra, since we used the expression (5.37) for D̄(Y ).
To evaluate the double integral in (5.118) we note that as −a goes from −∞i to +∞i, Y = (−a)2/3

goes from ∞e−πi/3 to ∞eπi/3. We let

Y = Z2

and the contour Bra is mapped to C1, that goes from ∞e−πi/6 to ∞eπi/6. Then (5.118) becomes

b(n, p) ∼ 4n

n3

1

(2πi)2

∫

C1

eΩZ3 3

2
Z4

[

d

dZ

∫

Br

4

s

h′(s)

h(s)
esZ2

ds

]

dZ

=
4n

n3

−1

(2πi)2

∫ ∞ω

∞ω2

e−ΩZ3

12Z5

[
∫

Br

h′(s)

h(s)
esZ2

ds

]

dZ, (5.119)

where the last integral was obtained by changing Z to −Z, and ω = e2πi/3. We next write d(e−ΩZ3

) =

−3ΩZ2e−ΩZ3

and do some integrating by parts, noting that

Z4e−ΩZ3

=
1

9Ω2

∂2

∂Z2
(e−ΩZ3

) +
2Z

3Ω
e−ΩZ3

.

Then (5.119) becomes

b(n, p) ∼ −4n

n3

1

(2πi)2

{
∫ ∞ω

∞ω2

e−ΩZ3

[
∫

Br

h′(s)

h(s)
(ZesZ2

)ZZ
1

9Ω2
ds (5.120)

+

∫

Br

h′(s)

h(s)
esZ2 8Z2

Ω
ds

]

dZ

}

= −4n

n3

1

(2πi)2

∫ ∞ω

∞ω2

∫

Br

e−ΩZ3

esZ2 h′(s)

h(s)

[

40

3

Zs

Ω2
+

16

9

s2(1 + 2sZ2)

Ω3

]

ds dZ.

We furthermore set

Z =
s

3Ω
+ W, W =

ζ

(3Ω)1/3
(5.121)

and note that the Airy function has the integral representation

1

2πi

∫ ∞ω

∞ω2

eζUe−ζ3/3dζ = Ai(U). (5.122)

Differentiating (5.122) with respect to U corresponds to multiplying the integrand by ζ. Hence (5.120)

becomes

b(n, p) ∼ −4n

n3

1

2πi

∫

Br

h′(s)

h(s)
exp

(

2s3

27Ω2

)

1

(3Ω)1/3

{

40

3Ω2

s

(3Ω)1/3
Ai′(U(s))

+

(

40

9Ω3
+

16

9Ω3

)

s2Ai(U(s)) +
32

9Ω3

s3

(3Ω)2/3
Ai′′(U(s)) +

64

27Ω4

s4

(3Ω)1/3
Ai′(U(s))

+
32

81Ω5
s5Ai(U(s))

}

ds (5.123)
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where

U(s) =
s2

(3Ω)4/3
. (5.124)

Using Ai′′(U(s)) = U(s)Ai(U(s)) to simplify (5.123) and noting that the integrand has singularities at

s = 41/3rj , we evaluate the integral as a residue series and the result is precisely the series in (2.40).

It is also possible to obtain and O(n−1/2) correction to (5.123) or (2.40), by using (5.87) and (5.96) to

compute C(1)(a) in (5.118) and evaluating the integral in a manner similar to that above.

Finally we discuss the expansion of the right side of (2.40) (or (5.123)) for Ω → 0 and Ω → ∞. For

Ω → 0 the term in the sum with j = 0 is exponentially larger than those with j ≥ 1, and thus we get

4n

n3

1

(3Ω)1/3
exp

(

− 8

27

|r0|3
Ω2

)

64

81

|r0|5
Ω5

45/3Ai

(

r2
04

2/3

34/3Ω4/3

)

∼ 4n

n3
exp

(

−16

27

|r0|3
Ω2

)

29

34

|r0|9/2

√
πΩ5

. (5.125)

Here we also used the asymptotic expansion (5.56) of the Airy function. We will use expression (5.125)

in Section 6, when we discuss the asymptotic matching of the results for p = O(n3/2) and p = O(n4/3).
The limit Ω → 0 corresponds to the left tail of the Airy distribution.

The right tail corresponds to Ω → ∞ and this limit is hard to evaluate from the sum in (2.40), as there

is a lot of cancelation. However, we have already shown the asymptotic matching between the expansions

for w = 1+O(n−1) (β-scale) and w = 1+O(n−3/2) (a-scale). This matching implies also the matching

in (n, p) space of the expansion for p = O(n2) (Λ-scale) and for p = O(n3/2), where (5.123) applies.

Thus the behavior of (5.123) as Ω → ∞ is the same as that of (4.44) as Λ = p/n2 = Ω/
√

n → 0. The

latter is easily obtained from (4.40) and (4.44).

As Λ → 0, we have β∗ → 0 and from (4.16) we obtain

φ(β) = log 2 − 1

2
β +

1

3
β2 + O(β3), β → 0. (5.126)

It follows from (4.40)
(

since φ′(β) + 1
2 ∼ 2

3β
)

that

β∗ = β∗(Λ) ∼ 3

2
Λ, Λ → 0. (5.127)

Then

1 − 2Λ − 1

2eβ∗ − 1
∼ Λ (5.128)

and

β∗(1 − 2Λ) + log 2 − log(2 − e−β∗) ∼ log 2 − 3

4
Λ2. (5.129)

Using (5.127) - (5.129) in (4.44) the right side becomes

2n+1
√

2

n2π

β
5/2
∗√
Λ

exp

[

n log 2 − 3

4
nΛ2

]

∼ 9
√

3

2π

4n

n2
Λ2 exp

(

−3

4
nΛ2

)

=
9
√

3

2π

4n

n3
Ω2 exp

(

−3

4
Ω2

)

, Ω =
p

n3/2
. (5.130)
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This is the behavior of (5.123) or (2.40) as Ω → ∞. We have thus completed analysis of the scales

w − 1 = O(n−3/2) and p = O(n3/2).

6 Left Region

We consider the scale w − 1 = O(n−1) with w < 1, defining γ by

w = 1 − γ

n
, γ > 0. (6.1)

We return to (2.1), and break up the sum over [0, n] into three pieces: [0, L] ∪ [L + 1, n − L − 1] ∪ [n −
L − 1, n]. Furthermore, we set

Bn(w) =
4n

n
eν0n1/3γ2/3

eν1γ log nF (γ;n). (6.2)

Here ν0 and ν1 are constants that will be determined shortly. The form in (6.2) is suggested by the behavior

of the a-scale result as a → −∞ (cf. (5.8) with −a = γ
√

n). Using (6.2) in (2.1) leads to

4n+1

n + 1
exp

[

(n + 1)1/3ν0

[(

1 +
1

n

)

γ

]2/3

+ ν1γ log(n + 1)

]

F

(

γ

(

1 +
1

n

)

;n + 1

)

= 2
(

1 − γ

n

)n L
∑

ℓ=0

Bℓ

(

1 − γ

n

) 4n−ℓ

n − ℓ
exp

{

ν0(n − ℓ)1/3

[

γ

(

1 − ℓ

n

)]2/3
}

× exp

[

ν1γ

(

1 − ℓ

n

)

log(n − ℓ)

]

F

((

1 − ℓ

n

)

γ;n − ℓ

)

+
(

1 − γ

n

)n n−L−1
∑

ℓ=L+1

4n

ℓ(n − ℓ)
exp

{

ν0ℓ
1/3

(

γ
ℓ

n

)2/3

+ ν0(n − ℓ)1/3

[

γ

(

1 − ℓ

n

)]2/3
}

× exp

{

ν1γ

[

ℓ

n
log ℓ +

(

1 − ℓ

n

)

log(n − ℓ)

]}

F

(

ℓ

n
γ; ℓ

)

F

((

1 − ℓ

n

)

γ;n − ℓ

)

. (6.3)

Here we used the symmetry of the sum in (2.1). Also, in the second sum in (6.3) we used (6.2) to

approximate both Bℓ(w) and Bn−ℓ(w), while in the first sum we only used (6.2) to approximate the

latter. This careful treatment of “edge effects” is necessary to derive the limiting equation.

We note that

ℓ1/3

(

ℓ

n

)2/3

+ (n − ℓ)1/3

(

1 − ℓ

n

)2/3

= n1/3

and
ℓ

n
log ℓ +

(

1 − ℓ

n

)

log(n − ℓ) = log n + H

(

ℓ

n

)

where

H(x) = x log x + (1 − x) log(1 − x). (6.4)
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Now we assume that

F (γ;n) → F0(γ), n → ∞. (6.5)

Then choosing L so that L → ∞ and L/n → 0 as n → ∞, the first sum in (6.3) is asymptotic to

L
∑

ℓ=0

Bℓ

(

1 − γ

n

) 4n−ℓ

n − ℓ
exp(ν0n

1/3γ2/3)nν1γF0(γ)

∼ 4n

n
exp(ν0n

1/3γ2/3)nν1γF0(γ)

∞
∑

ℓ=0

Bℓ(1)4−ℓ

=
4n

n
exp(ν0n

1/3γ2/3)nν1γ2F0(γ). (6.6)

The second sum in (6.3) we approximate by the Euler-MacLaurin formula to obtain:

4n

n
exp(ν0n

1/3γ2/3)nν1γ

∫ 1

0

eν1γH(x) F0(γx)F0(γ − γx)

x(1 − x)
dx. (6.7)

Using (6.6) and (6.7) in (6.3) we obtain the limiting equation

4(eγ − 1)F0(γ) =

∫ 1

0

eν1γH(x)

x(1 − x)
F0(γx)F0(γ − γx)dx. (6.8)

Here we also used (1 − γ/n)n ∼ e−γ .

This is a non-linear integral equation that is somewhat similar to one that arises in the study of the

limiting distribution of the number of comparisons in the Quicksort algorithm [10, 13, 20, 21]. Note also

that we must have F0(0) = 0 for the integral to converge, but this will be shown to follow by asymptotic

matching to the a-scale. Setting

F0(γ) = 4γF1(γ), (6.9)

equation (6.8) simplifies to

eγ − 1

γ
F1(γ) =

∫ 1

0

F1(γx)F1(γ − γx)eν1γH(x)dx. (6.10)

Setting γ = 0 in (6.10) we conclude that

F1(0) = 1. (6.11)

We examine more closely the behavior of (6.10) as γ → 0. We expand F1(·) as

F1(γ) = 1 + α0γ log γ + α1γ + o(γ).

Using (6.11) in (6.10) and expanding for γ small we obtain at O(γ)

α1 +
1

2
= (α0 + ν1)

[
∫ 1

0

H(x)dx

]

+ α1 = 2(α0 + ν1)

[
∫ 1

0

x log x dx

]

+ α1

= −1

2
(α0 + ν1) + α1 (6.12)
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so that

α0 + ν1 = −1 (6.13)

and α1 is arbitrary. We can compute the higher-order terms in (6.11) in terms of α1, but the latter cannot

be determined from (6.10) alone. This shows that the solution of (6.10) is not unique.

To uniquely determine F1(γ) we use asymptotic matching between the a and γ scales. For γ → 0+ we

obtain, from (6.2), (6.5), (6.9) and (6.11),

4n+1

n
γ[1 + α0γ log γ + α1γ + o(γ)](1 + ν1γ log n) exp(ν0n

1/3γ2/3). (6.14)

The above should agree with the a-scale approximation as a → −∞, which we obtained in (5.99). Noting

that γ = −a/
√

n and comparing (5.99) to (6.14) we conclude that

ν0 = 41/3r0 = −41/3|r0| (6.15)

and

ν1γ log n + α0γ log γ + α1γ = γ

[

−2

3
log(γ

√
n) +

κ

4
+ 1 − γE

]

. (6.16)

where γE is the Euler constant. From (6.16) we must have

ν1 = −1

3
, α0 = −2

3
(6.17)

and

α1 =
κ

4
+ 1 − γE = 2.9692 . . . . (6.18)

We note that (6.17) is consistent with (6.13). With (6.18) the solution to (6.10) is unique and may be

computed, e.g., in the form of the series (6.11).

To further analyze (6.10) (with ν1 = −1/3) we let

F1(γ) = exp

(

1

3
γ log γ

)

F2(γ) (6.19)

and obtain

(eγ − 1)F2(γ) =

∫ γ

0

F2(v)F2(γ − v)dv. (6.20)

Introducing the Laplace transform

F (θ) =

∫ ∞

0

e−γθF2(γ)dγ (6.21)

we obtain from (6.20) the discrete logistic equation (in reverse time):

F (θ − 1) = F (θ) + F 2(θ). (6.22)
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The expansion (6.11) translates to

F2(γ) = 1 − γ log γ + α1γ + o(γ), γ → 0+

and hence

F (θ) =
1

θ
+

log θ

θ2
+

α1 + γE − 1

θ2
+ o(θ−2), θ → +∞. (6.23)

We can refine (6.23) to (using (6.22))

F (θ) =
1

θ
+

log θ + α∗

θ2
+

G(θ)

θ3
+ OR(θ−4) (6.24)

where α∗ = α1 + γE − 1 = 2.5464 . . . and

G(θ) = (log θ + α∗)
2 − log θ − α∗ +

3

2
. (6.25)

We shall see in Section 9 that knowing some of the higher-order terms in expansion (6.23) will allow for

more efficient numerical calculation of F (θ), and hence F2(γ).
While we cannot solve (6.20) or (6.22) explicitly, we can guess the behavior of F2(γ) as γ → +∞,

which will be needed for asymptotic matching purposes. This will correspond to knowing F (θ) as θ →
−∞. Let us assume that F2(γ) in (6.20) behaves as

F2(γ) ∼ ek1γ log γek2γγk3k4, γ → ∞. (6.26)

We use (6.26) in (6.20) and evaluate the integral by Laplace’s method, to yield

eγ

γ
ek1γ log γek2γγk3k4 ∼

∫ 1

0

γ2k3xk3(1 − x)k3k2
4e

k2γek1[γ log γ+γH(x)]dx

∼ γ2k3

(

1

4

)k3

k2
4e

k2γek1γ log γek1γH( 1
2 )
∫ ∞

−∞

e2γk1(x− 1
2 )

2

dx

= γ2k3

(

1

4

)k3

k2
4e

k2γek1γ log γe−k1γ log 2

√

π

−2γk1
. (6.27)

We conclude that

k1 = − 1

log 2
, k3 = −1

2
, k4 =

1√
2π log 2

. (6.28)

The constant k2 remains arbitrary, though it is uniquely determined once we know α1 in (6.11). The

numerical studies in Section 9 will show that k2 ≈ 3.696. To summarize, we have obtained

F1(γ) ∼ 1√
2π log 2

ek2γ

√
γ

exp

[(

1

3
− 1

log 2

)

γ log γ

]

γ → ∞. (6.29)

Using (6.29) and (6.9) in (6.2) yields the behavior of the γ-scale result for γ → ∞, and this will be used

in Section 7 to asymptotically match to an approximation valid for 0 < w < 1 and n → ∞.
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We also note that for θ ≡ −τ → −∞, (6.22) is consistent with an asymptotic expansion of the form

F (θ) ∼ A2τ

[

1 +

∞
∑

L=1

bLA−L2τ

]

, τ = −θ → ∞. (6.30)

Using (6.30) in (6.22) leads to the recurrence

bL−1 +

L
∑

i=0

bibL−i =











0, L odd

bL/2, L even

(6.31)

so that b1 = −1/2, b2 = −1/8, b3 = 0, etc. Using (6.30) to asymptotically invert the transform in (6.21)

leads to

F2(γ) =
1

2πi

∫

Br

eγθF (θ)dθ

∼ 1

2πi

∫

Br

eγθA2−θ

dθ

=
1

2πi

∫

C

1

log 2
e−γ log2 ueu log A du

u

=
1

log 2

(log A)γ/ log 2

Γ(1 + γ/ log 2)

∼ 1√
2πγ

1√
log 2

exp

[

− γ

log 2
log

(

γ

log 2

)]

exp

[

γ

log 2
(1 + log log A)

]

, γ → ∞. (6.32)

Here the contour C goes from −∞+ i0− to −∞+ i0+, encircling the branch cut along the negative real

axis in the u-plane. By comparing (6.26) (with (6.28)) to (6.32) we conclude that

k2 =
log log 2

log 2
+

1 + log log A

log 2
. (6.33)

In Section 9 we shall numerically obtain A and then (6.33) will be used to obtain k2. We note that (6.30)

implies that

2θ log[F (θ)] = log A − 1

2
2−τA−2τ

(1 + o(1)), τ = −θ → ∞ (6.34)

so that the left side should approach a constant value super-exponentially fast as θ → −∞.

Finally, we invert (2.3) to get b(n, p) using the result on the γ-scale. We scale

p = Θn4/3, Θ = O(1), Θ > 0 (6.35)

and use (6.1) so that

w−p = exp
[γp

n
+ O

( p

n2

)]

∼ exp(γn1/3Θ). (6.36)

With (6.2), (6.5), (6.9) and (6.36), (2.3) becomes

1

2πi

∫

C

Bn(w)w−p−1dw ∼ 4n+1

n

1

2πi

∫

Br

4γn−γ/3F1(γ) exp[n1/3(γΘ − |r0|41/3γ2/3)]
dγ

n
. (6.37)
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For n → ∞ we evaluate the last integral by the saddle point method, noting that there is a saddle point

along the real axis, at

d

dγ
(γΘ − |r0|41/3γ2/3) = 0 ⇒ γ = γ∗ ≡ 32

27

|r0|3
Θ3

. (6.38)

Then the standard Laplace estimate of (6.37) yields

b(n, p) ∼ 4n

n13/6

|r0|9/2

Θ5

512

81

n−γ∗/3

√
π

F1(γ∗) exp

[

−16

27
n1/3 |r0|3

Θ2

]

(6.39)

which applies for Θ = pn−4/3 fixed as n → ∞. Here F1(·) must be obtained by numerically solving

(6.10) or (6.20). We have thus established (2.41).

Since F1(0) = 1, expanding (6.39) as Θ → ∞ corresponds simply to dropping the factors n−γ∗/3 and

F1(γ∗). Thus (6.39) asymptotically matches to the result valid for p = O(n3/2), in view of (5.125) and

the fact that Ω = Θn−1/6. We can also infer the behavior of the right side of (6.39) as Θ → 0, which

corresponds to γ∗ → ∞ and p = o(n3/2). Using (6.29) we obtain

4n

n13/6

512

81π

1√
2 log 2

|r0|9/2

Θ5

Θ3/2

|r0|3/2

3
√

3

4
√

2
exp

[

−16

27
n1/3 |r0|3

Θ2

]

× exp

[

−1

3
γ∗ log n +

(

1

3
− 1

log 2

)

γ∗ log γ∗ + k2γ∗

]

=
1

n13/6

|r0|3
Θ7/2

64

9
√

3

1

π
√

log 2
exp

[

n log 4 − 41/3 9

16
|r0|n1/3γ

2/3
∗

− 1

3
γ∗ log n +

(

1

3
− 1

log 2

)

γ∗ log γ∗ + k2γ∗

]

. (6.40)

We will use (6.40) for asymptotic matching purposes in Sections 7 and 8.

7 Far Left Region

We consider (2.1) for 0 < w < 1 and n → ∞, and (2.3) for n → ∞ with p−n log2 n = O(n). Note that

p − n log2 n = O(n) contains pmin(n) in (2.13) (see also (7.29)).

We assume first that Bn(w) has an expansion of the form

Bn(w) = e−n log nf(w)eng(w)nh(w)q(w)[1 + o(1)], (7.1)

for 0 < w < 1 and n → ∞. If f(w) > 0 this means that Bn(w) will decay faster than exponentially as

n → ∞. Since

(n + 1) log(n + 1) = n log n + log n + 1 + O(n−1)

we see that with (7.1) the left side of (2.1) becomes

e−n log nf(w)eng(w)n−f(w)+h(w)q(w)eg(w)−f(w)[1 + o(1)]. (7.2)
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To evaluate the right side we treat the sum as an implicit Laplace-type integral. Using (7.1) the sum

becomes asymptotic to

en log w
n
∑

ℓ=0

ℓh(w)(n − ℓ)h(w)q2(w)eng(w) exp{−[ℓ log ℓ + (n − ℓ) log(n − ℓ)]f(w)}. (7.3)

We approximate the sum via Euler-MacLaurin to get

en log wn2h(w)+1q2(w)eng(w)e−n log nf(w)

∫ 1

0

xh(w)(1 − x)h(w)e−nf(w)H(x)dx (7.4)

where H(x) = x log x+(1−x) log(1−x) is as in (6.4). Assuming for now that f(w) > 0 we can evaluate

(7.4) as a Laplace integral for n → ∞, with the major contribution coming from x = 1
2 + O(n−1/2).

Using

H

(

1

2

)

= − log 2, H ′

(

1

2

)

= 0, H ′′

(

1

2

)

= 4, (7.5)

(7.4) becomes asymptotic to

eng(w)e−n log nf(w)q2(w)n2h(w)+1

√

π

2f(w)n

(

1

2

)2h(w)

exp[n(f(w) log 2 + log w)]. (7.6)

Comparing (7.1) to (7.6) we conclude that

f(w) = − log w

log 2
= − log2 w > 0, (7.7)

h(w) = log2 w − 1

2
, (7.8)

and

q(w) = w2+ 1
log 2

√

− log2 w
1√
2π

eg(w). (7.9)

However, the function g(w) remains undetermined. To summarize, assuming the ansatz (7.1) we have

obtained

Bn(w) = wn log2 ne(n+1)g(w)nlog2 w

√

− log2 w

2πn
w2+ 1

log 2 [1 + o(1)]. (7.10)

The numerical studies in Section 9 suggest that (7.10) is approximately correct for w > 0, but there

are oscillations present that become numerically significant when w becomes small. We thus re-examine

(2.1) with the more general ansatz

Bn(w) = e−n log nf(w)enB(w,n)nh(w)Q(w, n)[1 + o(1)]. (7.11)
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We allow B(w, n) and Q(w, n) to depend weakly upon n, in such a way that B(w, n + 1) ∼ B(w, n)
and Q(w, n + 1) ∼ Q(w, n) as n → ∞. Repeating the calculation we did with (7.1) we now find that for

n → ∞ the left side of (2.1) is

e−n log nf(w)e(n+1)B(w,n+1)nh(w)−f(w)Q(w, n + 1)e−f(w). (7.12)

The sum in the right side of (2.1) becomes

en log w
n
∑

ℓ=0

ℓh(w)(n − ℓ)h(w)Q(w, ℓ)Q(w, n − ℓ)eℓB(w,ℓ)+(n−ℓ)B(w,n−ℓ)

× exp{−[ℓ log ℓ + (n − ℓ) log(n − ℓ)]f(w)}. (7.13)

Again evaluating this by the Laplace method, we use

ℓB(w, ℓ) + (n − ℓ)B(w, n − ℓ)

= nB
(

w,
n

2

)

+
1

n

(

ℓ − n

2

)2
[

n2

2
Bnn

(

w,
n

2

)

+ 2nBn

(

w,
n

2

)

]

+ . . . , (7.14)

which follows upon expanding in Taylor series about ℓ = n/2. Then (7.13) becomes, for n → ∞,

en log we−n log nf(w)en(log 2)f(w)n1+2h(w)

(

1

2

)2h(w)

× enB(w, n
2 )Q2

(

w,
n

2

)

√

π

2n

[

f(w) − nBn

(

w,
n

2

)

− n2

4
Bnn

(

w,
n

2

)

]−1/2

.

Comparing (7.12) to (7.14) we again obtain (7.7). Then using

(n + 1)B(w, n + 1) = nB(w, n) + B(w, n) + nBn(w, n) + · · ·
we find that B(w, n) satisfies

B(w, n) = B
(

w,
n

2

)

. (7.15)

The most general solution of (7.15) is

B(w, n) = g(w) +

∞
∑

k=−∞

k 6=0

gk(w)e2πi(log2 n)k, (7.16)

where the sum represents an arbitrary, zero-mean periodic function of log2 n, with period one. Note that

(7.15) and (7.16) are indeed consistent with our assumption of slow variation. Unfortunately, we cannot

determine explicitly the Fourier coefficients gk(w) using purely the recurrence (2.1). With (7.16) we write

nBn

(

w,
n

2

)

= nBn(w, n) = B∗
1(w, n),

n2Bnn

(

w,
n

2

)

= n2Bnn(w, n) = B∗
2(w, n)
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where

B∗
1(w, n) =

2πi

log 2

∞
∑

k=−∞

kgk(w)e2πi(log2 n)k

B∗
2(w, n) =

2πi

log 2

∞
∑

k=−∞

[

2πi

log 2
k2 − k

]

gk(w)e2πi(log2 n)k. (7.17)

Returning to (7.12) and (7.14) we regain (7.8) and instead of (7.9) we obtain the equation

Q2
(

w,
n

2

)

= Q(w, n)w2+ 1
log 2

√
2πeg(w)

× eB∗

0 (w,n)+B∗

1 (w,n)

√

− log2 w − B∗
1(w, n) − 1

4
B∗

2(w, n). (7.18)

Here we wrote (7.16) as B(w, n) = g(w) + B∗
0(w, n).

A particular solution to (7.18) is

Qp(w, n) = w2+ 1
log 2

1√
2π

eg+B∗

0+B∗

1

√

− log2 w − B∗
1 − 1

4
B∗

2 (7.19)

and setting

Q(w, n) = Qp(w, n)Q̃(w, n)

we find that Q̃ satisfies

Q̃2
(

w,
n

2

)

= Q̃(w, n). (7.20)

Setting

G̃(w, n) = log[Q̃(w, n)]

we find that

2G̃
(

w,
n

2

)

= G̃(w, n) (7.21)

whose most general solution is

G̃(w, n) = n × [periodic function of log2 n]. (7.22)

However, then Q̃(w, n) can be incorporated into the factor exp[nB(w, n)] in (7.11). Thus in (7.11) we

can use (7.7), (7.8), (7.16) and (7.19). We have thus established (2.34) and (2.35).

We next examine the asymptotic matching between the results for 0 < w < 1 and w = 1 − O(n−1).
For γ → ∞ we expand (6.2) to get

4

n

n+1

exp[41/3r0n
1/3γ2/3 − 1

3
γ log n]

ek2γ

√
2π log 2

√
γ exp

[(

1

3
− 1

log 2

)

γ log γ

]

(7.23)
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where we also used (6.5), (6.9) and (6.29). By asymptotic matching, (7.23) should agree with the expan-

sion of (7.11) as w → 1. Since (7.23) contains no oscillatory terms, we conclude that nB∗
0(w, n) → 0 as

w → 1 and thus gk(w) = o(1 − w) as w → 1, for each k. Then (7.23) must match to the right side of

(7.10) (which neglected the oscillations), as the latter is expanded for w → 1. Noting that

wn log2 n =
(

1 − γ

n

)n log2 n

∼ exp

[

− γ

log 2
log n

]

and

nlog2 w ∼ 1,

(7.10) becomes

1√
2π log 2

√

1 − w

n
exp

(

− γ

log 2
log n

)

e(n+1)g(1−γ/n).

Thus, the matching is possible provided that

g(w) = log 4 + 41/3r0(1 − w)2/3 +

(

1

log 2
− 1

3

)

(w − 1) log(1 − w)

+ k2(1 − w) + o(1 − w), w ↑ 1. (7.24)

We have thus used asymptotic matching to infer the behavior of g(w) as w → 1, and this will play a major

role in Section 8.

Finally we discuss briefly the limit w → 0 with n fixed. From the discussion in Section 3, each Bn(w)
is a polynomial of the form

Bn(w) = Cnwpmin(n) + · · · + 2n−1w(n
2) (7.25)

where

pmin(n) =

n
∑

J=2

⌊log2 J⌋ = (n + 1)⌊log2 n⌋ − 2(2⌊log2 n⌋ − 1).

By using (7.25) in (2.1) we find that the dominant terms for w → 0 come from near the midpoint of the

sum ℓ ≈ n/2. More precisely, for n even we let n = 2N and obtain

C2N+1 =
∑

j∈S(N)

CN+jCN−j (7.26)

where

S(N) = {ℓ : pmin(N + ℓ) + pmin(N − ℓ) = 2pmin(N)}.
For n odd we set n = 2N + 1 and get

C2N+2 =
∑

j∈T (N)

CN+jCN+1−j (7.27)
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where

T (N) = {ℓ : pmin(N + ℓ) + pmin(N + 1 − ℓ) = pmin(N) + pmin(N + 1)}.

Note that 0 ∈ S(N) for all N , and 0, 1 ∈ T (N). If ℓ ∈ S(N) then −ℓ ∈ S(N), and if ℓ ∈ T (N)
then 1 − ℓ ∈ T (N). For example, we have S(1) = {0}, S(2) = {−1, 0, 1}, S(3) = {0}, T (0) = {0, 1},

T (1) = {0, 1}, T (2) = {0, 1}. Thus for n fixed we have

Bn(w) ∼ Cnwpmin(n), w → 0. (7.28)

We next show that (7.28) cannot be a special case of (7.14), as the latter is expanded for w → 0. Using

the Fourier series’

{x} =
1

2
−

∞
∑

k=−∞

k 6=0

e2πikx

2πik
=

1

2
−

∞
∑

k=1

sin(2πkx)

πk
,

2−{x} =
1

2

∞
∑

k=−∞

1

log 2 + 2kπi
e2πikx,

where the first sum omits the term k = 0, we can represent pmin(n) as

pmin(n) = n log2 n + n

[

−1

2
− 1

log 2

]

= n

∞
∑

k=−∞

k 6=0

log 2

2πik(log 2 + 2πik)
e2πik log2 n

= log2 n +
3

2
+

∞
∑

k=−∞

k 6=0

e2πik log2 n

2πik
. (7.29)

This form yields the asymptotic behavior as n → ∞. Now, if (7.14) were to contain (7.28) as a special

case (at least for n → ∞), it would need to behave as Casy
n exp(pmin(n) log w) for w → 0, where Casy

n

is understood as the asymptotic behavior of Cn as n → ∞. By comparing (7.29) to (2.34) we see that the

largest factors, i.e., exp(n log2 n log w), match automatically, and the factors that are exp(O(n)) agree if

g(w) ∼
(

−1

2
− 1

log 2

)

log w, w → 0,

gk(w) ∼ log 2

2πik(log 2 + 2πik)
log w, w → 0. (7.30)

With (7.30) we then have

eg(w)w2+ 1
log 2 ∼ w3/2, w → 0,
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and the term log2 n in pmin(n) corresponds to the factor nlog2 w = wlog2 n in (2.34). Furthermore

exp[B∗
0(w, n) + B∗

1(w, n)] = exp











∞
∑

k=−∞

k 6=0

(

1 +
2πik

log 2

)

gk(k)e2πik log2 n











∼ exp











log w







∞
∑

k=−∞

k 6=0

e2πik log2 n

2πik

















, w → 0

which corresponds to the last sum in (7.29). However, (2.34) still has the factor

1√
2πn

√

− log2 w − B∗
1(w, n) − 1

4
B∗

2(w, n)

which for w → 0 would look like
√

− log2 w times a function of n, and such a factor can have no analog

in (7.28), regardless of the form of Cn for n → ∞.

This shows that yet another scale is needed in order to completely understand the asymptotic behavior

of Bn(w). This scale would have w → 0 and n → ∞ simultaneously. We have not been able to identify

this scale precisely nor to analyze it. It is, however, not important for understanding the asymptotic for
∑

n b(n, p), as this requires w → 1, as shown in Section 8.

Finally, we use the form (7.10) to obtain an approximation to b(n, p). We set

p = n log2 n + αn, α = O(1)

so that

wn log2 nw−p−1 = w−αn−1

and we have, for α fixed,

b(n, p) ≈ 1

2πi

∫

C

1

w
eg(w)nlog2 w

√

− log2 w

2πn
w2+ 1

log 2 exp[n(g(w) − α log w)]dw. (7.31)

For n → ∞ we can use the saddle point method. There is a saddle in the range w = O(1) if we can solve

the equation g′(w) = α/w. The numerical studies of g(w) in Section 9 suggest this is indeed possible,

and then the standard saddle point approximation leads to (2.42).

8 The Matching Region Between the Left and Far Left Scales

In Section 7 we showed that the expansions for 0 < w < 1 (p = n log2 n + O(n)) and w = 1 − O(n−1)
(p = O(n4/3)) can match in some intermediate limit. Here we examine in more detail the solution in this

matching region, as this is the key to understanding the distribution of the number of nodes in trees of a

given (large) total path length p (cf. (2.12)). For a fixed p, as we increase n we move from right to left.

The result in (6.39) shows that for a fixed Θ = pn−4/3, b(n, p) still grows with n, due to the dominant

exponential factor of 4n. However, for p = n log2 n + O(n), (2.42) shows that for fixed p/n − log2 n,

b(n, p) grows (decays) with n according as g(w∗) − α log w∗ > 0 (< 0). However, numerical studies
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(cf. Section 9) show that this quantity is negative unless w∗ → 1. Thus to find the limiting distribution of

the number of nodes we need the maximum of b(n, p) over n, and this occurs precisely in the matching

region, where this function will achieve a Gaussian peak.

As (p − n log2 n)/n = α → ∞ we have w∗ → 1 and the non-constant Fourier coefficients in (2.34)

(i.e., gk(w), k 6= 0) vanish as w → 1. Thus we use (2.37) and (2.42). For α → ∞ we can solve the

equation

wg′(w) = α (8.1)

for the saddle w = w∗(α) asymptotically, using the relations

g(w) = log 4 − 41/3|r0|(1 − w)2/3 +

(

1

log 2
− 1

3

)

(w − 1) log(1 − w) − k2(w − 1) + o(w − 1),

(8.2)

g′(w) = 41/3 2

3
|r0|

(

1

1 − w

)1/3(
1

log 2
− 1

3

)

log(1 − w) + −1

3
+

1

log 2
− k2 + o(1), (8.3)

and

g′′(w) ∼ 2

9
41/3|r0|(1 − w)−4/3, w → 1−. (8.4)

To facilitate the calculation, we set

A0 =
2

3
41/3|r0|, A1 =

1

log 2
− 1

3
, A2 = −1

3
+ log 2 − k2 = A1 − k2 (8.5)

and

w∗ = 1 − ∆. (8.6)

We rewrite (8.1) as

α = [A0∆
−1/3 + A1 log ∆ + A2 + o(1)](1 − ∆), ∆ → 0 (8.7)

which can be rearranged to give

∆

A3
0

= [α − A1 log ∆ − A2 + α∆ + o(1)]−3

= α−3

[

1 − A1 log ∆ + A2

α
+ ∆ + o

(

1

α

)]−3

= α−3

[

1 +
3

α
(A1 log ∆ + A2) + o(α−1)

]

. (8.8)

It follows that

∆ ∼ A3
0

α3
, α → ∞ (8.9)
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and this can be refined to the expansion

∆ =

(

A0

α

)3 [

1 +
δ1

α
+

δ2

α2
+ · · ·

]

, α → ∞ (8.10)

where

δ1 = 3A2 − 9A1 log

(

α

A0

)

. (8.11)

We next evaluate g(w∗)−α log w∗ as α → ∞ and w∗ → 1. We note that this is the exponential growth

rate, in n, of (2.42). Using (8.6), (8.10) and (8.11) we obtain

g(w∗) − α log w∗ = g(1 − ∆) − α log(1 − ∆)

= log 4 +
1

2
A1∆ log ∆ +

(

3

2
A2 + k2

)

∆ − 1

2
α∆ + O(α∆2)

= log 4 − A3
0

2

1

α2
+

A3
0

α3

[

3A1 log

(

α

A0

)

+ k2

]

+ OR(α−4). (8.12)

Here we also used (8.7) in the form α∆ ∼ A0∆
2/3 + A1∆ log ∆ + A2∆.

To find the maximum of ng(w∗) − nα log w∗ we need to asymptotically solve

∂

∂n
[ng(w∗) − nα log w∗] = g(w∗) +

log n + 1

log 2
log w∗ = 0. (8.13)

Here we note that w∗ depends on n through α, but g′(w∗) = α/w∗ by (8.1). Also, nα = p − n log2 n so

that ∂(nα)/∂n = − log2 n − 1/ log 2. Let us write the solution of (8.13) as n = ñ = ñ(p). Setting

F (n; p) = ng(w∗) − nα log w∗ (8.14)

we have

Fn(n; p) = g(w∗) +
log n + 1

log 2
log w∗ (8.15)

and

Fnn(n; p) = g′(w∗)
∂w∗

∂n
+

log w∗

n log 2
+

log n + 1

w∗ log 2

∂w∗

∂n

=

(

α +
log n + 1

log 2

)

1

w∗

∂w∗

∂n
+

1

n log 2
log w∗. (8.16)

We also define

Ψ0(p) = F (ñ(p); p) (8.17)

and

V0(p) = −1/Fnn(ñ(p); p). (8.18)
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We will see that Ψ0(p), ñ(p) and V0(p) will provide asymptotic approximations to the exponential growth

rate of the total number of trees of path length p, and the mean and variance of the Gaussian distribution

of the number of nodes in such trees.

We use (8.2) and (8.10) in (8.13), which as w∗ → 1 yields

log 4 − log n + 1

log 2

[

A3
0

α3
+

3A3
0

α4

(

A2 − 3A1 log

(

α

A0

))]

−3

2
A0

A2
0

α2

[

1 +
2

α

(

A2 − 3A1 log

(

α

A0

))]

+ k2
A3

0

α3
− A1

A3
0

α3
3 log

(

A0

α

)

+ o(α−3) = 0.

To leading order, log 4 must be balanced by the term proportional to α−3 log n, and we have

α ∼ A0

(log 2)1/3

(log n)1/3

(log 4)1/3
=

A0(log n)1/3

21/3(log 2)2/3
, n = ñ(p). (8.19)

This shows that for a fixed p, the maximum of b(n, p) occurs in the range p = n log2 n + O[n(log n)1/3].
We compare this to pmin(n) = n log2 n + O(n) (cf. (2.13)). From (8.9) and (8.19) we conclude that

∆̃ ∼ 2(log 2)2

log n
∼ 1 − w̃, n = ñ(p) → ∞. (8.20)

Here we write w∗ = w∗(n, p) via (8.1) and let

w̃ = w̃(p) = w∗(ñ(p), p), ∆̃ = ∆̃(p) = 1 − w∗(ñ(p), p),

α̃ =
p − ñ(p) log2[ñ(p)]

ñ(p)
. (8.21)

Using (2.42) we have

∑

n

b(n, p) ∼ 1

2πñ

(w̃)2+
1

log 2

√

α̃ + w̃2g′′(w̃)
nlog2 w̃eg(w̃)

√

− log2 w̃

×
∞
∑

n=−∞

exp

[

ng(w̃) − nα log w̃ +
1

2
Fnn(ñ(p); p)(n − ñ(p))2

]

(8.22)

where we approximated the sum by the Laplace method. Now,

nlog2 w̃ = exp[log2 n log(1 − ∆̃)] ∼ exp[−2 log 2] =
1

4
,

eg(w̃) ∼ exp[log 4] = 4

and

α̃ + w̃2g′′(w̃) ∼ α̃ +
1

3
A0(∆̃)−4/3 ∼ 1

3
A02

−4/3(log 2)−8/3(log ñ)4/3.
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Thus (8.22) becomes

∑

n

b(n, p) ∼ 1

2πñ

(

1

log ñ

)7/6√
3

A0
27/6(log 2)11/6

×
√

2π

−Fnn(ñ(p); p)
exp[F (ñ(p); p)]. (8.23)

In view of (8.13) and (8.14) we have

F (ñ(p); p)) = −
(

p +
ñ

log 2

)

log w̃ =

(

p +
ñ

log 2

)

[∆̃ + O(∆̃2)]. (8.24)

From (8.23), (8.24), (8.19) and (8.20) we obtain the growth rate

log

[

∑

n

b(n, p)

]

∼ p

log p
(2 log2 2), p → ∞. (8.25)

To refine (8.25) and make (8.23) more explicit, we consider (8.1) and (8.13) as a simultaneous system

to determine w̃ and ñ (or, equivalently, α̃) as functions of p. By expanding (8.13) about w∗ = 1 and

setting

S = S(p) = log ñ (8.26)

we obtain

0 = log 4 − S

log 2
∆ − S

2 log 2
∆2 − 3

2
A0∆

2/3 − A1∆ log ∆ + k2∆ − 1

log 2
∆ + OR(S−2) (8.27)

where we also used (8.2). From (8.27) it follows that as S → ∞, ∆ has the expansion

∆ =
a

S
+

b

S4/3
+

c

S5/3
+

d

S2
+ OR(S−7/3) (8.28)

where

a = 2(log 2)2, b = 0, (8.29)

c = −3

2
(log 2)A0a

2/3 = −3

2
22/3A0(log 2)7/3, (8.30)

d = log 2

[(

k2 −
1

log 2

)

a − a2

2 log 2
+ A1a log

(

S

a

)]

(8.31)

and we note that d depends weakly on S (as log S).

Next we use (8.3) and rewrite (8.1) as

p

ñ
− log2 ñ = (1 − ∆)[A0∆

−1/3 + A1 log ∆ + A2 + o(1)]. (8.32)
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We set

ñ(p) = pn∗(p), Q = log p (8.33)

with which (8.32) becomes

1

n∗
− S

log 2
= A0

(

S

a

)1/3

− A0
c

3a4/3

1

S1/3
− A0

d

3a4/3

1

S2/3

+ A1

[

− log

(

S

a

)

+
c

a

1

S2/3

]

+ A2 − A0
a2/3

S2/3
+ OR(S−1) (8.34)

where we expanded ∆ in (8.32) using (8.28). Noting that

S = Q + log n∗ ∼ Q

and

S1/3 ∼ Q1/3 +
1

3
Q−2/3 log n∗

we rewrite (8.34) as

1

n∗
=

Q

log 2
+

log n∗

log 2
+

A0

a1/3
Q1/3 + A2 + A1 log a − A1 log Q + OR(Q−1/3). (8.35)

It follows that n∗ has the expansion

n∗ =
log 2

Q
+

ν

Q5/3
+

ν′

Q2
+ OR(Q−7/3) (8.36)

where

ν = − A0

a1/3
(log 2)2

and

ν′ = log 2[log Q − log log 2] + A1 log Q(log 2)2 − (A2 + A1 log a)(log 2)2.

Hence, as p → ∞ (with Q = log p) we have

ñ(p) =
p

Q
log 2

[

1 − A0

a1/3

log 2

Q2/3
+

Z

Q
+ OR(Q−4/3)

]

,

Z = (A1 log 2 + 1) log Q − log log 2 − (A2 + A1 log a) log 2. (8.37)

Recalling that n = ñ(p) corresponds to the maximum of b(n, p) for a fixed large p, (8.37) is also the

expansion of N (p), so we have established (2.18). We also note that

nmax(p) − ñ(p) ∼ A0
(log 2)2

a1/3

p

(log p)5/3
= o(p), p → ∞.

Here nmax(p) is the inverse of pmin(n) in (2.13).
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Next we refine (8.25) and also obtain the variance in (8.18). From (8.17), (8.24) and (8.28) we have

Ψ0(p) =

(

p +
ñ

log 2

)[

a

S
+

c

S5/3
+

(

d +
a2

2

)

1

S2
+ OR(S−7/3)

]

=

[

p +
p

log p
+ O

(

p

Q5/3

)]{

a

Q
+

c

Q5/3

+

[

d +
a2

2
+ a(log Q − log log 2)

]

1

Q2
+ OR(Q−7/3)

}

=
p

Q

[

a +
c

Q2/3
+

(

a +
a2

2
+ d − a log log 2 + a log Q

)

1

Q
+ OR(Q4/3)

]

. (8.38)

From (8.31) we see that

d + a +
a2

2
= a log 2

[

k2 + A1 log

(

Q

a

)]

+ o(1), Q → ∞

so that (8.38) leads to (2.14) with (2.15).

To obtain the variance, we use (8.16) and (8.18). From (8.10) we obtain

∂w∗

∂n
∼ − 3

α4

A3
0

n

(

p

n
+

1

log 2

)[

1 +
4A2

α
+

3A1

α
− 12A1

α
log

(

α

A0

)]

and then (8.16) becomes

−nFnn =

[

log n

log 2
+ α +

1

log 2

]2
3A3

0

α4

{

1 +
1

2

[

4A2 + 3A1 − 12A1 log

(

α

A0

)]}

+ O

(

1

log n

)

.

(8.39)

Now let n = ñ(p) and use

[

log n

log 2
+ α +

1

log 2

]2

=

[

Q

log 2
+ O(Q1/3)

]2

=
Q2

(log 2)2
+ O(Q4/3).

From (8.19) and (8.37) we obtain

α̃ ∼ A0

21/3(log 2)2/3
[log p + log log 2 − log Q + O(Q−2/3)]1/3 ∼ A0

21/3(log 2)2/3
Q1/3.

Using the above in (8.39) we obtain

Fnn(ñ(p); p) ∼ − 1

ñ(p)

Q2

(log 2)2
3

A0
24/3(log 2)8/3Q−4/3 ∼ −Q5/3

p

6a1/3

A0 log 2
. (8.40)

We have thus obtained the leading term in the variance in (2.19). We will obtain the correction term using

a somewhat different method (cf. (8.46) and (8.47)).
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Using (8.40) and (8.37) in (8.23) leads to (2.14). To summarize, in the limit α → ∞ and pn−4/3 → 0
we have obtained the approximation

b(n, p) ∼ 3

π

21/6

√
log 2|r0|1/2

1

n

(

A0

α

)7/2

exp

[

−A3
0

α3

log n

log 2

]

× 4n exp

[

−A3
0n

2α2
+

A3
0n

α3
(k2 + 3A1 log α − 3A1 log A0)

]

. (8.41)

This follows by expanding (2.42) for w∗ → 1, and also matches to (6.40), as can be seen by replacing α
in (8.41) by p/n − log2 n ∼ p/n. We note that in this limit

γ∗ =
32

27

|r0|3
Θ3

=
32

27

|r0|3n4

p3
∼ A3

0

α3
n.

Expanding (8.41) about n = ñ(p) (or α = α̃) leads to the Gaussian form in (2.20).

For numerical purposes it sometimes proves useful to base our approximations on (8.41). To this end

we define

H(α) = − A3
0

2α2
+

A3
0

α3
(k2 + 3A1 log α − 3A1 log A0)

Φ(n, p) ≡ n log 4 + nH(α). (8.42)

Then ∂Φ/∂n = 0 is equivalent to solving

log 4 + H(α) − 1

log 2
H ′(α) − p

n
H ′(α) = 0. (8.43)

We denote the solution to (8.43) by

n = n̂(p), α̂(p) =
p

n̂(p)
− log2[n̂(p)]

where we are viewing the problem for a fixed p. We also have, since α = p/n − log2 n,

∂2Φ

∂n2
= − 1

n log 2
H ′(α) +

1

n

(

p

n
+

1

log 2

)2

H ′′(α)

and we get Φ̂ = Φ(n̂(p), p) and

V̂(p) = − 1

Φnn(n̂(p), p)
.

Solving for n̂ asymptotically as p → ∞ regains the expansion of the mean in (8.37), though using the

more implicit form (8.43) may be advantageous numerically (cf. Section 9). Thus we can use (Φ̂, n̂, V̂)
as the approximations to the growth rate, mean and variance, and these are asymptotically equivalent to

the results in (2.14) - (2.19). For example, solving (8.43) for p → ∞ we have

α̂ = A0

(

Q

a

)1/3

+ A2 + A1 log a − A1 log Q + OR(Q−1/3) (8.44)
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and we note that

H ′′(α̂) = −3A3
0

α̂4
+

A3
0

α̂5

[

36A1 log

(

α̂

A0

)

− 12A2 − 9A1

]

. (8.45)

Using (8.44) in (8.45) leads to

H ′′(α̂) = − 3

A0

(

a

Q

)4/3

− 9A1

A2
0

(

a

Q

)5/3

+ OR(Q−2). (8.46)

Thus,

∂2Φ

∂n2
(n̂(p), p) =

1

n̂

(

p

n̂
+

1

log 2

)2

H ′′(α̂) + O

(

1

n̂ log n̂

)

. (8.47)

Using (8.46) in (8.47) leads to the two term approximation to the variance in (2.19). Note that while the

leading terms in the expansion of the growth rate (log
∑

n b(n, p)) and the mean do not involve the root r0

of the Airy function, the leading term for the variance does involve this root. Also, the correction terms for

the growth rate and mean are smaller than the leading terms by factors of Q−2/3 = (log p)−2/3, but the

correction term to the variance is smaller by only an O(Q−1/3) = O((log p)−1/3) factor. This completes

the proof of Result 2.

9 Numerical Studies

We give numerical results that determine some unknown constants/functions, and also provide back-up to

the various assumptions we made.

For w > 1 we gave in Table 1, numerical values of B∗(w) (∼ Bn(w)21−nw−(n
2), n → ∞) for various

w, and sketched this function in Figure 1 (cf. Section 2). We test the accuracy of the asymptotic relation

in (2.23). Let B̄n(w) be the exact solution to (3.2). Then our analysis predicts that B̄n(w) → B∗(w) as

n → ∞ for each w > 1, and then

(w − 1) log[B∗(w)] → d0 =

∫ log 2

0

ζ

eζ − 1
dζ = .58224 . . . (9.1)

as w ↓ 1. In Table 2, we compute (w − 1) log[B̄∞(w)] and also (w − 1)
[

log[B̄∞(w)] − 1
2 log(w − 1)

]

for various w > 1. Here, for each fixed w, B̄∞(w) is computed by iterating (3.2) for n sufficiently large

until B̄n(w) settles to a constant to 3 digits. Both of the tabulated functions should approach d0 as w ↓ 1,

with the latter function approaching more rapidly, since it includes information from the algebraic factor√
w − 1 in (2.23). We see that both functions are indeed approaching d0 as w → 1, with the second

function having a faster rate of approach. Next we attempt to verify the constant d1 in the asymptotic

relation (2.23), by computing

D1(w) ≡ exp

(

− d0

w − 1

)

B̄∞(w)√
w − 1

in Table 3, for various w > 1. Our analysis predicts that D1(w) → d1 = 2.1350 . . . as w ↓ 1. It became

very difficult to compute B̄∞(w) for w ≤ 1.04, since for w & 1 the convergence of B̄n to B̄∞ is very

slow. We see from Table 3 that D1(w) still changes appreciably as w goes from 1.08 to 1.06 to 1.04. The
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Tab. 2:

w (w − 1) log(B̄∞) (w − 1)
[

log(B̄∞) − 1
2 log(w − 1)

]

2 .358 .358

1.8 .372 .461

1.6 .390 .544

1.4 .417 .601

1.2 .462 .623

1.18 .468 .622

1.16 .475 .621

1.14 .482 .620

1.12 .490 .618

1.10 .499 .614

1.08 .510 .611

1.06 .521 .606

1.04 .535 .600

1.02 .552 .592

1 .582 .582
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Tab. 3:

w D1(w)

5 .46499

4.5 .49262

4 .52591

3.5 .56716

3 .62021

2.5 .69229

2 .79923

1.8 .85978

1.6 .93848

1.4 1.0485

1.2 1.2274

1.18 1.2531

1.16 1.2812

1.14 1.3123

1.12 1.3473

1.10 1.3872

1.08 1.4338

1.06 1.490

1.04 1.56

1 2.1350
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data are not inconsistent with the theoretical value, but w would have to be made much closer to one for

us to reach a more definite conclusion.

We next consider the β-scale, where w = 1 + β/n = 1 + O(n−1) with β > 0. Here the asymptotic

result is given by (2.25). In Tables 4 and 5, we compare

1

n
log

[

Bn

(

1 +
β

n

)]

(9.2)

to Φ(β) = log 2 + β
2 + φ(β) (cf. (2.25)) for β = .25, .5, 1, 2 and 4, respectively, and for various n. Our

WKB expansion predicts that (9.2) should approach Φ(β) as n → ∞. The tables clearly demonstrate this

convergence. The data are also consistent with an O(n−1 log n) error term, which is predicted by (2.25).

The convergence is slowest when β = .25 (cf. Table 4), which is to be expected since our analysis predicts

that once β becomes O(n−1/2), the expansion becomes invalid and we must use the a-scale result.

In Table 6, we compare
√

ne−nΦ(β)Bn

(

1 +
β

n

)

(9.3)

to
√

βĝ(β), which should be the limit of (9.3) as n → ∞. Table 6 has β = .5, 1, and 2, respectively.

Again the tables show the convergence predicted by the WKB ansatz (4.9). However, the convergence is

much slower than one would expect with the O(n−1) error term in (4.9). The numerical data suggest that

the error term may be O(n−1/2) (i.e., a term n−1/2g(1/2)(β) should be included in the series in (4.9)).

To resolve this issue more conclusively, we would have to examine higher-order asymptotic matching

between the a-scale and β-scale. This would necessitate, among other things, continuing (2.28) into the

range a > 0 and the evaluating the result for a → +∞.

We next consider the a-scale result. We recall that obtaining the right tail of the Airy distribution

involved showing that

D(y) = D(a2/3) ∼ 4√
π

aea2/3, a → +∞. (9.4)

In Table 7 we give D(a2/3)a−1e−a2/3 for various values of a ≥ 1. This clearly shows that the function

is approaching the constant 4/
√

π = 2.2567 . . . . To compute the exact values of D(y) we used the

recurrence (5.25), (5.23) and (5.20).

Now consider the expansion on the γ-scale, where w = 1 − O(n−1). Here we must solve (6.20) or,

equivalently, (6.22). Given the asymptotic behavior of F (θ) in (6.24) as θ → ∞, we used the following

numerical scheme: (i) Fix a large N , (ii) let F̃ (J) satisfy the recurrence

F̃ (J − 1) = F̃ (J) + F̃ 2(J), J = N,N − 1, . . . ,−M + 1, (9.5)

subject to the “terminal” condition

F̃ (N) =
1

N
+

log N + α∗

N2
+

(log N + α∗)
2 − log N − α∗ + 3

2

N3
,

(iii) use the approximation

F (−M) ≈ F̃ (−M).
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Tab. 4:

β = .25

n 1
n log(Bn) Φ(β)

10 1.0517 1.4039

20 1.1984

30 1.2569

40 1.2889

50 1.3092

75 1.3378

100 1.3530

125 1.3624

150 1.3688

200 1.3769

250 1.3820

500 1.3923

750 1.3959

1000 1.3978

2000 1.4006

3000 1.4017

5000 1.4025

10,000 1.4031

β = .5

n 1
n log(Bn) Φ(β)

10 1.1310 1.4475

20 1.2702

30 1.3232

40 1.3514

50 1.3689

75 1.3931

100 1.4055

125 1.4132

150 1.4184

200 1.4251

250 1.4292

500 1.4377

750 1.4408

1000 1.4423

2000 1.4448

3000 1.4456

5000 1.4463

10,000 1.4469

β = 1

n 1
n log(Bn) Φ(β)

10 1.2910 1.5822

20 1.4245

30 1.4724

40 1.4972

50 1.5125

75 1.5335

100 1.5445

125 1.5513

150 1.5559

200 1.5618

250 1.5655

500 1.5732

750 1.5759

1000 1.5774

2000 1.5796

3000 1.5804

5000 1.5811

10,000 1.5816
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Tab. 5:

β = 2

n 1
n log(Bn) Φ(β)

10 1.6123 1.9498

20 1.7670

30 1.8223

40 1.8512

50 1.8690

75 1.8936

100 1.9064

125 1.9143

150 1.9197

200 1.9266

250 1.9308

500 1.9397

750 1.9428

1000 1.9444

2000 1.9469

3000 1.9478

5000 1.9486

10,000 1.9491

β = 4

n 1
n log(Bn) Φ(β)

10 2.2336 2.8364

20 2.5013

30 2.6024

40 2.6559

50 2.6892

75 2.7351

100 2.7588

125 2.7734

150 2.7833

200 2.7959

250 2.8035

500 2.8193

750 2.8247

1000 2.8275

2000 2.8318

3000 2.8333

5000 2.8344

10,000 2.8354
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Tab. 6:

β = .5

n
√

ne−nΦBn

√
βĝ

10 .13346 .18155

20 .12886

30 .13149

40 .13512

50 .13859

75 .14540

100 .14995

125 .15307

150 .15530

200 .15833

250 .16033

500 .16525

750 .16749

1000 .16885

2000 .17158

3000 .17299

4000 .17369

5000 .17426

10,000 .17578

β = 1

n
√

ne−nΦBn

√
βĝ

10 .17190 .28196

20 .19081

30 .20327

40 .21132

50 .21688

75 .22557

100 .23085

125 .23456

150 .23737

200 .24144

250 .24433

500 .25202

750 .25574

1000 .25812

2000 .26297

3000 .26509

4000 .26684

5000 .26791

10,000 .27078

β = 2

n
√

ne−nΦBn

√
βĝ

10 .10819 .16437

20 .11552

30 .11961

40 .12245

50 .12461

75 .12844

100 .13105

125 .13300

150 .13454

200 .13687

250 .13858

500 .14338

750 .14583

1000 .14740

2000 .15072

3000 .15256

4000 .15343

5000 .15419

10,000 .15623
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Tab. 7:

a D(a2/3)a−1e−a2/3

1 2.242

2 2.035

3 2.102

4 2.168

5 2.204

6 2.222

7 2.232

8 2.238

9 2.242

10 2.245

11 2.247

12 2.248

13 2.249

14 2.250

15 2.251

20 2.253

25 2.254

30 2.255

50 2.256

100 2.256

∞ 2.2567. . .
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Tab. 8:

N 2−5F̃ (−5)

1000 6.8809

2000 6.8807

3000 6.8804

5000 6.8800

10,000 6.8794

For M large and positive, (6.30) shows that

2−M log[F (−M)] = log A − 1

2
2−MA−2M

+ · · · , M → ∞. (9.6)

Thus the left side of (9.5) should approach the constant log A very rapidly (as a double exponential) as

M → ∞, if A > 1. We have found that taking M = 5 is sufficient to get log A to several decimal places.

In Table 8 we take M = 5, solve (9.5) for various N and give 2−5F̃ (−5), which is an approximation to

log A that should become exact as N → ∞. This shows that

log A ≈ 6.880 (9.7)

and then (6.33) yields

k2 ≈ 3.696. (9.8)

The latter constant corresponds to the exponential growth rate of F1(γ) in (6.29), and thus that of the

approximation on the γ-scale in (6.2) or (2.30) - (2.33).

Next we consider n → ∞ with 0 < w < 1, where the approximation (2.37) applies (or its refinement

(2.34), that allows for oscillations). If we were to ignore the oscillations and define

g(n)
num(w) ≡ 1

n + 1
log

[√
2πn log 2Bn(w)w−n log2 n

nlog2 w
√− log ww2+ 1

log 2

]

, (9.9)

then we should have g
(n)
num(w) → g(w) as n → ∞ for each fixed 0 < w < 1. Of course we should

also have n−1 log[Bn(w)w−n log2 n] → g(w), but including the other factors in the right side of (9.9)

should help with the convergence, as shown by the asymptotic analysis of Section 7. In Table 9, we plot

g
(n)
num(w) large n, for several w < 1. These data show that for n sufficiently large, g

(n)
num(w) is constant

to several decimal places, except when w ≤ .001, where this function oscillates (with n) over a certain

range. This range is indicated in Table 9 for w = .001, .0001 and .00001. Our study suggests that while

the oscillations corresponding to gk(w) in (2.35) are indeed present, they are numerically very small,

unless w itself is very small. We also recall that the analysis in Section 7 predicted that gk(w) has a
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logarithmic singularity, for each k, as w → 0 (cf. (7.30)). For practical purposes we can use (2.37) and

(2.42) as the approximations to Bn(w) and b(n, p), though g(w) must still be determined numerically,

using, e.g., Table 9. We also note from the table that g(w) is approaching, as w → 1, the theoretical value

g(1) = log 4 = 1.3862 . . . .

In Table 10 we examine the matching region between the scales w = 1 − O(n−1) and 0 < w < 1.

By asymptotic matching we showed that g(w) behaves as (8.2) for w ↑ 1. Let us define CONST =

CONST(w;n)

≡ 1

1 − w

{

g(n)
num(w) −

[

log 4 + 41/3r0(1 − w)2/3 +

(

1

log 2
− 1

3

)

(w − 1) log(1 − w)

]}

. (9.10)

For w not small, we can choose n sufficiently large to make (9.10) independent of n to several decimal

places. Then as w → 1 our analysis shows that (9.9) should approach the constant k2. The convergence

becomes very slow with n when w is only slightly less than one, but the data shows that CONST is

decreasing to some value < 3.792, and this is consistent with our theoretical value in (9.8). This provides

numerical evidence both for the form (8.2), as well as the numerical value of k2.

Finally we do some numerical studies of our main results, which consist of the growth rate of the total

number of trees of a given path length, and the distribution of these trees as characterized by their numbers

of nodes. In Figure 2, we plot the exact b(n, p) for p = 190 and p = 250 with n ∈ [nmin(p), nmax(p)] =
[20, 49] and [23, 61]. While this graph possibly resembles a Gaussian near the peak, the value of p is too

small for us to be certain. In Table 11 we compare the exact values of log[
∑

n b(n, p)] to the one-term,

two-term and three-term asymptotic approximations to the exponent in (2.14). The one-term approxima-

tion is ap/Q = 2(log 2)2p/ log p, the two-term includes the O(Q−2/3) correction, and the three-term

includes also the OR(Q−1) correction. Table 11 shows that the one-term approximation underestimates

the true value by about 20%, the two-term approximation is very poor, while the three-term approxima-

tion is quite accurate. In Table 12, we give the exact mean total path length N (p) (cf. the one- two- and

three-term asymptotic approximations in (2.18). We again see that the two-term approximation is actually

worse than the one-term, and the three-term result is better than the one-term. In Table 13, we give the

exact variance V(p) along with the one- and two-term approximations in (2.19). We see that the one-term

approximation is fairly accurate (10% errors), while the two-term underestimates significantly the true

value.

To explain these numerical trends we note that the ratios of coefficients of the second term to the first

term are respectively given by:

growth rate: R0 ≡ 3
2A0

log 2
a1/3 = 21/3(log 2)1/3|r0| = 2.6070 . . .

mean: R1 ≡ 2
321/3(log 2)1/3|r0| = 1.7380 . . .

variance: R2 ≡ 3A1

A0
a1/3 = 9

2
1

|r0|

(

1 − log 2
3

)(

1
2 log 2

)1/3

= 1.3272 . . . .

All of these numbers exceed unity. To compensate for the ratio being large we need to have Q−2/3 (growth

rate, mean) or Q−1/3 (variance) sufficiently small. However, when p = 250, Q1/3 = (log p)1/3 =
1.767 . . . and Q2/3 = 3.123 . . .; increasing p to 500 gives Q1/3 = 1.838 . . . and Q2/3 = 3.380 . . . . Thus

to make the second term in the growth rate numerically smaller than the first, we need p ≈ 67.3. Indeed,

Table 11 shows that the two-term approximation is actually negative for p = 20−50. To make the second
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Tab. 9:

w g
(n)
num(w)

.999999 1.3853

.99999 1.3841

.9999 1.3791

.999 1.3605

.99 1.3042

.9 1.26

.8 1.37

.7 1.55

.6 1.77

.5 2.06

.4 2.44

.3 2.94

.2 3.66

.1 4.94

.01 9.33

.001 13.7 - 13.8

.0001 18.1 - 18.4

.00001 22.5 - 23.0
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Tab. 10:

w g
(n)
num(w) CONST

.8 1.379 4.525

.9 1.269 4.273

.925 1.256 4.200

.95 1.254 4.116

.975 1.2715 4.010

.99 1.3042 3.915

.999 1.3606 3.792

0

5e+17

1e+18

1.5e+18

2e+18

2.5e+18

20 25 30 35 40 45

(a) p = 190 with n in the range [20..49]

0

2e+22

4e+22

6e+22

8e+22

1e+23

1.2e+23

1.4e+23

1.6e+23

1.8e+23

25 30 35 40 45 50 55 60

(b) p = 250 with n in the range [23..61]

Fig. 2: Plots of b(n, p).
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Tab. 11:

p log[
∑

n b(n, p)] 1-term 2-term 3-term

20 6.4425 6.4151 < 0 8.860

30 9.2943 8.4755 < 0 11.47

40 11.702 10.419 < 0 13.92

50 14.301 12.281 < 0 16.25

75 20.145 16.692 .27965 21.72

100 25.659 20.865 1.2131 26.86

125 30.940 24.876 2.1739 31.77

150 36.037 28.765 3.1545 36.50

175 40.989 32.558 4.1501 41.11

200 45.822 36.272 5.1575 45.61

225 50.553 39.918 6.1743 50.00

250 55.198 43.507 7.1988 54.33
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Tab. 12:

p N (p) 1-term 2-term 3-term

20 9.019 4.627 .7572 7.138

30 11.719 6.113 1.415 9.244

40 14.050 7.516 2.044 11.21

50 16.395 8.859 2.657 13.08

75 21.704 12.04 4.148 17.47

100 26.624 15.05 5.600 21.58

125 31.287 17.94 7.027 25.51

150 35.766 20.75 8.433 29.30

175 40.093 23.48 9.824 32.99

200 44.300 26.16 11.20 36.58

225 48.406 28.79 12.56 40.10

250 52.426 31.38 13.92 43.55
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term one half as large as the leading term, we would need Q2/3 = 2R0 or p = exp[(2R0)
3/2] ≈ 148, 000.

This is well outside the range of Table 11, where the maximum value of p is 250. Thus, the fact that the

two-term approximations tend to actually be worse than the one-term ones is not surprising, in view of the

relatively large values of Rj and the fact that p must be extremely large before (log p)−1/3 or (log p)−2/3

is sufficiently small. The numerical results are not particularly bad, considering that the asymptotic series

involves powers of Q−1/3.

We have also tested the accuracy of the approximations (Φ̂, n̂, V̂), defined by (8.43) and below. How-

ever, we found these to be worse than the (more explicit) results in (2.15), (2.18) and (2.19). We would

guess that having an explicit expression for g(w) (rather than only the local behavior in (8.2)) would lead

to more accurate approximations. However, refining (8.2) (i.e., computing explicitly the O(1 − w) error

term) would seem to require a lot of work, as we would need to compute higher-order terms in the ex-

pansions on the a- and γ-scales, and use higher-order asymptotic matching. The γ-scale would involve

numerically solving certain integral equations.

Another idea to approximating log (
∑

n b(n, p)), N and V would be to define (ŵa, n̂a) as the solution

to the system

wg′a(w) = α =
p

n
− log2 n,

ga(w) +
log n + 1

log 2
log w = 0 (9.11)

where

ga(w) ≡ log 4 + 41/3r0(1 − w)2/3 +

(

1

log 2
− 1

3

)

(w − 1) log(1 − w) − k2(w − 1) (9.12)

is the truncation of the asymptotic series (8.2), up to the point that we explicitly computed it. For a given

(large) p, we solve (9.11) (with (9.12)) for (w, n) numerically. Then our approximations to the growth

rate, mean and variance are

Φ̂a = Φ̂a(p) = n̂a[ga(ŵa) − α̂a log(ŵa)],

n̂a and

Va(p) = = −
[

log(ŵa)

n̂a log 2
+

(

α̂a +
log(n̂a) + 1

log 2

)

1

ŵa

∂w

∂n

]−1

= n̂a

[

− log(ŵa)

log 2
+

(

p

n̂a
+

1

log 2

)2
1

ŵa

1

ŵag′′a(ŵa) + g′a(ŵa)

]−1

.

Of course, asymptotically these approximations have the same order of accuracy as the explicit results in

(2.15), (2.18) and (2.19), as both are based on the approximation (9.13) for g(w). However, numerically

(Φ̂a, n̂a,Va) lead to somewhat different results. In Table 14, we give these approximations for various

p in the range [20,250]. These should be compared to the exact values in Tables 11- 13. In doing the

numerics we first replaced n by

n = exp

(

ga(w)
log 2

− log w
− 1

)

(9.13)
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Tab. 13:

p V(p) 1-term 2-term

20 .5792 .9306 .07377

30 .9125 1.129 .1326

40 1.230 1.315 .1854

50 1.347 1.491 .2350

75 1.902 1.897 .3508

100 2.334 2.272 .4595

125 2.719 2.625 .5636

150 3.092 2.961 .6644

175 3.448 3.284 .7625

200 3.789 3.597 .8586

225 4.118 3.901 .9529

250 4.437 4.198 1.045
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Tab. 14:

p ŵa Φ̂a n̂a Va

20 .7536 8.649 7.331 .1377

30 .7719 11.34 9.596 .2245

40 .7837 13.85 11.69 .3061

50 .7923 16.23 13.68 .3842

75 .8065 21.81 18.33 .5689

100 .8156 27.03 22.67 .7433

125 .8223 32.02 26.81 .9106

150 .8274 36.83 30.80 1.072

175 .8315 41.50 34.67 1.230

200 .8350 46.06 38.44 1.383

225 .8379 50.52 42.13 1.534

250 .8405 54.90 45.74 1.683

in the first equation in (9.11), and solved numerically for ŵa = ŵa(p). Then n̂a is easily obtained from

(9.13). The data in Table 14 shows that the approximations for Ψ(p) and N (p) are roughly comparable to

the three-term approximations in Tables 11 and 12. The approximation to V(p) is better than the two-term

approximation in Table 13, but worse than the one-term. In Table 14 we also give the value of ŵa. We

note that this quantity converges to one quite slowly as p → ∞, and the use of (9.13) is only justified for

w → 1.
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A APPENDIX

Here we briefly re-examine the central region by using the functional equation (2.2). We introduce the

scaling

w = 1 +
a

n3/2
, z =

1

4

(

1 +
ζ

n

)

(A.1)

with

B(z, w) = B̄(ζ, a) = B̄((4z − 1)n, (w − 1)n3/2). (A.2)

From (A.1) we have

4zw − 1 =
ζ

n
+

(

1 +
ζ

n

)

a

n3/2

and (2.2) becomes

B̄(ζ, a) − 1 =
1

4

(

1 +
ζ

n

)[

B̄

(

ζ +
a√
n

+
aζ

n3/2
, a

)]2

. (A.3)

Upon setting

B̄(ζ, a) = 2

[

1 +
1√
n

B1(ζ, a)

]

we obtain from (A.3)

2√
n

B1(ζ, a) =
2√
n

B1

(

ζ +
a√
n

+
aζ

n3/2
, a

)

+
ζ

n
+

2ζ

n3/2
B1

(

ζ +
a√
n

+
aζ

n3/2
, a

)

+
1

n
B2

1

(

ζ +
a√
n

+
aζ

n3/2
, a

)

+
ζ

n2
B2

1

(

ζ +
a√
n

+
aζ

n3/2
, a

)

. (A.4)

Expanding B1 = B1(ζ, a;n) as

B1 = B(0)(ζ, a) +
1√
n

B(1)(ζ, a) + O(n−1)

we obtain from (A.4) at the first two orders (O(n−1) and O(n−3/2)) the equations

0 = 2aB
(0)
ζ + ζ + [B(0)]2 (A.5)

and

0 = 2aB
(1)
ζ + a2B

(0)
ζζ + 2ζB(0) + 2B(0)B(1) + 2aB(0)B

(0)
ζ . (A.6)

To solve (A.5) we set

B(0)(ζ, a) = 2a
Hζ

H
(A.7)
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to obtain the Airy equation 4a2Hζζ + ζH = 0 and thus

H(ζ, a) = Ai((4a2)−1/3(−ζ)), ζ < 0. (A.8)

We use (A.8) in (A.7) and note that

z−n−1dz =
1

4n
4n+1

(

1 +
ζ

n

)−n−1

dζ =
4n

n
e−ζ

[

1 + O

(

1

n

)]

dζ. (A.9)

We have

Bn(w) =
1

2πi

∫

C

B(z, w)

zn+1
dz

∼ 4n

n

1

2πi

∫

Br−

2e−ζ

[

1 +
1√
n

−2a

(2a2)1/3

Ai′(−4−1/3ζ|a|−2/3)

Ai(−4−1/3ζ|a|−2/3)

]

dζ. (A.10)

Here ℜ(ζ) < 0 on Br−. Scaling ζ = −(−a)2/3s = −Y s for a < 0 and Y > 0, and interpreting the

leading term as
1

2πi

∫

Br

e−ζdζ =
1

2πi

∫

Br

eY sY ds = Y δ(Y ) = 0

via distributions, (A.10) becomes

Bn(w) ∼ 4n

n3/2

−42/3a

2πi

∫

Br

Ai′(4−1/3s)

Ai(4−1/3s)
eY sds

=
4n

n3/2

−42/3a

2πi

d

dY

(
∫

Br

Ai′(4−1/3s)

Ai(4−1/3s)

eY s

s
ds

)

(A.11)

where again the first integral in (A.11) must be interpreted using distributions. We have thus regained the

leading term for the scale w = 1 + O(n−3/2) and w < 1. However, the present derivation is not as clean

as those in Section 5, where all the functions that arose may be interpreted in the classical sense.

We next obtain the correction term B(1)(ζ, a). Differentiating (A.5) yields

0 = 2aB
(0)
ζζ + 1 + 2B(0)B

(0)
ζ . (A.12)

We rewrite the linear equation (A.6) as

aB
(1)
ζ + B(0)B(1) = a

[

B
(1)
ζ + 2

Hζ

H
B(1)

]

= −ζB(0) − a2

2
B

(0)
ζζ − aB(0)B

(0)
ζ . (A.13)

By multiplying (A.13) by H2 and using (A.7) and (A.12), we obtain

d

dζ
[H2B(1)] = −3

2
ζHHζ +

1

4
H2 + 2a2

H3
ζ

H
. (A.14)
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Now set

H(ζ) = h(s) = Ai(4−1/3s), ζ = −(−a)2/3s.

For ζ → −∞ we have

h(s) = H(ζ) ≈ exp

[

−2

3
(−ζ)3/2(4a2)−1/2

]

which follows from (A.8) and the exponential decay rate of the Airy function Ai(·). It follows that

Hζ

H
∼

√−ζ

2(−a)
, ζ → −∞

and the right side of (A.14) will be asymptotic to

(−ζ)3/2H(ζ)2
(

− 3

4a
− 1

4a

)

= (−ζ)3/2H(ζ)2
(

−1

a

)

.

To avoid this growth we set

B(1) = a∗ζ + B̄(1) (A.15)

with which (A.14) becomes

d

dζ
[H2B̄(1)] = −a∗(H

2 + 2ζHHζ) −
3

2
ζHHζ +

1

4
H2 + 2a2

H3
ζ

H
. (A.16)

By choosing a∗ = −1 we can avoid growth in B̄(1) as ζ → −∞, and (A.16) then becomes

d

dζ
[H2B̄(1)] =

5

4
H2 +

1

2
ζHHζ + 2a2

H3
ζ

H
. (A.17)

By using H(ζ) = h(s) and

B(0) = 2a
Hζ

H
= 2a

h′(s)

h(s)

1

(−Y )

we see that the approximation to Bn(w) becomes

Bn(w) =
4n

n

1

2πi

∫

Br−

2e−ζ

[

1 +
B(0)(ζ, a)√

n
+

B(1)(ζ, a)

n
+ · · ·

]

dζ (A.18)

=
4n

n3/2

{

−4a

2πi

d

dY

∫

Br+

h′(s)

h(s)
eY sds +

2

2πi

Y√
n

∫

Br+

B(1)(−Y s, a)eY sds + O(n−1)

}

.

Also, in terms of s, (A.17) is

− 1

Y

d

ds
[h2(s)B̄(1)] =

5

4
h2(s) +

1

2
sh(s)h′(s) − 2a2

Y 3

(h′(s))3

h(s)
. (A.19)

The solution to (A.19) that has acceptable behavior as s → ∞ is given by

B̄(1) =
Y

2
E∗(s) (A.20)
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where E∗(s) is given by (5.87). Noting that Y 2 = −a
√

Y , we have thus regained the correction term

C(1)(a) in (2.26) and (2.28). Here we must again interpret

1

2πi

∫

Br

ζe−ζdζ =
Y 2

2πi

∫

Br

seY sds = Y 2δ′(Y ) = 0

as a distribution.

We have thus shown that a perturbation analysis of (2.2) yields results essentially equivalent to those

obtained by the methods of Section 5. However, here we had to interpret certain integrals as distributions;

this issue never arose when we analyzed (2.1) or the moment equations (5.7).
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