
2007 Conference on Analysis of Algorithms, AofA 07 DMTCS proc.AH , 2007, 31–46

Counting occurrences for a finite set of words:
an inclusion-exclusion approach

F. Bassino1, J. Cĺement2, J. Fayolle3, and P. Nicod̀eme4

1IGM, Université de Marne la Vallée, 77454 Marne-la-Vall´ee Cedex 2, France.Frederique.Bassino@univ-mlv.fr
2GREYC, CNRS-UMR 6072, Université de Caen, 14032 Caen, France.Julien.Clement@info.unicaen.fr
3LRI; Univ. Paris-Sud, CNRS ; Bât 490, 91405 Orsay, France.Julien.Fayolle@lri.fr
4LIX, CNRS-UMR 7161,́Ecole polytechnique, 91128, Palaiseau, France.nicodeme@lix.polytechnique.fr

In this paper, we give the multivariate generating functioncounting texts according to their length and to the number
of occurrences of words from a finite set. The application of the inclusion-exclusion principle to word counting due
to Goulden and Jackson (1979, 1983) is used to derive the result. Unlike some other techniques which suppose that
the set of words isreduced(i.e., where no two words are factor of one another), the finite set can be chosen arbitrarily.
Noonan and Zeilberger (1999) already provided a MAPLE package treating the non-reduced case, without giving an
expression of the generating function or a detailed proof. We give a complete proof validating the use of the inclusion-
exclusion principle and compare the complexity of the method proposed here with the one using automata for solving
the problem.

Keywords: word statistics, inclusion-exclusion, generating functions

1 Introduction
Enumerating sequences with given combinatorial properties is rigorously formalized since the end of the
seventies and the beginning of the eighties by Goulden and Jackson (GJ79; GJ83) and by Guibas and
Odlyzko (GO81a; GO81b).

The former (GJ79; GJ83) introduce a very powerful method of inclusion-exclusion to count occurrences
of words from areducedset of words (i.e., where no word is factor of another word of the set) in texts; this
method is characterized by counting texts where some occurrences are marked (other terms are pointed
or anchored) and then removing multiple count of the same text (text counted several times with different
markings). We refer later to this byinclusion-exclusionmethod. Goulden-Jackson counting is typically
multivariate, a formal parameter being associated to each word.

The latter (GO81a; GO81b) introduce the notion of auto-correlation of a word that generalizes to cor-
relation between words. Formal non-ambiguous manipulations over languages translates to generating
functions. We refer later to this byformal languagemethod. Unlike Goulden and Jackson, Guibas and
Odlyzko consider univariate cases, like enumerating sequences avoiding a pattern, or sequences terminat-
ing with a first occurrence of a pattern in a text (see also (SF96)). Régnier and Szpankowski (RS98) gen-
eralize the formal language approach by a bivariate analysis for counting the number of matches of a word

1365–8050c© 2007 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

Counting words occurrences 33

in random texts (handling also a Markovian source on the symbol emission) and prove a normal limit law.
Régnier (Ŕ00) extends this further to multivariate analysis and simultaneous counting of several words.
See also the books of Szpankowski (Szp01) and Lothaire (Lot05). Bourdon and Vallée (BV02; BV06)
apply the previous analysis to dynamical sources. Prumet al. (PRdT95) follow a more probabilistic
approach.

Noonan and Zeilberger (NZ99) extend the inclusion-exclusion method of Goulden and Jackson and
solve the general non-reduced case (words may be factor of other words), implementing correspond-
ing MAPLE programs, without however completely publishing the explicit result formulæ. Recently
Kong (Kon05) applies the results of Noonan and Zeilberger for the reduced case to an asymmetrical
Bernoulli (also called memoryless) model for the generation of symbols. He also compares the Goulden
and Jackson method to the Régnier and Szpankowski method, emphasizing the conceptual simplicity of
the inclusion-exclusion approach. It is however useful to note that the formal language approach provides
access to information that the inclusion-exclusion methoddoes not, such as the waiting time for a first
match of a word or the time separating two matches of the same word or of two different words (in both
case eventually forbidding matches with other words).

A third approach is possible by use of automata. Nicodèmeet al. (NSF02) use classical algorithms
to (1) build a marked deterministic automaton recognizing aregular expression and (2) translate into
generating function (Chomsky-Schützenberger algorithm(CS63)); this provides the bivariate generating
function counting the matches. A variation of the method extends the results to Markovian sources. This
result applies immediately to a set of words considered as a regular expression. Nicodème (Nic03) extends
this to multivariate counting by taking the product of marked automata (with an automaton and a mark
associated to a word) and to set of words with possible errors(i) . Notice that step (1) of this approach may
be directly done by building the Aho-Corasick automaton, designed for pattern-matching.

Each of the three above-mentioned approaches did develop quite independently and partially unaware
of each other.

LetA be the alphabet on which the words are written andU = {u1, u2, . . . , ur} be a finite set of distinct
words on the alphabetA. We noteπ(w) the weight of the wordw. The weight could be a formal weight
over the commutative monoidA∗ (i.e., π(ababab) = α3β3) or, the probability generating function in the
Bernoulli (also calledmemoryless) setting,π(w) = Pr(w), or evenπ(w) = 1 for a uniform weighted
model over all words.

We set some more notations: given ar-row vectorx = (x1, . . . , xr) of formal variables and ar-row
vectorj = (j1, . . . , jr) of integers, we will denote byxj the product

∏r
i=1 xji

i .
In this article we describe two approaches to compute the multivariate generating functionFU counting

texts according to their length and to their number of occurrences of words from the setU :

FU (z,x) = F (z,x) :=
∑

w∈A∗

π(w)z|w|xτ(w), (1)

whereτ (w) = (|w|1, . . . , |w|r), and|w|i is the total number of occurrences ofui in w (with possible
overlaps). We focus on methods which solve the problem fullywithout making any assumption on the set
itself (for instance on its reduction, henceU can containu1 = abbababa andu2 = baba althoughu2 is a
factor ofu1). We aim at presenting a novel approach and a full proof of results partially in Noonan and
Zeilberger.

(i) Algorithms implemented in the packageregexpcount of algolib, Algorithms Project, INRIA

34 F. Bassino, J. Cĺement, J. Fayolle, and P. Nicodème

In Section 2 we present an approach using the Aho-Corasick automaton that solves the general (non-
reduced) problem; we also consider the complexity of this method. We describe and prove our results in
Section 3 using the inclusion-exclusion principle. Algorithmic aspects are also considered in this section.
Appendix A is devoted, as a case study, to the comparison of complexity of the two methods when
computing the covariance of the number of occurrences of twowords, the inclusion-exclusion approach
being more efficient both for exact and asymptotic computations than the automaton approach.

2 Automaton approach
We resort in this section to the well-known Aho-Corasick algorithm (AC75; CR02) which builds from a
finite set of wordsU a deterministic complete automaton (not necessarily minimal) recognizing the lan-
guageA∗U . This automaton denoted byAU is the basis of many efficient algorithms on string matching
problems and is often called thestring matching automaton. This automaton is usually described by the
trie of the set of words together with a failure function. LetTU be the ordinary trie representing the setU ,
seen as a finite deterministic automaton(Q, δ, ε, T) where the set of states isQ = Pref(U) (prefixes of
words inU), the initial state isε, the set of final states isT = A∗U ∩Pref(U) and the transition functionδ
is defined onPref(U) ×A by

δ(p, x) =

{

px if px ∈ Pref(U),

Border(px) otherwise,

where the failure functionBorder is defined by

Border(v) = the longest proper suffix ofv which belongs toPref(U) if defined, orε otherwise.

In the following we identify a wordv ∈ Pref(U) with the node at the end of the branch of the tree
labeled byv, so thatBorder defines also a map on the nodes of the tree. There are efficientO(|U|) algo-
rithms (AC75; CR02) linear both in time and space to build such a tree structure and the auxiliaryBorder
function.

The matrixT(x) (with x a r-vector of formal variables) denotes the transition matrixof the Aho-
Corasick automaton where the variablexi marks the states accepting the wordui. The generating function
is expressed as

F (z,x) =
∑

w∈A∗

π(w)z|w|xτ (w) =
(

1, 0, · · · , 0
)

(I − zT(x))−1







1
...
1






, (2)

whereπ(w) can be viewed as the weight of wordw.

Example 1 LetU = {aab, aa}. We have

T(x1, x2) =









b a 0 0
b 0 ax2 0
0 0 ax2 bx1

b a 0 0









,
ε

a

aa

aaba

a
b

b

a
b

a

b

Counting words occurrences 35

and

F (z, x1, x2) =
1 − a(x2 − 1)z

1 − z(ax2 + b − ab(x2 − 1)z + a2bx2(x1 − 1)z2)
.

Complexity. LetL =
∑

u∈U |u| be the sum of the lengths of the words fromU . We first have to compute
the Aho-Corasick automaton and this can be done classicallyin time O(L) for a finite alphabet. The
automaton can have up toL states. Denoting byN the number of states of the Aho-Corasick automaton,
the transitions matrixT is of sizeN2, but in general this matrix is sparse: onlyN × CardA entries are
non-zero (since the automaton is complete and deterministic with CardA transitions from each state).

So the complexity to obtain the counting multivariate generating function by this approach is basically
the one of inverting a relatively sparse matrix of the formI − zT(x) whose all terms are monomials
of the formα

∏

xεi

i (with α ∈ A and theεi’s in {0, 1}) corresponding to the transition matrix of the
automaton. The limit of this approach is the fact that the size of the transition matrixL2 can grow rapidly
if we consider many rather long words. In the next section, weadopt another approach which leads also
to solve a system of equations, but then the size of the systemis r × r (wherer is the number of words in
U). We there present a detailed way to compute the generating function of occurrences using the Goulden
and Jackson method.

3 Inclusion-exclusion method applied to word counting
This section presents an approach exactly along the same line as in (GJ83) but extended to the non-reduced
case. In (NZ99) the authors provide the main ideas to treat the non-reduced case and a MAPLE package,
neither giving explicit expressions nor detailed proofs. We consider it important to give a more formal
presentation of the Goulden and Jackson method for an arbitrary finite set of words as it can be of interest
to a broad audience and it is the first step to the generalization of the underlying probabilistic model. The
complexity of such an approach is also examined from a computational point of view. Indeed, statistics on
words occurrences are useful in many fields (in fact each timeunusual events in sequences are looked at);
moreover, in many applications, it is necessary to compute the corresponding statistics as fast as possible.

We aim to count texts according to their length and to their number of occurrences of words from a
setU . A text where some occurrences of words fromU are marked is decomposed combinatorically
as a sequence of letters fromA and clusters (set of overlapping and marked occurrences ofU , noted
LU ; see Definitions (2) and (3) in the next section). Each text iscounted several times depending on
which occurrences are marked (each text is counted as many times as the number of possible marking of
occurrences). This multiple counting is eliminated by use of the inclusion-exclusion principle (see among
others (GJ83), (Szp01), and (FS07, III.6.4) for details).

3.1 Preliminaries

First we formally state the generating function in terms of occurrence positions.

Definition 1 (Occurrence positions set)Theoccurrence positions setof a wordu in a wordw is the set
of final positions of occurrences ofu in w:

Occ(u, w) =
{

p ∈ {1, . . . , |w|}
∣

∣ w[(p−|u|+1) . . . p] = u
}

.

36 F. Bassino, J. Cĺement, J. Fayolle, and P. Nicodème

With this definition, we can rewrite the counting generatingfunction of Equation (1)

F (z,x) =
∑

w∈A∗

π(w)z|w|
r

∏

i=1

x
Card(Occ(ui,w))
i .

Definition 2 (Clustering-word) A clustering-wordfor the setU = {u1, . . . , ur} is a wordw ∈ A∗ such
that any two consecutive positions inw are coveredby the same occurrence inw of a wordu ∈ U . The
positioni of the wordw is coveredby a wordu if u = w[(j − |u| + 1) . . . j] for somej ∈ {|u|, . . . , n}
andj − |u| + 1 ≤ i ≤ j. The language of all clustering-words for a given setU is notedKU .

Definition 3 (Cluster) A clusterof a clustering-wordw in KU is a set of occurrence positions subsets
{ Su ⊂ Occ(u, w) | u ∈ U } which covers exactlyw, that is, every two consecutive positionsi andi + 1
in w are covered by at least one same occurrence of someu ∈ U . More formally

∀i ∈ {1, . . . , |w|−1} ∃u ∈ U , ∃ p ∈ Su such that p − |u| + 1 < i + 1 ≤ p.

The set of clusters with respect to clustering-words built from some finite set of wordsU is notedLU . We
noteLU (w) the subset ofLU corresponding to the clustering-wordw ∈ KU . For a clusterC = {Su | u ∈
U}, we also definew(C) the corresponding (unique) clustering-word and|C|u the number of marked
occurrences of the wordu in the cluster, i.e.,

|C|u = CardSu.

Example 2 LetU = {baba, ab} andw = abababa, so thatw ∈ KU . We have

LU (w) =
{

{

Sab = {2, 4, 6},Sbaba = {5, 7}
}

,
{

Sab = {2, 6},Sbaba = {5, 7}
}

,

{

Sab = {2, 4},Sbaba = {5, 7}
}

,
{

Sab = {2},Sbaba = {5, 7}
}

}

.

In the non-reduced case, a wordui may occur within some other word fromU . In order to properly
generate the clusters we introduce the notion ofright extensionof a pair of words(h1, h2). This notion is
a generalization of the correlation set of two wordsh1 andh2 but differs in that:

(i) overlapping is not allowed to occur at the beginning ofh1.
(ii) extension has to add some letters to the right ofh1.

More formally we have

Definition 4 (Right extension set)Theright extension setof a pair of words (h1, h2) is

Eh1,h2
= { e | there existse′ ∈ A+ such that h1e = e′h2 with 0 < |e| < |h2|}.

Note that, whenh1 andh2 have no factor relation, the right extension setEh1,h2
is the correlation set of

h1 to h2. Moreover, whenh1 = h2, the setEh1,h2
is the strict auto-correlation set ofh1 (the empty word

does not belong toEh1,h2
).

One can also define the right extension matrix of a vector of wordsu = (u1, . . . , ur)

Eu =
(

Eui,uj

)

1≤i,j≤r
.

As examples, we have
u1 = (aba, ab) givesEu1

=

(

ba b
∅ ∅

)

, andu2 = (aaaa, aaa) givesEu2
=

(

a + a2 + a3 a + a2

a2 + a3 a + a2

)

.

Counting words occurrences 37

baaab
ε

ab

aa

baaab

ab
aa

aaab

a

aaab

b

Fig. 1: GraphG for U = {baaab, aa, ab}.

3.2 Generating function of clusters
We define the generating functionξ(z, t) of the set of clustersLU onU where the length of a cluster is
marked by the formal variablez and each marked occurrence ofui in clusters is marked by the formal
variableti. The set of all possible clusters is the disjoint union over all clustering-wordsw of the set of
all the clusters built fromw, hence

ξ(z, t) =
∑

w∈KU

∑

C∈LU (w)

z|w|π(w)t
|C|

u1

1 . . . t
|C|

ur
r .

3.2.1 Basic decomposition
We use a bijection between clusters and paths in a graph to derive an expression for the generating function
ξ(z, t) of clusters inLU .

Let G = (V, E) be a directed labeled graph such that:

(a) the set of vertices isV = {ε} ∪ U ;

(b) the set of edges isE = {ε
u

−→ u | u ∈ U} ∪ {u
y

−→ u′ | u, u′ ∈ U andy ∈ E(u, u′)}.

See an example on Figure 1 withU = {baaab, aa, ab}.
If the setU is reduced (i.e., without factor relations) then a cluster is completely described by a path in

this graph starting atε. When the set is not reduced, this is no longer true. We need toassociate along the
path the possible occurrences ofU within the last label read.

Thus we define a bijection between a clusterC and a pair(c,Fc) wherec is a path inG (starting atε)
andFc is ak-tuple (k is the length of the pathc) of sets of positions of occurrences. Each set inFc is
made of position occurrences of words fromU that end within the label of the corresponding edge of the
path.

Let C = {Su |u ∈ U} be a cluster for a clustering-wordw (each setSu is composed of some end
positions of occurrences ofu inside the clustering-wordw). We partition each occurrence positions set of
C asSu = S′

u ∪ S′′
u whereS′

u contains positions of the occurrences ofu that are not factor of any another
occurrence ofU . We are then assured thatC′ = {S′

u | u ∈ U} is a cluster (with no factor occurrences) for
the same clustering-wordw(C). Then we build fromC′ a sequence((ui1 , pi1), (ui2 , pi2), . . . , (uik

, pik
)),

wherepij
is the ending position ofuij

(a word fromU). This sequence is sorted by increasing position:
pi1 = |ui1 | < pi2 < · · · < pik

= |w|. Each wordw[1 . . . pij
] for j ∈ {1, . . . , r} is a clustering-word.

38 F. Bassino, J. Cĺement, J. Fayolle, and P. Nicodème

We sety1 = ui1 ; then eachyj for j ∈ {2, . . . , k} is the word such thatw[1 . . . pij−1
] · yj = w[1 . . . pij

].
By definition of the right extension sets,yj ∈ Euij−1

,uij
for eachj. We therefore get a unique path

c = y1.y2 . . . yk in the graphG

ε
y1

−→ ui1

y2

−→ ui2

y3

−→ . . .
yk−→ uik

.

To take into account the factor occurrences in the cluster, we associate to each stepuij−1

yj

−→ uij
of the

path a setF j = {F j
u | u ∈ U − {uij

}} whereF j
u is the set of occurrence positions in the worduij

of
words ending withinyj, more precisely

F j
u =

{

p − |y1 . . . yj | +
∣

∣uij

∣

∣

∣

∣ p ∈ S′′
u and |y1 . . . yj−1| < p ≤ |y1 . . . yj|

}

.

By construction, we have an application mapping a clusterC to a unique pair(c, (F1, . . . ,Fk)) and this
application is clearly injective.

Conversely, let us consider a pathc = ε
y1

−→ ui1

y2

−→ ui2

y3

−→ . . .
yk−→ uik

, ak-tuple(F1, . . . ,Fk)
with F j = {F j

u | u 6= uij
} and

F j
u ⊂

{

l
∣

∣ l ∈ Occ(u, uij
) and

∣

∣uij

∣

∣ − l < |yj |
}

.

This defines a unique clusterC = {Su | u ∈ U} as follows: we start withSu = ∅ for all u ∈ U ; we then
build the clustering-wordw = y1 · y2 . . . · yk by reading the labels along the path and, at stepj, we put
position|y1 . . . yj | into Suij

; finally, for all u 6= uij
, we add toSu the factor occurrences,i.e., the set of

positions
{

p + |y1 . . . yj | −
∣

∣uij

∣

∣

∣

∣ p ∈ F j
u

}

.

We hence have built a bijection.
We introduce some notations to translate this constructionto generating functions. LetNi,j(k) count

the number of occurrences ofuj in ui ending in the lastk positions

Ni,j(k) =
∣

∣ui

∣

∣

j
−

∣

∣ui[1 . . . |ui| − k]
∣

∣

j
. (3)

For a suffixs of ui, we introduce a formal weight〈s〉i where each possible occurrence ofum in ui ending
within s can be marked (or not) bytm (hence marked by1 + tm)

〈s〉i = π(s)z|s|
∏

m 6=i

(tm + 1)Ni,m(|s|). (4)

The notation〈·〉i extends readily to a set of wordsS which are suffixes ofui, which gives

〈S〉i =
∑

s∈S

〈s〉i.

Finally we define

〈u〉 = (〈u1〉1, . . . , 〈ur〉r) and 〈Eu〉 =











〈E1,1〉1 〈E1,2〉2 . . . 〈E1,r〉r
〈E2,1〉1 〈E2,2〉2 . . . 〈E2,r〉r

...
...

.. .
...

〈Er,1〉1 〈Er,2〉2 . . . 〈Er,r〉r











. (5)

We get to the following proposition.

Counting words occurrences 39

Proposition 1 The generating functionξ(z, t) of clusters built from the setU = {u1, . . . , ur} is given by

ξ(z, t) = 〈u〉∆(t) ·
(

I − 〈Eu〉∆(t)
)−1

·







1
...
1






, (6)

whereu = (u1, . . . , ur), t = (t1, . . . , tr), and the matrix∆(t) is ther × r diagonal matrix with entries
t1, . . . , tr.

Proof: The matrix〈Eu〉 is the transition matrix of the graphG where the vertexε and its corresponding
edges have been removed. Some occurrences of the wordui (for eachi ∈ {1, . . . , n}) are marked with
the formal variablesti in the labels ofG. More precisely, a word occurrenceui obtained when visiting
a vertexui is marked by the formal variableti (and appears in the calculus through the diagonal matrix
∆(t) in (6)); in contrary, a factor occurrence can be marked or not(this does not change the path in the
graph), hence providing a term of the form

∏

m 6=i(tm + 1)Ni,m(|y|) (see Eq. (4)). The first transition from
ε to anyu ∈ U is handled similarly. So the paths withk+1 transitions inG starting fromε have generating
function

〈u〉∆(t) ·
(

〈Eu〉∆(t)
)k

·







1
...
1






.

Finally we use the quasi-inverse notation
∑∞

j=0 〈Eu〉
j
∆(t) =

(

I − 〈Eu〉∆(t)
)−1

to get the result. 2

3.2.2 Applications
Reduced set. When the setU is reduced, that is, no word ofU is factor of another, the clusters are
uniquely defined by a path in the previous graphG. So〈u〉 and〈Eu〉 do not depend on any of the variables
ti’s. Hence in Eq. (6), variablesti’s are gathered inside∆(t). This is another formulation of the result of
Goulden and Jackson (GJ83).

One word. ForU = {u}, we get

ξ(z, t) =
t〈u〉

1 − t〈Eu〉
=

tπ(u)z|u|

1 − tĉ(z)
=

tπ(u)z|u|

1 − t(c(z) − 1)
, (7)

whereĉ(z) is the generating function of the strict autocorrelation set of word u (empty wordε omitted),
andc(z) is the auto-correlation polynomial ofu.

Two words. For a set of two words{u1, u2}, one can compute explicitlyξ(z, t1, t2) by the Cramer’s
rule

ξ(z, t1, t2) =
t1〈u1〉1 + t2〈u2〉2 − t1t2

(

〈u1〉1
[

〈E2,2〉2 − 〈E1,2〉2
]

+ 〈u2〉2
[

〈E1,1〉1 − 〈E2,1〉1
])

1 − t2〈E2,2〉2 − t1〈E1,1〉1 + t1t2
(

〈E1,1〉1〈E2,2〉2 − 〈E2,1〉1〈E1,2〉2
) , (8)

and this expression is computable from the right extension matrix of {u1, u2}.

40 F. Bassino, J. Cĺement, J. Fayolle, and P. Nicodème

Example 3 Letu = (a7, a3). The right extension matrix is:

Eu =

(

a + a2 + a3 + a4 + a5 + a6 a + a2

a5 + a6 a + a2

)

.

We have〈u〉 =
(

(1 + t2)
5z7π(a7), zπ(a3)

)

, if we notep = π(a) and use the propertypk = π(ak), then

〈E1,1〉1 = (1 + t2)zp + (1 + t2)
2(zp)2 + (1 + t2)

3(zp)3 + (1 + t2)
4(zp)4 + (1 + t2)

5
(

(zp)5 + (zp)6
)

,

〈E1,2〉2 = zp + (zp)2, 〈E2,1〉1 = (1 + t2)
5((zp)5 + (zp)6), 〈E2,2〉2 = zp + (zp)2.

By substituting these values in Eq. (8) we get

ξ(z, t1, t2) = −(pz)7t1(t2+1)4+(pz)6t2t1(t2+1)3+(pz)5t2t1(t2+1)2+(pz)4t2t1(t2+1)−(pz)3t2

−1+t1(pz)6(t2+1)4+t1(pz)5(t2+1)3+(pz)4t1(t2+1)2+(pz)3t1(t2+1)+(pz)2(t1+t2+t1t2)+pz(t1+t2+t1t2)
.

3.3 Generating function of texts

A text is decomposed combinatorically as a sequence of letters fromA (of generating functionA(z)) and
clusters (or more rigorously clustering words) fromLU (of generating functionξ(z, t)). The multivariate
generating functionF of Equation (1) is derived by substitutingti 7→ xi − 1 for i ∈ {1, . . . , r} in each
(A(z) + ξ(z, t))k, wherek is the number of combinatorial objects in the decomposition.

To summarize, we have the following proposition:

Proposition 2 Letu = (u1, . . . , ur) be a finite vector of words inA∗ andEu the associated right exten-
sion matrix. The multivariate generating functionF counting texts where length is marked by the variable
z and occurrences ofui are marked by the vector of formal variablesx = (x1, . . . , xr) is

F (z,x) =
1

1 − A(z) − ξ(z,x− 1)
, (9)

whereA(z) =
∑

σ∈A π(σ)z is the generating function of the alphabet andξ(z, t) is defined in Eq. (6).

Proof: The proof relies on two main points. On one hand, the generating functionξ(z, t) counts all the
clusters (see Proposition 1 in Section 3.2.1). On the other hand, the inclusion-exclusion principle yields
the final result by the substitutionsti 7→ xi − 1. 2

The application of the standard techniques of analytic combinatorics (see (FS07)) to the multivariate
generating functionF gives access to many statistics (e.g.mean, variance, covariance,. . .).

3.4 Algorithmic point of view

We present here an general method in order to compute the generating functionξ(z, t). This is a two-step
approach:

(i) we compute ther × r matrix 〈Eu〉 (wherer is the number of words inU); coefficients are polyno-
mials whose degree (in any variable) is bounded bymaxu∈U |u| − 1; we provide next an algorithm
computing the extension sets with the help of the Aho-Corasick automatonAU ;

(ii) we have to invert this matrix.

Counting words occurrences 41

With the inclusion-exclusion approach, ther×r matrix is smaller and more compact than the linear system
obtained by applying Chomsky-Schützenberger on the Aho-Corasick automaton of Section 2 which has
sizeO((

∑

u∈U |u|)2)) since there areO
(
∑

u∈U |u|
)

states in the automaton.
We exhibit an algorithm computing from the Aho-Corasick automaton (represented by a failure func-

tion) the multivariate matrix〈E〉 and the vector〈u〉 in timeO(r2×s+
∑

u∈U |u|) wherer is the cardinality
of U ands is the size of the longest suffix chain(ii) of a wordu ∈ U .

First we compute an auxiliary function which associates to any prefixw of the setU a vector(fi(w))r
i=1

defined by
fi(w) = 〈v〉i, for v ∈ A∗ andw · v = ui

We remark that〈u〉 = (f1(ε), . . . , fr(ε)). The “time complexity” (measured as the number of updates of
thefi(w)’s) of the following algorithm isO(r ×

∑

u∈U |u|).

INIT(AU)

1 for i← 1 to r do
2 fi(ui)← 1
3 for w ∈ Pref(U) by a postorder traversal of the treedo
4 for i← 1 to r do
5 for α ∈ A such thatw · α ∈ Pref(ui) do
6 fi(w)← π(α)zfi(w · α)

Q

j 6=i
(1 + tj)

Juj suffix of w · αK

7 return (fi)1≤i≤r

The matrix〈Eu〉 is computed by the following algorithm. The time complexityof the main loop is
O(s × r2) wherer is the number of words ands is the length of the longest suffix chain.

BUILD -EXTENSION-MATRIX(AU)

1 ⊲ Initialize the matrix(Ei,j)1≤i,j≤r

2 for i← 1 to r do
3 for j ← 1 to r do
4 Ei,j ← 0
5 ⊲ Compute the maps(fi(w)) for i = 1..r andw ∈ Pref(U)
6 (fi)1≤i≤r ← INIT(AU)
7 ⊲ Main loop
8 for i← 1 to r do
9 v ← ui

10 do for j ← 1 to r do
11 Ei,j ← Ei,j + fj(v)
12 v ← Border(v)
13 while v 6= ε

14 return E

From an algorithmic perspective we point the reader to Appendix A for a comparison of the automaton
construction and the inclusion-exclusion method on a specific example: the covariance of the number of
occurrences of two words.

(ii) The suffix chain ofu ∈ U is the sequence(u1 = u, u2 = Border(u1), u3 = Border(u2), . . . , us = Border(us−1) = ε).

42 F. Bassino, J. Cĺement, J. Fayolle, and P. Nicodème

Conclusion and perspectives
We obtained a detailed proof and an explicit expression of the multivariate generating function counting
texts according to their length and to their number of occurrences of words from a finite set. This re-
sult facilitates access to various moments and and may facilitate access to limiting distributions. From
Bender and Kochman (BK93), we expect to find mostly a multivariate normal law for word counts. Our
approach can possibly provide simpler criteria to decide ifsuch a limiting law holds or not. Another nice
aspect to the inclusion-exclusion approach is that it provides explicit formulae like Eq. (8), whereas the
Aho-Corasick construction does not preserve the structure: even for a single pattern the autocorrelation
polynomial does not come out easily and visibly.

We plan to extend the analysis to more complex sources, such as Markovian or dynamical sources (see
Vallée (Val01)). We can probably improve on the complexityof computing the auxiliary functionsfi.

Acknowledgements
The authors thank Jérémie Bourdon and Bruno Salvy for fruitful discussions and for providing important
feedback to this paper.

References
[AC75] Alfred Aho and Margaret Corasick. Efficient String Matching: An Aid to Bibliographic Search.Commu-

nications of the ACM, 18:333–340, 1975.

[BK93] Edward Bender and Fred Kochman. The distribution of subword counts is usually normal.European
Journal of Combinatorics, 14:265–275, 1993.

[BV02] Jérémie Bourdon and Brigitte Vallée. Generalized pattern matching statistics. InProc. Colloquium on
Mathematics and Computer Science: Algorithms, Trees, Combinatorics and Probabilities, Birkhauser,
Trends in Mathematics, pages 249–265, 2002.

[BV06] Jérémie Bourdon and Brigitte Vallée. Pattern matching statistics on correlated sources. InProc. of
LATIN’06, volume 3887 ofLNCS, pages 224–237, 2006.

[CR02] Maxime Crochemore and Wojciech Rytter.Jewels of Stringology. World Scientific Publishing, Hong-
Kong, 2002. 310 pages.

[CS63] Noam Chomsky and Marcel Schützenberger. The algebraic theory of context-free languages.Computer
Programming and Formal Languages,, pages 118–161, 1963. P. Braffort and D. Hirschberg, eds, North
Holland.

[FS07] Philippe Flajolet and Robert Sedgewick.Analytic Combinatorics. xxx, 2007. In preparation
(http://algo.inria.fr/flajolet/Publications/books.html).

[GJ79] Ian Goulden and David Jackson. An inversion theorem for clusters decompositions of sequences with
distinguished subsequences.J. London Math. Soc., 2(20):567–576, 1979.

[GJ83] Ian Goulden and David Jackson.Combinatorial Enumeration. John Wiley, 1983. New-York.

[GO81a] Leo Guibas and Andrew Odlyzko. Periods in strings.J. Combin. Theory, A(30):19–42, 1981.

Counting words occurrences 43

[GO81b] Leo Guibas and Andrew Odlyzko. Strings overlaps, pattern matching, and non-transitive games.J. Com-
bin. Theory, A(30):108–203, 1981.

[Kon05] Yong Kong. Extension of Goulden-Jackson cluster method on pattern occurrences in random sequences
and comparison with Régnier Szpankowski method.J. of Difference Equations and Applications,
11(15):1265–1271, 2005.

[Lot05] M. Lothaire. Applied Combinatorics on Words. Encyclopedia of Mathematics. Cambridge University
Press, 2005.

[Nic03] Pierre Nicodème. Regexpcount, a symbolic packagefor counting problems on regular expressions and
words.Fundamenta Informaticae, 56(1-2):71–88, 2003.

[NSF02] Pierre Nicodème, Bruno Salvy, and Philippe Flajolet. Motif statistics. Theoretical Computer Science,
287(2):593–618, 2002.

[NZ99] John Noonan and Doron Zeilberger. The Goulden-Jackson Method: Extensions, Applications and Imple-
mentations.J. of Difference Equations and Applications, 5(4-5):355–377, 1999.

[PRdT95] Bernard Prum, F. Rodolphe, and E. de Turckheim. Finding words with unexpected frequencies in deoxyri-
bonucleic acid sequences.J. R. Statist. Soc. B, 57(1):205–220, 1995.

[R0́0] Mireille Régnier. A unified approach to word occurrences probabilities.Discrete Applied Mathematics,
104(1):259–280, 2000. Special issue on Computational Biology.

[RS98] Mireille Régnier and Wojciech Szpankowski. On Pattern Frequency Occurrences in a Markovian Se-
quence.Algorithmica, 22(4):631–649, 1998.

[SF96] Robert Sedgewick and Philippe Flajolet.An Introduction to the Analysis of Algorithms. Addison-Wesley
Publishing Company, 1996.

[Szp01] Wojciech Szpankowski.Average Case Analysis of Algorithms on Sequences. Series in Discrete Mathe-
matics and Optimization. John Wiley & Sons, 2001.

[Val01] Brigitte Vallée. Dynamical sources in information theory: Fundamental intervals and word prefixes.
Algorithmica, 29(1):262–306, 2001.

[vzG99] Joachim von zur Gathen.Modern Computer Algebra. Cambridge University Press, 1999. 768 pages.

[Wie86] Douglas Wiedemann. Solving sparse linear equations over finite fields.IEEE Transactions on Information
Theory, 32(1):54–62, January 1986.

A Complexity of computing the covariance of number of occur-
rences of two words

We provide in this appendix a case study, focusing on the computation of the covariance of the number of
occurrences of two words. We place ourselves in the Bernoulli model so that the weightπ(w) given to a
word is the product of probabilities of individual letters.This entails for instance for the alphabetA that
A(z) =

∑

i∈A piz = z.

44 F. Bassino, J. Cĺement, J. Fayolle, and P. Nicodème

We consider here two wordsu1 andu2 with |u1| = |u2| = ℓ, and two random variablesX(n)
1 andX

(n)
2

counting the number of occurrences ofu1 andu2 in random texts of sizen. Since this covariance is equal
to

Cov
(

X
(n)
1 , X

(n)
2

)

= E
(

X
(n)
1 X

(n)
2

)

− E
(

X
(n)
1

)

E
(

X
(n)
2

)

,

and that we have easy access toE
(

X
(n)
1

)

andE
(

X
(n)
2

)

, it remains to evaluate the joint momentM
(n)
1,2 =

E
(

X
(n)
1 X

(n)
2

)

of the number of occurrences of two words. We compare both forthe inclusion-exclusion

method and for the automaton method the complexity of computing M
(n)
1,2 . The complexity is expressed

in terms of number of operations on real or rational numbers.
Some possible following steps of computation are summarized in Tables 1 and 2 (with the option

to compute the joint moment either asymptotically or exactly). We refer to von zur Gathen and Ger-
hard (vzG99) for algorithms used in this section.

We have basically the same complexity for Step 1 for both methods, which requiresO(ℓ) operations.
We give in the following two paragraphs some elements to justify the complexities stated in Tables 1

and 2.

Inclusion-Exclusion approach. By Equation (8), we write1/(1−z−ξ(z, x1−1, x2−1)) as a rational
functionP (z, x1, x2)/Q(z, x1, x2) whereP (z, x1, x2) andQ(z, x1, x2) are polynomials. This leads to
consider

M1,2(z) =
∑

n≥0

M
(n)
1,2 zn =

∂2

∂x1∂x2

P (z, x1, x2)

Q(z, x1, x2)

∣

∣

∣

∣

x1=x2=1

. (10)

Introducing some polynomials to alleviate notations, i.e,P (z) = P (z, 1, 1), Q(z) = Q(z, 1, 1) and for
any polynomialU(z, x1, x2), we define

Uj(z) = ∂
∂xj

U(z, x1, x2)
∣

∣

∣

x1=x2=1
for j = 1, 2, andU1,2(z) = ∂2

∂x1∂x2

U(z, x1, x2)
∣

∣

∣

x1=x2=1
.

Then one has the exact expression

M1,2(z) =
P1,2

Q(z)
−

P1(z)Q2(z) + P (z)Q1,2(z) + P2(z)Q1(z)

Q(z)2
+ 2

P (z)Q1(z)Q2(z)

Q(z)3
.

We claim thatP (z, x1, x2) and Q(z, x1, x2) have at most2ℓ + 1 terms (see Example 3 to be con-
vinced). Therefore the formal differentiations of Step 2 require O(ℓ) operations on monomials. By
Perron-Frobenius, we have a dominant pole forx1 andx2 real in a neighborhood of 1. Moreover we have
P (z, 1, 1)/Q(z, 1, 1) = 1/(1 − z). This implies that Equation (10) can be expanded locally as aLaurent
series

M1,2(z) =
a3

(1 − z)3
+

a2

(1 − z)2
+

a1

1 − z
+ a0 + O(1 − z),

giving access to an asymptotic expression forM
(n)
1,2 = [zn]M1,2(z). Therefore computing the joint mo-

mentE(X
(n)
1 X

(n)
2) asymptotically requires only to perform a finite number of product of polynomials in

the variablez the degrees of which isO(ℓ); this corresponds to a complexity of orderO(ℓ log(ℓ) log log(ℓ))
by using Fast Fourier Transforms for the polynomials multiplications.

Counting words occurrences 45

Automaton approach. As noticed in Nicodèmeet al. (NSF02), when considering asymptotic compu-
tation ofM (n)

1,2 , it is possible to avoid the inversion of a linear system of size ℓ with polynomial entries
by expanding the system in a neighborhood of the dominant singularity z = 1 after differentiating with
respect tox1 andx2 and substitutingx1 = x2 = 1. Doing this avoids the computation of the multivariate
generating functionF (z, x1, x2). This leads to handle a finite set of sparse linear systems of sizeℓ, where
the number of non-zero terms isO(ℓ). Using the Wiedemann algorithm (Wie86) it is therefore possible
to compute the momentM (n)

1,2 in O(ℓ2) operations.

When exact computation is needed, it is necessary to computethe rational generating functionP (z,x1,x2)
Q(z,x1,x2)

.
Note that to get to the result, the Aho-Corasick automaton may be minimized in (here negligible) time
O(ℓ log(ℓ)).

Starting from Equation (2), we remark thatF (z, x1, x2) = (I − zT(x1, x2))
−11, where1 is the vector

(1, . . . , 1)t, is a vector of rational functions inz, x1 andx2. We write the2ℓ + 1 first terms of the Taylor
expansion ofF (z, x1, x2) in the neighborhood ofz = 0, which gives

F (z, x1, x2) = I1 + zT1 + z2
TT1 + · · · + zi+1

TT
i1 + · · · + z2l+1

TT
2l1 + . . .

The principle is to benefit from the fact thatT is a sparse matrix withO(ℓ) non null entries. EachTi1

is a vector, entries of which are polynomials inx1 andx2 of at mosti2 terms. The cost of computing
the2ℓ + 1 first terms of the expansion is thereforeO(ℓ4). Multiplying to the left this expansion by the
vector(1, 0, . . . , 0) provide the2ℓ + 1 first terms of the expansion of the rational functionF (z, x1, x2)
which can be computed by using a Padé approximant with a costO(ℓ2) × O(ℓ2 log(ℓ) log log(ℓ)) =
O(ℓ4 log(ℓ) log log(ℓ)) where the first term corresponds to the number of operations of computation of
the Padé approximant and the second term to the multiplication of polynomials of the variablex1 andx2

of degree at most2ℓ + 1 in the two variables (univariate polynomials are multiplied by FFT).

Binary Powering. For both approaches, the exact computation ofM
(n)
1,2 follows by computing the recur-

rence associated to the rational fractionM1,2(z) (computed exactly), rewriting it as a matricial equation
and using binary powering to compute the relevant powers of the matrix inO(log(n)) operations.

Automaton approach (asympt.) Complexity

1) Build the Aho Corasick automaton O(ℓ)
2) Inverse a linear system with con-
stant coefficients

O(ℓ2)

Overall Cost O(ℓ2)

Inclusion-exclusion (asympt.) Complexity

1) Compute the right extension setsO(ℓ)
2) Differentiate and get first terms
of Laurent series

O(ℓ log(ℓ) log log(ℓ))

Overall Cost O(ℓ log(ℓ) log log(ℓ))

Tab. 1: Asymptotic computation ofM (n)
1,2 with the automaton approach (left) and inclusion-exclusion method (right)

for two words of lengthℓ and a text of lengthn.

46 F. Bassino, J. Cĺement, J. Fayolle, and P. Nicodème

Automaton ap-
proach (exact)

Complexity

1) Build the Aho
Corasick automaton

O(ℓ)

2a) Inverse a linear
system with polyno-
mial coefficients

O(ℓ4 log(ℓ) log log(ℓ))

2b) Differentiate O(ℓ log(ℓ) log log(ℓ))

3) Binary powering O(log(n)

Overall Cost O(log(n) + ℓ4 log(ℓ) log log(ℓ))

Inclusion-
exclusion (exact)

Complexity

1) Compute the
right extension
sets

O(ℓ)

2) Differentiate O(ℓ log(ℓ) log log(ℓ))

3) Binary power-
ing

O(log(n)

Overall Cost O(log(n) + ℓ log(ℓ) log log(ℓ))

Tab. 2: Exact computation ofM (n)
1,2 with the automaton approach (left) and inclusion-exclusion method (right) for

two words of lengthℓ and a text of lengthn.

