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Counting occurrences for a finite set of words:
an inclusion-exclusion approach
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In this paper, we give the multivariate generating functonnting texts according to their length and to the number
of occurrences of words from a finite set. The applicatiorhefinclusion-exclusion principle to word counting due
to Goulden and Jackson (1979, 1983) is used to derive thé.réBlike some other techniques which suppose that
the set of words iseduced(i.e., where no two words are factor of one another), the finite@etbe chosen arbitrarily.
Noonan and Zeilberger (1999) already provided afVE package treating the non-reduced case, without giving an
expression of the generating function or a detailed proaf gie a complete proof validating the use of the inclusion-
exclusion principle and compare the complexity of the methimposed here with the one using automata for solving
the problem.
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1 Introduction

Enumerating sequences with given combinatorial propeigieigorously formalized since the end of the
seventies and the beginning of the eighties by Goulden acicsda (GJ79; GJ83) and by Guibas and
Odlyzko (GO81a; GO81b).

The former (GJ79; GJ83) introduce a very powerful methoddfision-exclusion to count occurrences
of words from areducedset of wordsi¢e., where no word is factor of another word of the set) in texts t
method is characterized by counting texts where some caeces are marked (other terms are pointed
or anchored) and then removing multiple count of the samigtext counted several times with different
markings). We refer later to this bpclusion-exclusioimethod. Goulden-Jackson counting is typically
multivariate, a formal parameter being associated to eact.w

The latter (GO81a; GO81b) introduce the notion of auto-aation of a word that generalizes to cor-
relation between words. Formal non-ambiguous manipulat@ver languages translates to generating
functions. We refer later to this bfprmal languagenethod. Unlike Goulden and Jackson, Guibas and
Odlyzko consider univariate cases, like enumerating seopgeavoiding a pattern, or sequences terminat-
ing with a first occurrence of a pattern in a text (see also 6pF®Régnier and Szpankowski (RS98) gen-
eralize the formal language approach by a bivariate arsflgscounting the number of matches of a word
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in random texts (handling also a Markovian source on the syerission) and prove a normal limit law.
Régnier (M0) extends this further to multivariate analysis and stemdous counting of several words.
See also the books of Szpankowski (Szp01) and Lothaire flotBourdon and Vallee (BV02; BV06)

apply the previous analysis to dynamical sources. Petiral. (PRdAT95) follow a more probabilistic

approach.

Noonan and Zeilberger (NZ99) extend the inclusion-excimsnethod of Goulden and Jackson and
solve the general non-reduced case (words may be factohef atords), implementing correspond-
ing MAPLE programs, without however completely publishing the eipliesult formulee. Recently
Kong (Kon05) applies the results of Noonan and Zeilbergertlie reduced case to an asymmetrical
Bernoulli (also called memoryless) model for the generatibsymbols. He also compares the Goulden
and Jackson method to the Régnier and Szpankowski methmohasizing the conceptual simplicity of
the inclusion-exclusion approach. It is however usefuldterthat the formal language approach provides
access to information that the inclusion-exclusion mettioels not, such as the waiting time for a first
match of a word or the time separating two matches of the saone @r of two different words (in both
case eventually forbidding matches with other words).

A third approach is possible by use of automata. Nicodema. (NSF02) use classical algorithms
to (1) build a marked deterministic automaton recognizinggular expression and (2) translate into
generating function (Chomsky-Schiitzenberger algorige®63)); this provides the bivariate generating
function counting the matches. A variation of the metho@pgs the results to Markovian sources. This
result applies immediately to a set of words considered eguar expression. Nicodéme (Nic03) extends
this to multivariate counting by taking the product of matleitomata (with an automaton and a mark
associated to a word) and to set of words with possible eftolotice that step (1) of this approach may
be directly done by building the Aho-Corasick automatorsigieed for pattern-matching.

Each of the three above-mentioned approaches did develtpindependently and partially unaware
of each other.

Let.4 be the alphabet on which the words are written&nd {u., us, . .., u,} be afinite set of distinct
words on the alphabed. We noter(w) the weight of the wordv. The weight could be a formal weight
over the commutative monoid* (i.e., m(ababab) = o3 33) or, the probability generating function in the
Bernoulli (also callednemorylesssetting,m(w) = Pr(w), or evenr(w) = 1 for a uniform weighted
model over all words.

We set some more notations: givem-aow vectorx = (x1,...,,) of formal variables and a-row
vectorj = (ji, ..., j.) of integers, we will denote by the produc{]_, =".

In this article we describe two approaches to compute thévatihte generating functiofy, counting
texts according to their length and to their number of ocaees of words from the sét

Fu(z,x) = F(z,x) := Z m(w)2vxT®), (1)
weA*
wheret(w) = (Jwly,...,|wl|,.), and|w|, is the total number of occurrencesf in w (with possible

overlaps). We focus on methods which solve the problem fuiijout making any assumption on the set
itself (for instance on its reduction, hendecan contain:; = abbababa andus = baba althoughus is a
factor ofuy). We aim at presenting a novel approach and a full proof afltepartially in Noonan and
Zeilberger.

@) Algorithms implemented in the packagegexpcount of al gol i b, Algorithms Project, INRIA
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In Section 2 we present an approach using the Aho-Corastckration that solves the general (non-
reduced) problem; we also consider the complexity of thithaek. We describe and prove our results in
Section 3 using the inclusion-exclusion principle. Algloniic aspects are also considered in this section.
Appendix A is devoted, as a case study, to the comparison mptxity of the two methods when
computing the covariance of the number of occurrences ofwaals, the inclusion-exclusion approach
being more efficient both for exact and asymptotic compaoiatihan the automaton approach.

2 Automaton approach

We resort in this section to the well-known Aho-Corasickaithm (AC75; CR02) which builds from a
finite set of word</ a deterministic complete automaton (not necessarily nat)inecognizing the lan-
guageA*U. This automaton denoted b4, is the basis of many efficient algorithms on string matching
problems and is often called tis¢ring matching automatoriThis automaton is usually described by the
trie of the set of words together with a failure function. Zgtbe the ordinary trie representing the &gt
seen as a finite deterministic automatoh 4, e, T') where the set of states @ = Pref (i) (prefixes of
words inl{), the initial state ig, the set of final states 8 = A*U NPref (U/) and the transition functiof

is defined orPref (/) x A by

5(p.) p if px € Pref(U),
xr) =
P Border(pz) otherwise

where the failure functioBorder is defined by
Border(v) = the longest proper suffix af which belongs t@ref (1/) if defined, ors otherwise

In the following we identify a wordy € Pref(i/) with the node at the end of the branch of the tree
labeled byv, so thatBorder defines also a map on the nodes of the tree. There are effie{@it) algo-
rithms (AC75; CR02) linear both in time and space to buildsatree structure and the auxilidBprder
function.

The matrixT(x) (with x a r-vector of formal variables) denotes the transition matfixhe Aho-
Corasick automaton where the varialbjamarks the states accepting the word The generating function
is expressed as

F(z,x) = Z m(w)zvIxT) = (1, 0, ---, 0) I—2T(x)"" |:], 2
weA* 1

wherer(w) can be viewed as the weight of word
Example 1 Leti = {aab, aa}. We have

b a O 0

b 0 aze O
T(x1,22) = 0 0 aze bz
b a 0 0
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and
1—a(za—1)z
1—z(aza + b —ab(za — 1)z + abza(z1 — 1)22)

F(val,@) =

Complexity. LetL =3} ., |u|bethe sum ofthe lengths of the words frofnWe first have to compute
the Aho-Corasick automaton and this can be done classitaliyne O(L) for a finite alphabet. The
automaton can have up fostates. Denoting byv the number of states of the Aho-Corasick automaton,
the transitions matris is of size N2, but in general this matrix is sparse: omy x Card A entries are
non-zero (since the automaton is complete and deterntinigth Card A transitions from each state).

So the complexity to obtain the counting multivariate gatieg function by this approach is basically
the one of inverting a relatively sparse matrix of the fdrm 2T (x) whose all terms are monomials
of the forma [ z;* (with « € A and thee;’s in {0,1}) corresponding to the transition matrix of the
automaton. The limit of this approach is the fact that the sizthe transition matrix.? can grow rapidly
if we consider many rather long words. In the next sectionadept another approach which leads also
to solve a system of equations, but then the size of the syistem r (wherer is the number of words in
U). We there present a detailed way to compute the generativagibn of occurrences using the Goulden
and Jackson method.

3 Inclusion-exclusion method applied to word counting

This section presents an approach exactly along the saenadiim (GJ83) but extended to the non-reduced
case. In (NZ99) the authors provide the main ideas to treamtim-reduced case and aRLE package,
neither giving explicit expressions nor detailed proofse ¥énsider it important to give a more formal
presentation of the Goulden and Jackson method for anampfinite set of words as it can be of interest
to a broad audience and it is the first step to the generalizafithe underlying probabilistic model. The
complexity of such an approach is also examined from a coatipuial point of view. Indeed, statistics on
words occurrences are useful in many fields (in fact eachdimusual events in sequences are looked at);
moreover, in many applications, it is necessary to comgeorresponding statistics as fast as possible.

We aim to count texts according to their length and to themhber of occurrences of words from a
setld. A text where some occurrences of words frofrare marked is decomposed combinatorically
as a sequence of letters frarh and clusters (set of overlapping and marked occurrencés ofbted
Ly; see Definitions (2) and (3) in the next section). Each texioisnted several times depending on
which occurrences are marked (each text is counted as nragg fis the number of possible marking of
occurrences). This multiple counting is eliminated by ulshe inclusion-exclusion principle (see among
others (GJ83), (Szp01), and (FS07, 111.6.4) for details).

3.1 Preliminaries
First we formally state the generating function in terms @furrence positions.

Definition 1 (Occurrence positions set)Theoccurrence positions sef a wordw in a wordw is the set
of final positions of occurrences ofin w:

Occ(u,w) = {p e{l,...,|w|} ’ w[(p—|ul+1)...p] = u}
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With this definition, we can rewrite the counting generafumgction of Equation (1)

F(Z,X) = Z W(w)z‘w‘ ngard(Occ(uiyw)).

weA* i=1
Definition 2 (Clustering-word) A clustering-wordor the set/ = {uy,...,u,} isawordw € A* such
that any two consecutive positionsunare coveredby the same occurrence in of a wordu € U. The
positioni of the wordw is coveredby a worduw if u = w[(j — |u| + 1) ... j] for somej € {|u],...,n}

andj — |u| + 1 < < j. The language of all clustering-words for a given &eis notedfC;,.

Definition 3 (Cluster) A clusterof a clustering-wordw in K, is a set of occurrence positions subsets
{8u C Occ(u,w) | u € U } which covers exactly, that is, every two consecutive positiorsnd: + 1
in w are covered by at least one same occurrence of somé/. More formally

Vie{l,...,|Jw|—-1} Jueld,IpeS, suchthat p—|ul+1<i+1<p.

The set of clusters with respect to clustering-words broitnfsome finite set of wordsis noted’;,. We
noteL;(w) the subset of, corresponding to the clustering-wortd € K;,. For a clustere = {S,, | u €
U}, we also definev(€) the corresponding (unique) clustering-word af®j,, the number of marked
occurrences of the word in the cluster, i.e.,

€], = Card S,,.
Example 2 Letid = {baba, ab} andw = abababa, so thatw € K. We have

Ly(w) :{{sab = {2,4,6}, Spava = {5, 7} } {Sup = {2, 6}, Stapa = {5, 7} },
{Sab = {24}, Spava = {5, 71}, {Sab = {2}, Spava = {5, 7}}}.

In the non-reduced case, a waigl may occur within some other word frotd. In order to properly
generate the clusters we introduce the notiorigtit extensiorof a pair of wordg k1, h2). This notion is
a generalization of the correlation set of two wokdsandh, but differs in that:

(i) overlapping is not allowed to occur at the beginningd:ef
(ii) extension has to add some letters to the right af

More formally we have
Definition 4 (Right extension set) Theright extension sedf a pair of words k1, hs) is

Enin, ={e | thereexiste’ € AT suchthat hie =c'hy With0 < |e| < |hal}.

Note that, wherh; andhy have no factor relation, the right extension &gt 5, is the correlation set of
hi to he. Moreover, wherk; = hg, the set,, 5, is the strict auto-correlation set bf (the empty word
does not belong t6, 5,)-

One can also define the right extension matrix of a vector atlea = (ug, ..., u,)

Eu = (g“iv“j)lgi,jgr :
As examples, we have

u; = (aba, ad) givesé,, = (ba b) , andus = (aaaa, aaa) givesEy, = (

a+a2—|—a3 a—i—a2
o 0 '

a2+a3 a—i—a2
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Fig. 1: Graphg for U = {baaab, aa, ab}.

3.2 Generating function of clusters

We define the generating functigiz, t) of the set of cluster£;, onf where the length of a cluster is
marked by the formal variable and each marked occurrencewgfin clusters is marked by the formal
variablet;. The set of all possible clusters is the disjoint union ovkclastering-wordsw of the set of
all the clusters built fromw, hence

JERE S S5 B

wEKY €€ L1y (w)

3.2.1 Basic decomposition

We use a bijection between clusters and paths in a graphit@@arexpression for the generating function
&(z,t) of clusters inCy,.
LetG = (V, E) be a directed labeled graph such that:

(a) the set of vertices i® = {¢} U U;
(b) the setof edgesiB = {¢ % u|ucU} U {u % o' |u,u’ €U andy € &(u,u’)}.

See an example on Figure 1 with= {baaab, aa, ab}.

If the seti/ is reducedi(e., without factor relations) then a cluster is completelyalibed by a path in
this graph starting at. When the set is not reduced, this is no longer true. We neaslstociate along the
path the possible occurrencedbfvithin the last label read.

Thus we define a bijection between a clusteand a pair(c, F.) wherec is a path inG (starting at)
andF. is ak-tuple & is the length of the path) of sets of positions of occurrences. Each sefinis
made of position occurrences of words fréfrithat end within the label of the corresponding edge of the
path.

Let¢ = {S,|u € U} be a cluster for a clustering-word (each setS,, is composed of some end
positions of occurrences efinside the clustering-wora). We partition each occurrence positions set of
¢asS, = S, US, whereS,, contains positions of the occurrencesdhat are not factor of any another
occurrence of{. We are then assured thélt= {S], | u € U} is a cluster (with no factor occurrences) for
the same clustering-word(<). Then we build frone’ a sequenc&(u;, , i, ), (Wiy, Pis), - - -5 (Wiy, s Diy, )
wherep;; is the ending position of;, (a word fromi/). This sequence is sorted by increasing position:
Piy = |wi,| < pi, < -+ < pg,, = |w|. Eachwordw(1...p;,] for j € {1,...,r} is a clustering-word.
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We sety; = u;,; then eachy; for j € {2,...,k} is the word such thab[l...p;, ,]-y; = w[l...p;].
By definition of the right extension setg, € 5% L for eachy. We therefore get a unique path
c=y1.y2...yx in the graphg

ey By, Yy,
To take into account the factor occurrences in the clusterassociate to each step _, Y, u;; of the
path a setF/ = {Fj | u € U — {u;,}} whereF] is the set of occurrence positions in the wad of
words ending withiry;, more precisely

:{p—|y1...yj|+‘uij‘ ‘ peS! and |y1...yj_1|<p§|y1...yj|}.
By construction, we have an application mapping a clugter a unique paifc, (F', ..., F*)) and this
application is clearly injective.
Conversely, let us consider a path= ¢ 25 w;, 2 u;, 25 ... 25w, , ak-tuple(F1,... F¥)

with 77 = {F) | u # w;, } and
Flc {1 ‘ I € Occ(u, u;;) and‘uij‘ 1<yl }.

This defines a unique clustér= {S,, | u € U} as follows: we start witts,, = () for all u € U; we then
build the clustering-wordy = y1 - 2 . .. - yx by reading the labels along the path and, at gtege put
position|y; ... y;| into Suij; finally, for all u # u;,;, we add taS, the factor occurrencese., the set of
positions
{p+|y1---yj| - ‘Uzj‘ ‘ pG]‘—Z}-

We hence have built a bijection.

We introduce some notations to translate this constru¢tiarenerating functions. LéV, ;(k) count
the number of occurrences of in u; ending in the lask positions

For a suffixs of u;, we introduce a formal weighs), where each possible occurrence®f in u; ending
within s can be marked (or not) by, (hence marked by + ¢,,)

m;éz
The notation(-), extends readily to a set of wordswhich are suffixes of;;, which gives

s€S
Finally we define
e e e,
() = ((w)y, - (w),) and (&)= | . e (5)
Ea)y (Enddy o (Enn),

We get to the following proposition.
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Proposition 1 The generating functiofi(z, t) of clusters built from the sét = {u,,...,u,} is given by
1
-1
£z ) = AW - (1-(E)A®) - |1 ], (6)
1
whereu = (uq,...,u,), t = (t1,...,t.), and the matrixA(t) is ther x r diagonal matrix with entries
t, ety

Proof: The matrix({&,) is the transition matrix of the graph where the vertex and its corresponding
edges have been removed. Some occurrences of theuydfar each:i € {1,...,n}) are marked with
the formal variables; in the labels ofG. More precisely, a word occurrenag obtained when visiting
a vertexu; is marked by the formal variable (and appears in the calculus through the diagonal matrix
A(t) in (6)); in contrary, a factor occurrence can be marked or(tié does not change the path in the
graph), hence providing a term of the foify,, _, (., + 1)Vem (VD (see Eq. (4)). The first transition from
e to anyu € U is handled similarly. So the paths witht 1 transitions ing starting frome have generating
function

1

k
WA®) - ((E)A®) - | :
1
Finally we use the quasi-inverse notati~ (Eu)AL) = (T <5u>A(t))_1 to gettheresult. O

3.2.2 Applications

Reduced set. When the sel/ is reduced, that is, no word &f is factor of another, the clusters are
uniquely defined by a path in the previous gr&ptSo(u) and(&,) do not depend on any of the variables
t;'s. Hence in Eq. (6), variables’s are gathered insidA(t). This is another formulation of the result of
Goulden and Jackson (GJ83).

One word. Forif = {u}, we get

tu) tr(u) 2l B trr(u) 2!

£(z,t) = L—t(&) 1—té(z) 1—t(c(z)—1)

()
whereé(z) is the generating function of the strict autocorrelationaevord « (empty worde omitted),
andc(z) is the auto-correlation polynomial af

Two words. For a set of two wordguy, us}, one can compute explicitly(z, t1,t2) by the Cramer’s
rule

ti(ui), + to(uz)y — t1t2(<U1>1 [<52,2>2 - <51,2>2} + (u2), [<51,1>1 - <52,1>1D
1—t2(E2,2)y — t1(E11), + tata((E1,1),(E2,2)5 — (E2,1)1(E1,2)5) ’

g(zvtlth) = 8)

and this expression is computable from the right extensiatmiriof {uy, us}.
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Example 3 Letu = (a7, a®). The right extension matrix is:
£ — (a+a2 —|—a35+ a46+ a® + a® a—l—aj)
a®’ +a a+a
We havelu) = ((1 4 t2)°z"7(a"), zm(a?)), if we notep = 7(a) and use the property* = m(a*), then

(E11)y = (L+t2)2p + (1 +12)%(2p) + (1 +12)°(20)° + (1 +t2)" (2p)* + (1 + t2)°((2p)° + (2p)°),
(E12)y =20+ (2p)% (E21); = (1 +12)°((2p)° + (2p)°),  (E2.2), = 2P + (2p)*.
By substituting these values in Eq. (8) we get

E(z,t1,t2) = —(p2) 1 (t241)* +(p2) Otats (b2 +1)°+(p2) ot (t2+1)°+(p2) " tats (ta+1)— (p2)ta
1 v1 02 — 141 (p2) (b2 + 1) 11 (92)° (b2 +1)°+(p2) 11 (b2 + 1)+ (p2) 1 (L2 + 1)+ (p2)2 (b1 + L2+ 1 t2) +pz(tr +Hatiitz)

3.3 Generating function of texts

A text is decomposed combinatorically as a sequence ofsdttem A (of generating functiorni(z)) and
clusters (or more rigorously clustering words) frdn (of generating functiog(z, t)). The multivariate
generating functiorf” of Equation (1) is derived by substituting — z; — 1 fori € {1,...,r} in each
(A(2) + £(2, 1))k, wherek is the number of combinatorial objects in the decomposition

To summarize, we have the following proposition:

Proposition 2 Letu = (u4,...,u,) be a finite vector of words inl* and &, the associated right exten-
sion matrix. The multivariate generating functiéhcounting texts where length is marked by the variable
z and occurrences af; are marked by the vector of formal variables= (21, ..., z,) is

1

F(zx) = 1—-A(z) —€&(z,x— 1)’

9)

whereA(z) =3 . 4 m(0)z is the generating function of the alphabet &f(d, t) is defined in Eq. (6).

Proof: The proof relies on two main points. On one hand, the gemerdtinction{(z, t) counts all the
clusters (see Proposition 1 in Section 3.2.1). On the othrdhthe inclusion-exclusion principle yields
the final result by the substitutions— z; — 1. O

The application of the standard techniques of analytic doatbrics (see (FS07)) to the multivariate
generating functiorf’ gives access to many statistiesq. mean, variance, covariance,...).

3.4 Algorithmic point of view

We present here an general method in order to compute theageggfunctioné(z, t). This is a two-step
approach:

(i) we compute the: x r matrix (£,) (wherer is the number of words itx); coefficients are polyno-
mials whose degree (in any variable) is boundediay,, <, |u| — 1; we provide next an algorithm
computing the extension sets with the help of the Aho-Cokasiitomaton4;,;

(i) we have to invert this matrix.
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With the inclusion-exclusion approach, ther matrix is smaller and more compact than the linear system
obtained by applying Chomsky-Schiitzenberger on the Abis§ick automaton of Section 2 which has
sizeO((X" ey u])?)) since there ar® (3, ., |ul) states in the automaton.

We exhibit an algorithm computing from the Aho-Corasickamaton (represented by a failure func-
tion) the multivariate matrix$) and the vectotu) intime O(r?xs+>", ,, [u|) wherer is the cardinality
of U ands is the size of the longest suffix ch&inof a wordu € 4.

First we compute an auxiliary function which associateswpefixw of the set{ a vector(f;(w))i_,
defined by

fi(w) = (v),, forve A" andw - v = u;

We remark thatu) = (f1(¢), ..., f~(¢)). The “time complexity” (measured as the number of updates of
the f;(w)’s) of the following algorithm isO(r x 3 o, [ul).

INIT(Aw)
1 fori« 1tordo
2 filus) <1
3 for w € Pref(U) by a postorder traversal of the trde
4 for i — 1tor do
5 for « € A such thatw - o € Pref(u;) do
6 fiw) = w(@)zfi(w - @) T, z,(1 + ty) o et el
7 return (fi)lgigr

The matrix(£,) is computed by the following algorithm. The time complexitiithe main loop is
O(s x r?) wherer is the number of words andis the length of the longest suffix chain.

BUILD-EXTENSION-MATRIX (Ay)
1 o Initialize the matrix(&;,;)1<i,j<r
2 fori« 1tordo
for j «— 1tordo
gi,j — 0
> Compute the map§f; (w)) fori = 1..r andw € Pref (i)
(fi)i<i<r < INIT(Ay)
> Main loop
for i — 1tor do
VUV <— U;
10 do forj+« 1tordo
11 Eij— i+ [i(v)
12 v « Border(v)
13 whilev # ¢
14 return E

© oo~NO UL W

From an algorithmic perspective we point the reader to AdpeA for a comparison of the automaton
construction and the inclusion-exclusion method on a $ipemtample: the covariance of the number of
occurrences of two words.

(@ The suffix chain ofu € U is the sequencéu; = u, us = Border(u1),us = Border(uz), ..., us = Border(us_1) = €).
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Conclusion and perspectives

We obtained a detailed proof and an explicit expression @htlltivariate generating function counting
texts according to their length and to their number of ocares of words from a finite set. This re-
sult facilitates access to various moments and and maytédeilaccess to limiting distributions. From
Bender and Kochman (BK93), we expect to find mostly a muli&ternormal law for word counts. Our
approach can possibly provide simpler criteria to decideich a limiting law holds or not. Another nice
aspect to the inclusion-exclusion approach is that it glesiexplicit formulae like Eq. (8), whereas the
Aho-Corasick construction does not preserve the structwren for a single pattern the autocorrelation
polynomial does not come out easily and visibly.

We plan to extend the analysis to more complex sources, suktaekovian or dynamical sources (see
Vallée (Val01)). We can probably improve on the complexitgomputing the auxiliary functiong.
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A Complexity of computing the covariance of number of occur-
rences of two words

We provide in this appendix a case study, focusing on the cdatipn of the covariance of the number of
occurrences of two words. We place ourselves in the Berimwolilel so that the weight(w) given to a
word is the product of probabilities of individual lettefBhis entails for instance for the alphab&that
A(z) = ZieApiZ = z.
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We consider here two words andus with |u1| = |us| = ¢, and two random variablexl(”) andXQ")
counting the number of occurrencesgfandu, in random texts of size. Since this covariance is equal
to

cov(x{", x{") =B (x{"x{") —E (x{") E (x{"),

and that we have easy accesEtéXl(")) andE (Xé")), it remains to evaluate the joint momel\mfg) =
E (X{")XQ(")) of the number of occurrences of two words. We compare botth#inclusion-exclusion

method and for the automaton method the complexity of co'mgtMl(f;). The complexity is expressed
in terms of number of operations on real or rational numbers.

Some possible following steps of computation are summarizeTables 1 and 2 (with the option
to compute the joint moment either asymptotically or exgctWe refer to von zur Gathen and Ger-
hard (vzG99) for algorithms used in this section.

We have basically the same complexity for Step 1 for both pethwhich require®(¢) operations.

We give in the following two paragraphs some elements tafjugte complexities stated in Tables 1
and 2.

Inclusion-Exclusion approach. By Equation (8), we writd /(1 —2z—£(z,21—1,22— 1)) as a rational
function P(z, x1,x2)/Q(z, x1,x2) WhereP(z,z1, z2) andQ(z, x1, z2) are polynomials. This leads to
consider

2
- (77,) n __ 8 P(valal?)
M = E M = . 10
1.2(2) 12# 0x1012 Q(z, 71, 72) (10)

n>0 r1=x2=1

Introducing some polynomials to alleviate notations, P¢z) = P(z,1,1), Q(z) = Q(z,1,1) and for
any polynomiallU (z, z1, z2), we define

forj = 1, 2, andULQ(Z) = 6—2U(Z, Il,SCQ)

UJ(Z) = %U(Z,Il,xQ) Ox10x2

J

Ty=w2=1 r1=x2=1

Then one has the exact expression

Mia(z) = Pa Pi(2)Q2(2) + P(2)Q1,2(2) + P2(2)Q1(2) N 2P(Z)Q1(z)Q2(Z).

Q(2) Q(2)? Q(=)?

We claim thatP(z,z1,z2) and Q(z,x1,x2) have at mosk¢ + 1 terms (see Example 3 to be con-
vinced). Therefore the formal differentiations of Step Zuiee O(¢) operations on monomials. By
Perron-Frobenius, we have a dominant poleifpandz, real in a neighborhood of 1. Moreover we have
P(2,1,1)/Q(z,1,1) = 1/(1 — 2). This implies that Equation (10) can be expanded locally laauaent
series

a3 a2 aq
M = o1 —
1,2(2) (1_2)3+(1_2)2+1_2+a0+( z),

giving access to an asymptotic expressionm@ = [2"] M1 2(z). Therefore computing the joint mo-

mentE(Xl(")Xén)) asymptotically requires only to perform a finite number afgct of polynomials in
the variable: the degrees of which 8(¢); this corresponds to a complexity of orde¢/ log(¢) log log(¥))
by using Fast Fourier Transforms for the polynomials miiétggions.
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Automaton approach. As noticed in Nicodemet al. (NSF02), when considering asymptotic compu-
tation ofMl(Z), it is possible to avoid the inversion of a linear system aégiwith polynomial entries
by expanding the system in a neighborhood of the dominagutanity = = 1 after differentiating with
respect tar; andzs and substituting;; = x5 = 1. Doing this avoids the computation of the multivariate
generating functio'(z, z1, z2). This leads to handle a finite set of sparse linear systenizef,avhere
the number of non-zero terms@(¢). Using the Wiedemann algorithm (Wie86) it is therefore jfuss

to compute the momeer(f;) in O(¢?) operations.

When exact computation is needed, it is necessary to cortiputational generating functi@%.
Note that to get to the result, the Aho-Corasick automatoy beaminimized in (here negligible) time
O(Llog(?)).

Starting from Equation (2), we remark thB{ z, x1, x5) = (I — 2T(z1,22)) 11, wherel is the vector
(1,...,1)t, is a vector of rational functions in, z; andz,. We write the2¢ + 1 first terms of the Taylor
expansion off'(z, 21, x2) in the neighborhood of = 0, which gives

F(z,21,25) =11 + 2T1 4 22TT1 + - - - + 21T 4 - -« 4 22017200 4

The principle is to benefit from the fact thdtis a sparse matrix witi)(¢) non null entries. Eacf1

is a vector, entries of which are polynomialsain andz, of at most;2 terms. The cost of computing
the 2¢ + 1 first terms of the expansion is therefapg/*). Multiplying to the left this expansion by the
vector(1,0,...,0) provide the2/ + 1 first terms of the expansion of the rational functibiz, 1, z2)
which can be computed by using a Padé approximant with a@0&t) x O(¢? log(¢)loglog(¢)) =
O(¢* log(¢) loglog(£)) where the first term corresponds to the number of operatibosraputation of
the Padé approximant and the second term to the multiglicaf polynomials of the variable; andxs
of degree at most/ + 1 in the two variables (univariate polynomials are multigley FFT).

Binary Powering. For both approaches, the exact computatioMég) follows by computing the recur-
rence associated to the rational fractith »(z) (computed exactly), rewriting it as a matricial equation
and using binary powering to compute the relevant powersefriatrix inO(log(n)) operations.

[ Automaton approach (asympt.) | Complexity | [ Inclusion-exclusion (asympt.) | Complexity |
1) Build the Aho Corasick automator| O(¢) 1) Compute the right extension sejs O(¢)
2) Inverse a linear system with cor- O(¢2) 2) Differentiate and get first terms O(£log(¢) log log(¥))
stant coefficients of Laurent series

[ Overall Cost [ O | [ Overall Cost | O(¢log(¢)loglog(f)) |

Tab. 1: Asymptotic computation oMff;) with the automaton approach (left) and inclusion-exclasiwethod (right)
for two words of length? and a text of lengthu.
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Tab. 2: Exact computation oMl(_2 with the automaton approach (left) and inclusion-exclngizethod (right) for

F. Bassino, J. @ment, J. Fayolle, and P. Nicéthe

Automaton ap-| Complexity
proach (exact)
1) Build the Aho| O(¥)

Corasick automaton

2a) Inverse a linea
system with polyno-
mial coefficients

O(f*log(¢) loglog(£))

2b) Differentiate

Llog(£) loglog(¥))

3) Binary powering

o
O(log(n)

Overall Cost | O(log(n) + ¢"log(¢) loglog(?)) |
Inclusion- Complexity
exclusion (exact)
1) Compute thel O(¢)
right extension
sets
2) Differentiate O(£log(¢)loglog(?))
3) Binary power-| O(log(n)

ing

Overall Cost

| O(log(n) + £log(¢) loglog(?)) |

n)

two words of lengtt? and a text of lengt.






