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A two-parameter family of random permutations of [n] is introduced, with distribution conditionally
uniform given the counts of upper and lower records. The family interpolates between two versions of
Ewens’ distribution. A distinguished role of the family is determined by the fact that every sequence
of coherent permutations (πn, n = 1, 2, . . .) with the indicated kind of sufficiency is obtainable by
randomisation of the parameters. Generating algorithms and asymptotic properties of the permutations
follow from the representation via initial ranks.
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1 Introduction
Random permutations with non-uniform distribution appear in a variety of contexts such as combinatorial
structures [1], shuffling and sorting algorithms [3, 18], dynamical systems [17] and statistics [11], just
to mention a few. Generalisations of the uniform distribution can be designed by assuming some sort of
sufficiency, that is requiring the distribution to be uniform conditionally given the value of some statistic
of permutation.

One important instance of this kind is Ewens’ distribution on the symmetric group Sn. The distribution
assigns probability θc−1/(θ + 1)n−1 to every permutation πn ∈ Sn with c cycles, where θ ≥ 0 is a
parameter, see [1, 21]. Ewens’ distributions are coherent as n varies, hence can be viewed as a probability
on the space S∞, a projective limit of Sn’s. Moreover, every distribution for (πn, n = 1, 2, . . .) ∈ S∞

such that each πn is uniform given the number of cycles, can be obtained as a mixture over Ewens’ family,
that is by randomisation of θ, see Gnedin and Pitman [8].

By the virtue of a fundamental bijection Sn → Sn the number of cycles is translated into the number
of upper records, hence Ewens’ distribution may be also viewed as a distribution which assigns probability
θu−1/(θ + 1)n−1 to each permutation πn ∈ Sn with u upper records, a viewpoint due to Kerov [14].
Gnedin and Olshanski [7] explored a similar setting with the number of descents as sufficient statistic; in
this case the distinguished role is played by the dicrete-parameter family of a-shuffles (introduced in [3]
and appearing in bucket sorting [18]) and their reversals.
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This paper was largely motivated by the suggestion in [9, 10] to connect random record models with
instances of Ewens’ sampling formula. In this direction, we extend Ewens’ family by introducing two-
parameter distributions P (θ,ζ) on S∞ under which every πn ∈ Sn is uniform conditionally given (`, u),
for ` the number of lower and u the number of upper records of permutation. We show that every prob-
ability on S∞ having this kind of sufficiency is obtainable by randomising the parameters θ and ζ. We
also show that permutations under P (θ,ζ) can be generated by ranking a sequence of real-valued ran-
dom variables (Xn), whose record sequences follow a two-sided analogue of the GEM distribution for
‘stick-breaking’ partition of the unit interval.

2 Counting the records
Permutations πn ∈ Sn of [n] := {1, . . . , n}will be written in the one-row notation πn = (πn1, . . . , πnn).
We call element πnj a lower record of πn if πnj = min(πn1, . . . , πnj), and we call πnj an upper record if
πnj = max(πn1, . . . , πnj). When πnj is a record we say that πnj is a record value and that j is a record
time (or a record position). The first entry πn1 will be called center . We regard the center as improper
lower and upper record, all other records being proper. We denote

rec(πn) = (r−`, . . . , r−1, r0, r1, . . . , ru)

the two-sided increasing sequence of record values, with distinguished center r0 = πn1, proper lower
records r−`, . . . , r−1 and proper upper records r1, . . . , ru. In this notation `, u count the proper records;
for instance, rec(3, 2, 7, 6, 1, 4, 8, 5) = (1, 2,3, 7, 8), where the center is boldfaced and ` = u = 2.
Clearly, r−` = 1, ru = n, and the total number of records #rec(πn) = `+ u+ 1 satisfies min(2, n) ≤
` + u + 1 ≤ n. The record times of proper lower and upper records will be labelled t1, . . . , tu and
t−1, . . . , t−`, respectively, and we denote t0 = 1 the record time associated with the improper record.

Let
[

n
`+1,u+1

]
be the number of permutations πn ∈ Sn with `+ 1 lower and u+ 1 upper records. This

array of combinatorial numbers is symmetric in ` and u, and satisfies the recursion[
n

`+ 1, u+ 1

]
=
[
n− 1
`, u+ 1

]
+
[
n− 1
`+ 1, u

]
+ (n− 2)

[
n− 1

`+ 1, u+ 1

]
. (1)

Summing over one of the record counts, say u, yields a signless Stirling number of the first kind[
n

`+ 1

]
=
n−1∑
u=0

[
n

`+ 1, u+ 1

]
,

equal to the number of permutations with `+ 1 lower records. A more delicate connection to the Stirling
numbers appears via the identity [

n

`+ 1, u+ 1

]
=
[
n− 1
`+ u

](
`+ u

`

)
(2)

found in [2, p. 179], where it was derived by manipulation with generating functions.
For our purposes it is important to introduce yet another encoding of permutation into the sequence of

initial ranks
ιj := #{k : k ≤ j, πnk ≥ πnj}, j ∈ [n].
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The correspondence πn 7→ (ι1, . . . , ιn) is a well-known bijection between Sn and [1] × [2] × · · · × [n].
Note that πnj is a lower record if ιj = 1, and an upper record if ιj = j.

In terms of the initial ranks a bijective proof of (2) is easily acquired. To this end, consider the mapping
which sends πn ∈ Sn to π′n−1 ∈ Sn−1 so that the initial ranks are transformed as (ι1, . . . , ιn) 7→
(ι′1, . . . , ι

′
n−1) where ι′j−1 = ιj1(ιj < j) for 2 ≤ j ≤ n (and 1(· · · ) will denote an indicator). Each

proper record of πn is mapped bijectively to a lower record of π′n−1, and the record counts satisfy `(πn)+
u(πn) = `(π′n) + 1. It is easily seen that 2r permutations πn are mapped to the same π′n−1 each time
when `(π′n−1) + 1 = r, and of these πn there are

(
r
`

)
permutations with ` proper lower records. Because

π′n−1 with r lower records can be chosen in
[
n−1
r

]
ways, the identity (2) follows.

When a probability distribution Pn is specified on Sn, we consider πn as a random variable. In par-
ticular, P (1,1)

n (πn) ≡ 1/n! is the uniform distribution (indices will be explained in the next section). The
characteristic feature of the uniform distribution is that the initial ranks are independent, with each ιj
being uniformly distributed on [j]. Giving a probabilistic interpretation to (2) we have:

Lemma 1 Under the uniform distribution P (1,1)
n for πn, conditionally given the record counts (`, u)

and given the positions occupied by `+ u proper records, all
(
`+u
`

)
allocations of ` lower records within

these `+ u positions are equally likely.

Recall that ranking associates with any sequence of distinct reals x1, . . . , xn a sequence of ranks
πnj = #{i ≤ n : xi ≤ xj}, also called the ranking permutation. A uniform permutation appears
when x1, . . . , xn are sampled independently from the uniform distribution on [0, 1] (or from any other
nonatomic distribution on reals).

3 The two-parameter family of random permutations
We introduce next a two-parameter deformation of the uniform distribution, for which (`, u) is a sufficient
statistic, meaning that given the record counts the distribution of πn is uniform.

Proposition 2 For arbitrary positive θ and ζ the formula

P (θ,ζ)
n (πn) =

θ`ζu

(θ + ζ)n−1
(3)

defines a distribution on Sn, which assigns the same probability to every permutation with ` + 1 lower
and u+ 1 upper records.

Proving this amounts to the fact that the probabilities in (3) add to unity, which is equivalent to the
formula for the bivariate generating function∑

`,u

[
n

`+ 1, u+ 1

]
θ`ζu = (θ + ζ)n−1, (4)

known since at least [4]. Note that for ζ = 1 this specialises as the well-known formula

n−1∑
`=0

[
n

`+ 1

]
θ` = (θ + 1)n−1
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for the generating function of Stirling numbers.
To generate πn under P (θ,ζ)

n one can exploit the representation via initial ranks, with ι1 = 1 and
ι2, . . . , ιn sampled independently from distributions

ιj =


1 w.p. θ/(θ + ζ + j − 2),
j w.p. ζ/(θ + ζ + j − 2),
r w.p. 1/(θ + ζ + j − 2) for r = 2, . . . , j − 1

(5)

(w.p.=with probability). Multiplying these out it is seen that (3) is indeed the probability of any sequence
(i2, . . . , in) where ιj = 1 occurs ` times and ιj = j occurs u times.

For the uniform distribution, each ιj should be sampled from the uniform distribution on [j], which
is a well-known method to generate uniform permutation. Thus, P (θ,ζ)

n deforms P (1,1)
n by tilting the

probabilities of extreme values of the initial ranks.

4 Construction for integer parameters
For integer θ, ζ the distribution P (θ,ζ)

n can be obtained as a projection of the uniform distribution P (1,1)
n+d

on Sn+d, where d = θ + ζ − 2. To ease notation, for the rest of this section the elements of permutation
are written with one index.

Fix (w1, . . . , wn+d) ∈ Sn+d. A sequence (π′j , j ∈ [n]) (which is a permutation of n integers
{θ, . . . , n + θ − 1}) is uniquely defined by the condition that {π′1, . . . , π′j} ⊂ {w1, . . . , wd+j} is the
subset of integers whose ranks among {w1, . . . , wd+j} are neither among top ζ − 1 ranks nor among bot-
tom θ−1 ranks. Here is the inductive definition. Let s1, . . . , sn+d be the initial ranks ofw1, . . . , wn+d. At
step 1 we define π′1 to be the element of rank θ among w1, . . . , wd+1, thus leaving ζ − 1 elements ranked
above and θ − 1 ranked below π′1. At step j the element wd+j is added, if θ ≤ sd+j ≤ j + θ − 1 then
π′j = wd+j , if 1 ≤ sd+j ≤ θ− 1 then π′j is defined to be the element of rank θ among w1, . . . , wd+j , and
if j+θ ≤ sd+j ≤ j+d then π′j is defined to be the element of rank j+θ−1 amongw1, . . . , wd+j . Under-
standing the second arrow in (w1, . . . , wn+d) 7→ (π′1, . . . , π

′
n) 7→ (π1, . . . , πn) as the ranking operation,

we have defined a projection f (θ,ζ)
n from Sn+d to Sn.

Proposition 3 For positive integers θ, ζ the mapping f (θ,ζ)
n sends the uniform distribution on Sn+d

(where d = θ + ζ − 2) to P (θ,ζ)
n .

Proof: In the above, the initial ranks for (π1, . . . , πn) and (π′1, . . . , π
′
n) are the same, and are given for

j = 2, . . . , n by

ιj =


1, if sj+d ∈ [1, θ],

sj+d − θ + 1, if sj+d ∈ [θ + 1, j + θ − 2],
j, if sj+d ∈ [j + θ − 1, j + d].

For uniform permutation, sj+d is uniform on [j+d] and these are independent, hence the rj’s are indepen-
dent with respective probabilities θ/(n+ d− 2), ζ/(n+ d− 2) for extreme ranks and equal probabilities
for other values of ιj . 2

For irrational θ or ζ the distribution P (θ,ζ)
n cannot be obtained as a projection of a uniform distribution

on some combinatorial object.
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5 Coherent permutations
Our view of permutation is biased towards the interpretation as order, rather than mapping. Orders can be
obviously restricted from larger sets to smaller. In this direction, we say that permutations πn and πm, for
m ≤ n, are coherent if they determine the same order on [m]. A sequence (πn) of coherent permutations
πn ∈ Sn defines a strict order � on the infinite set N: j � i iff πnj < πni for all n ≥ max(j, i).

Let Dnm : Sn → Sm (n > m) be the projection which cuts the last n − m entries of πn and
replaces the first m entries πn1, . . . , πnm by their ranking permutation. The projection Dnm is the same
as restricting orders from [n] to [m], hence the coherence means that Dnm(πn) = πm. The space of all
orders on N has the structure of the projective limit S∞ := lim

←−
Sn.

Warning. The space S∞ should not be confused with the infinite symmetric group S∞, which is the
inductive limit of finite symmetric groups with natural embedding. The elements of S∞ are bijections
N→ N that displace only finitely many integers.

In terms of the initial ranks, Dnm : (ι1, . . . , ιn) 7→ (ι1, . . . , ιm) is just the projection on the first m
coordinates. Every infinite sequence (ιn) determines an order � on N, in which n is ranked ιnth within
the set [n]. Therefore S∞ can be identified with the infinite product space [1] × [2] × . . . endowed with
the discrete product topology (in which S∞ is a metrisable totally disconnected Borel space). When a
probability measure is defined on S∞ we view (πn) ∈ S∞ as a random coherent sequence of permuta-
tions, or a random order on N. By the measure extension theorem, distributions Pn on Sn, defined for
every n, determine a unique distribution P on S∞ for a coherent sequence of permutations if and only if
the Pn’s are compatible with projections.

We denote P (θ,ζ) the measure on S∞ under which the initial ranks ι1, ι2, . . . are independent, with
distribution as in Section 3. The distributions (P (θ,ζ)

n , n = 1, 2, . . .) introduced in Proposition 3 are
coherent projections of P (θ,ζ).

For an order � on N we shall say that an upper (or lower) record occurs at time n if ιn = n (respectively,
ιn = 1). Reversing the order is an automorphism of S∞, which is written as either πnj 7→ n − πnj for
j ∈ [n], n ∈ N, or, via the initial ranks, as ιn 7→ n− ιn for n ∈ N. Clearly, reversing the order swaps the
types of records, hence maps P (θ,ζ) to P (ζ,θ).

Remark. Except Dn := Dn,n−1 there are two other useful n-to-1 projections D′n, D
′′
n : Sn → Sn−1,

which appear in the context of descent statistics and cycle statistics, respectively [6, 16]. Projection D′n
deletes n in the one-row notation of πn, and D′′n deletes n in the cycle notation of πn. The projective limit
lim
←−

(Sn, D
′′
n) was introduced in the representation theory of S∞ as the space of virtual permutations [16],

and D′n was used in [6]. The isomorphism of three kinds of projective limits is established by means of
the commutative diagram

πn −−−−→ π−1
n −−−−→ (π−1

n )̂

Dn

y D′n

y D′′n

y
πn−1 −−−−→ π−1

n−1 −−−−→ (π−1
n−1)̂

where π−1
n denotes the inverse permutation, and πb

n denotes the fundamental bijection Sn → Sn which
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translates the one-row notation of permutation into the cycle notation of another permutation by insert-
ing parentheses ‘)(’ before each proper lower record, e.g. (3, 2, 7, 6, 1, 4, 8, 5)b = (3)(2, 7, 6)(1, 4, 8, 5)
(Stanley [23, p. 17] gives a slightly different version of the mapping).

6 Specialisations
Some special values of the parameters θ, ζ and some limits are worth mentioning. We call distribution P
on S∞ degenerate if Pn(πn) = 0 for some n and some πn ∈ Sn. All distributions P (θ,ζ) for θ, ζ > 0
are nondegenerate.
The uniform distribution. The measure P (1,1) may be called the uniform distribution on S∞, since
every P (1,1)

n is the uniform distribution on Sn, with P (1,1)
n (πn) ≡ 1/n! for every πn ∈ Sn. The corre-

sponding random order � on N has the characteristic property of exchangeability, that is the law of � is
invariant under the action of S∞. This order appears by ranking an iid sample (Xn) from the uniform
distribution on [0, 1] (or some other contunuous distribution on reals). For fixed n there are also other
ways to link uniform πn to a sequence of n random reals [9].
Ewens’ distributions P (θ,1) and P (1,ζ). Ewens’ distribution on Sn (also called θ-biased permutation,
see [1]) is the one which assigns probability θc−1/(θ + 1)n−1, to every permutation with c cycles. The
partition of n comprised of cycle-sizes of πn follows then the Ewens sampling formula.

Suppose ζ = 1, so the probabilities (3) become P (θ,1)
n (πn) = θ`/(θ+ 1)n−1 where `+ 1 is the number

of lower records of πn. When πn follows P (θ,1)
n then also π−1

n , because `(πn) = `(π−1
n ). To see this,

draw permutation in two dimensions as a point scatter {(j, πnj), j ∈ [n]}. Observe that the records are
those points which do not have other points south-west of them. Flip the picture about the diagonal to see
that the property is preserved. The inversion combined with the ̂ -mapping in Section 5 transforms the
distribution in its conventional ‘cycle form’. Therefore we still call P (θ,1) and P (1,ζ) Ewens’ distributions
(this viewpoint was suggested in [14, 15]).

By the same flipping argument, the sequence of lower record times t−`, . . . , t−1, t0 coincides with the
decreasing sequence of lower record values of the inverse permutation π−1

n , hence under P (θ,1) we have
further symmetry: (t−`, . . . , t−1, t0) d= (r0, . . . , r−1, r−`).
Distributions with equal parameters. For θ = ζ there is a symmetry between lower and upper records.
For distributions P (θ,θ)

n (πn) = θ`+u/(2θ)n+1 the minimal sufficient statistic is the total number of records
`+ u+ 1. Given the value of this statistic, πn is uniformly distributed.
Bernoulli pyramids P (p,q)∞ (0 ≤ p ≤ 1, p + q = 1). If θ, ζ → ∞ but so that θ/(θ + ζ) → p, then
under the limiting law the probability of πn is p`(1− p)u provided `+ u = n− 1, and the probability is
zero otherwise. Such πn has each πnj (j > 1) an upper record with probability p and a lower record with
probability 1−p. Only extreme initial ranks are possible, i.e ij ∈ {1, j}. Such distributions were exploited
in optimal stopping [5, 12]. One way to generate such permutation is to split [n] by binomial variable at
some integer v, then let π1 = v for the center and then riffle-shuffle v+1, . . . , n and v−1, . . . , 1 to obtain
π2n, . . . , πnn. In the cases p = 1 (respectively, p = 0) the distribution concentrates on the permutation
(n, . . . , 1) (respectively, (1, . . . , n)).
Degenerate Ewens’ permutations P (θ,0), P (0,ζ). In the limiting case θ → 0 (but ζ > 0), the permu-
tation has the form πn = (1, π′n−1), where π′n−1 is a permutation of {2, . . . , n} which upon obvious
identification has P (1,ζ)

n−1 distribution. In the limiting case ζ → 0 (but θ > 0), the permutation has the form
πn = (n, π′n−1), where π′n−1 is a permutation of [n− 1] which has P (θ,1)

n−1 distribution.
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Permutations with only one proper record P (p,q)0 (0 ≤ p ≤ 1, p + q = 1). When both θ, ζ → 0
but so that θ/(θ + ζ)→ p for some p ∈ [0, 1], then the limit law of πn is that of (πn1, πn2, π

′
n−2) where

(πn1, πn2) is either (1, n) or (n, 1) with probability p and 1 − p, respectively, while π′n−2 is a uniform
permutation of {2, . . . , n− 1} independent of (πn1, πn2).

Proposition 4 The weak closure of the (θ, ζ)-family of distributions on S∞ is comprised of nondegen-
erate ditributions with θ > 0, ζ > 0, and of the three degenerate types described above.

Proof: This follows by considering P (θ,ζ)
2 and P (θ,ζ)

3 . 2

7 Characterisation of mixtures by sufficiency
We seek now for a two-parameter generalisation of [8, Theorem 12 (i)], that is we wish to characterise the
distributions P (θ,ζ) as extreme points of a suitable family of probabilities on S∞ that are conditionally
uniform on each Sn. The following lemma is helpful.

Lemma 5 Let Q1 be the law of an independent 0-1 sequence B1, B2, . . . with Bn Bernoulli(1/n).
Assume Q is a distribution for B1, B2, . . . with the property that, for each n, the conditional law of
(B1, . . . , Bn) given Sn := B1 + . . . + Bn and given (Bm, m > n) under Q is the same as under Q1.
ThenQ is a unique mixture of distributionsQη , η ∈ [0,∞], under whichB1, B2, . . . are independent with
Bn Bernoulli(η/(n+ η − 1)).

Proof: This can be concluded from either [20, p. 269] or [8, Lemma 9]. The key issue is that the

convergence Sn/ log n→ η holds under Qη almost surely. 2

The first two assertions of the next proposition are equivalent to [8, Theorem 12 (i)] and included here
for completeness of exposition.

Proposition 6 For P a probability on S∞ suppose the distribution of πn for every n = 1, 2, . . . is
uniform conditionally given the value of a statistic stat. Then the following assertions are true:

(i) for stat = ` distribution P is a unique mixture of P (θ,1) (θ ∈ [0,∞[) and P (1,0)∞ ,

(ii) for stat = u distribution P is a unique mixture of P (1,ζ) (ζ ∈ [0,∞[ ) and P (0,1)∞ ,

(iii) for stat = `+ u distribution P is a unique mixture of P (θ,θ) (θ ∈]0,∞[ ), P ( 1
2 ,

1
2 )0 and P ( 1

2 ,
1
2 )∞ ,

(iv) for stat = (`, u) distribution P is a unique mixture of nondegenerate distributions P (θ,ζ) (θ, ζ ∈
]0,∞[ ), degenerate distributions P (θ,0) and P (0,ζ) (θ, ζ ∈]0,∞[ ), and further degenerate distribu-
tions P (1,0)0 , P (0,1)0 and P (p,q)∞ (p ∈ [0, 1]). The degenerate distributions do not enter provided
P3 > 0.

Proof: We need to show that the described distributions and only they are extreme. Assuming P extreme
in the setting of (iv), the tail algebra F of the process ((`(πn), u(πn)), n = 1, 2, . . .) must be trivial.
Let Bn = 1(rn+1 ∈ {1, n + 1}) be the indicator of some record at position n + 1. Under P (1,1) the
law of (B1, B2, . . .) is Q2, hence by Lemma 5 and because limSn/ log n is F-measurable the law of
(Bn) under P is the same as under Qη for some η. This says that records occur by a Bernoulli process,
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without specifying the types of records. If η = 0 the situation is clear: there is only one proper record
(for n > 1) and P (1,0)0 , P (0,1)0 are the sole possibilities. Suppose η 6= 0. A key to recognise how
the records are classified in types is the exchangeability. Let Ik be the indicator of the event that the
record at (k + 1)st record time is a lower record. Conditionally given I1 + . . . + Ik = ` − 1 all values
of the sequence (I1, . . . , Ik) have the same probability 1/

(
k
`−1

)
, because by Lemma 1 this is true under

P (1,1) by the virtue of a simple stopping times argument. By de Finetti’s theorem, there exists a relative
frequency of lower records, hence `(πn)/(`(πn) + u(πn)) must converge almost surely. But the limit of
this ratio is F-measurable hence constant, say p. Appealing again to Lemma 1 we see that (Bn) and (Ik)
are independent, hence the set of positions of lower records is the one obtained by independent thinning
with probability p of the occurences of 1’s in (Bn). Thus P = P (θ,ζ) with θ = pη, ζ = (1 − p)η (the
instance η =∞ is included). Part (iii) is shown similarly, with the special feature that p = 1/2. 2

The result suggests a practical way to generate all possible coherent permutations with a suitable kind
of sufficiency. For instance, if we wish to produce a nondegenerate sequence of permutations with every
πn conditionally uniform given (`, u), then we need to first specify a distribution for positive (θ, ζ), to
choose the parameters from this distribution and finally to construct permutation from the independent
initial ranks whose distributions involve the chosen parameters. It should be noticed, however, that this
de-Finetti-type procedure covers all possibilities only under the coherence condition. For each fixed n > 2
there exist conditionally uniform distributions on Sn which are not mixtures of P (θ,ζ)

n ’s.
Recall that de-Finetti’s theorem can be stated as follows: if a 0-1-sequence (Bn) is such that for every

n the law of (B1, . . . , Bn) is uniform conditionally given the number of 1’s then (Bn) is a unique mixture
of independent coin-tossing processes. In this spirit, Proposition 6(iv) says that if for (In) (with the range
of In being [n]) the law of (I1, . . . , In) for every n is uniform conditionally given `n := {1 < j ≤ n :
Ij = 1} and un := {1 < j ≤ n : Ij = j} then (In) is a unique mixture of independent processes (5)
(including the degenerate cases).

To put the characterisation result in the framework of arrays of combinatorial numbers [7, 8], denote
wn(`, u) the probability for ` lower and u upper proper records in πn. By the rule of addition of probabil-
ities we have

wn(`, u) = wn+1(`+ 1, u) + wn+1(`, u+ 1) + (n− 1)wn+1(`, u), w1(0, 0) = 1, (6)

which is a recursion dual to (1). The set of nonnegative solutions to (6) is a convex compact set, and
Proposition 6(iv) describes the set of extreme solutions to (6). Interestingly, the set of extremes is not
closed: each distribution P (p,q)0 with 0 < p < 1 appears as a limit of some nondegenerate P (θ,ζ)’s, but it
is decomposable as a mixture P (p,q)0 = pP (1,0)0) + qP (0,1)0 .

A familiar method of finding the extreme solutions of (6) is based on identifying the Martin boundary.
To that end, one explores asymptotic regimes for `′ = `′(n′), u′ = u′(n′) as n′ → ∞, which guarantee
for all n, `, u convergence of the ratios[

n

`+ 1, u+ 1

]
n′

`′+1,u′+1

/[
n′

`′ + 1, u′ + 1

]
, (7)

where the numerator is the number of permutations πn′ of [n′] with record counts (`′, u′), such that the
restriction of πn′ to [n] has record counts (`, u). Using a monotonicity argument like in [8], the things
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can be reversed to show that the convergence `′/ log n′ and u′/ log n′ is necessary and sufficient for the
convergence of the ratios (7) for all n, u, ` (hence the Martin boundary coincides with the set of extreme
solutions).

8 Related distributions and asymptotics
As in the case of the uniform distribution [19], asymptotic properties (as n → ∞) of record counts
` = `(πn), u = u(πn) under P (θ,ζ) follow straightforwardly from the representation via independent
initial ranks. Thus, both mean and variance of ` are asymptotic to θ log n, and that of u to ζ log n. Jointly,
(`, u) converge in distribution to independent Gaussian variables. The point processes of scaled record
times {tk/n : k < 0}, {tk/n : k > 0} converge to independent Poisson processes with intensities θdt/t,
ζdt/t (for t ∈ [0, 1]), respectively.

The behaviour of each πnj under P (θ,ζ) as n varies is that of a process with exchangeable 0-1 incre-
ments, known as Pólya’s urn model. That is to say, each sequence (πnj , n ≥ j) is a nondecreasing
inhomogeneous Markov chain on integers, which starts at some random initial rank πjj = ιj at time j,
and at time n either jumps from some rank πnj = v to v+ 1 with probability (v−1 + θ)/(n−2 + θ+ ζ),
or otherwise remains at v.

The law of rec(πn) can be expressed in terms of Pólya-Eggenberger distributions

PE(θ,ζ)
n (r) :=

(
n− 1
r − 1

)
(θ)n−1(ζ)r−1

(θ + ζ)n−1
r ∈ [n].

The distribution of the center r0 = πn1 is PE(θ,ζ)
n . Conditionally given r0, the lower and upper record

sequences are independent. The sequence of lower records r−1, . . . , r−` is a homogeneous decreasing
Markov chain on integers which starts at r0 and terminates at 1, each time descending from the generic
r to r − d with probability PE(θ,1)

r (d). In a similar way, the sequence of upper records r1, . . . , ru is
a homogeneous increasing Markov chain on integers which starts at r0 and terminates at n, each time
ascending from some r to r + d with probability PE(ζ,1)

n−r+1(d).
Asymptotics of the record values follow from the well known properties of Pólya urns. Recall that

beta(a, b) distribution with parameters a > 0, b > 0 is the distribution on [0, 1] with density xa−1(1 −
x)b−1/B(a, b), where B(a, b) = Γ(a)Γ(b)/Γ(a+ b).

Proposition 7 As n→∞, under P (θ,ζ) the scaled record values of πn converge,

rk
n
→ ρk a.s. (k ∈ Z).

The distribution of ρ0 is beta(θ, ζ). Given ρ0 the sequences (ρk, k < 0) and (ρk, k > 0) are independent
and representable as

ρk = ρ0TkTk+1 · · ·T−1 (k < 0), ρk = 1− (1− ρ0)Z1Z2 · · ·Zk (k > 0),

where Tk’s are beta(θ, 1), Zk’s are beta(ζ, 1) and the variables ρ0, Tk (k < 0) and Zk (k > 0) are all
independent.
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Let S be the space of two-sided nondecreasing sequences (xk, k ∈ Z), xk ∈ [0, 1], endowed with the
product topology of [0, 1]Z. Padding rec(πn) by infinitely many 1’s on the left and infinitely many n’s on
the right, and scaling by n makes n−1rec(πn) a random element of S

n−1rec(πn) = (. . . , 1/n, 1/n, r−`/n . . . , r−1/n, r0/n, r1/n, . . . , ru/n, 1, 1, . . .).

Proposition 7 is a strong law of large numbers which says that n−1rec(πn) converge in S almost surely
to a limit (ρk).

Recall that GEM(θ) distribution is the law of the sequence of gaps obtained by breaking [0, 1] at atoms
of the Poisson point process with intensity θdx/x (x ∈ [0, 1]) [1, 21]. The decreasing sequence of atoms
has the same distribution as the sequence of ‘stick-breaking’ productsD1, D1D2, . . ., with theDj’s being
iid beta(θ, 1). The two-sided sequence (ρk, k ∈ Z) is obtained in a similar way, by splitting [0, 1] at
ρ0, and further partitioning the intervals [0, ρ0] and [ρ0, 1] by two independent beta stick-breakings with
parameters θ and ζ. By analogy, the sequence of gaps ρk+1 − ρk, k ∈ Z, may be regarded as a two-sided
version of the GEM distribution.

Generalising the classical case of sampling from iid uniforms [22, Proposition 4.11.2], the distribution
of the bivariate point process of upper record values and their durations follows from the spraying property
of Poisson processes. (The latter also applies for lower records, of course.) Thus, given ρ0 the point
processes {(ρk, tk+1− tk), k ≥ 0} and {(ρk, tk−1− tk), k ≤ 0}, are independent Poisson, with intensity
measures ζxj−1dx on [ρ0, 1] × N and θ(1 − x)j−1dx on [0, ρ0] × N, respectively. In particular, by the
projection property of Poisson processes, given ρ0 the conditional distribution of the number of pairs of
neighbouring lower records #{k ≤ 0 : tk−1 − tk = 1} is Poisson(θρ0) (an equivalent result is shown in
[13, Corollary 3.1] by a computation of moments).

9 Generating permutations from continuous variates
Under P (θ,ζ) not only the scaled record values converge (see Proposition 7), but also scaled permutations
(πnj/n, j ∈ N) converge almost surely to some random sequence (Xj) ∈ [0, 1]∞. In the case of uniform
distribution P (1,1), the sequence (Xj) is just iid uniform[0, 1], and (πn) can be generated by ranking
(Xj), as we already mentioned. Under any P (θ,ζ), (Xj) can be produced by a kind of shuffling of the
sequences of record values (ρk, k ≥ 0), (ρk, k < 0) and another independent sequence of uniform
variables. Here and henceforth, under shuffling of a few sequences we understand a sequence which is
comprised of terms of all these sequences arranged in such a way that each of the sequences enters in its
original order.

Construction 8 Let (Wn) be iid uniform[0, 1], independent of (ρk). We define a new sequence (Xn)
where some Wn’s are used, and some are replaced by ρk’s which will appear as upper and lower record
values. Start with X1 = ρ1. Suppose before step n + 1 the values ρ−`, . . . , ρu have been included
into X1, . . . , Xn; then ρu = max(X1, . . . , Xn) and ρ−` = min(X1, . . . , Xn). At step n + 1 we let
Xn+1 = ρu+1 if πn+1 > ρu, or Xn+1 = ρ−`−1 if πn+1 < ρ−`, or Xn+1 = πn+1 otherwise. Define a
coherent sequence of permutations (πn) by ranking (Xn).

It is obvious that, given (ρk), the sequence (Xn) resulting from the construction has the same law as iid
uniform[0, 1] sequence conditioned on its two-sided sequence of record values (see [10] for the one-sided
case of upper records). This works for any θ, ζ because conditionally given (ρk) the distribution of (πn)
under any P (θ,ζ) is the same as under the uniform distribution P (1,1).
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For every fixed n a similar procedure yields uniform permutation πn conditioned on rec(πn). Start
with setting πn1 = r0. At each step j > 1 we will have πn1, . . . , πn,j−1 already determined, with
some maximum max(πn1, . . . , πn,j−1) = ru′ and some minimum min(πn1, . . . , πn,j−1) = r−`′ . At
step j ∈ {2, . . . , n} a value v is chosen uniformly at random from [n] \ {πn1, . . . , πn,j−1}. If v < r−`′

let πnj = r−`′−1, if v > ru′ let πnj = ru′+1, and if r−`′ < v < ru′ let πnj = v. The sampled
value v is replaced each time v breaks the last upper or lower record. In n steps the increasing sequences
(r−`, . . . , r−1), (r1, . . . , ru) are shuffled with other elements of [n]. It is intiutively clear and not hard
to show that, as n becomes large, n−1rec(πn) = n−1(. . . , 1, r−`, . . . r−1, r0, r1, . . . , ru, n, . . .) will
converge in S to (ρk). This is just because sampling from large finite sets will have nearly the same effect
as independent uniform choices from [0, 1].

Apparently, from the viewpoint of statistical theory of extremes the sequence (Xn) is rather exotic, as
it is chosen just to simulate desired behaviour of records. This differs general P (θ,ζ) from the uniform
distribution P (1,1), when ‘injecting’ some extrinsic (ρk) is not at all necessary since the uniform sample
(Wn) supplies automatically appropriate record values, so (Xn) d= (Wn). Still, in the case of integer
parameters there is a simpler way to produce appropriate (Xn) from a sequence of uniforms, as parallels
the construction of permutations in Proposition 3.

Construction for integer values of the parameters. The idea is to assume some ‘prehistorical’ sample
of uniforms. Suppose θ ≥ 1, ζ ≥ 1 are integers. For d = θ + ζ − 2 let V1, . . . , Vd,W1,W2, . . . be
iid uniform[0, 1]. At step 1 choose X1 as the value of rank θ among V1, . . . , Vd,W1. At each step n
we will have max(X1, . . . , Xn) equal to the (n − θ + 1)th order statistic in V1, . . . , Vd,W1, . . . ,Wn,
and min(X1, . . . , Xn) equal to the θth order statistic in X1, . . . , Xd,W1, . . . ,Wn. Now, if Wn+1 >
max(X1, . . . , Xn) we setXn+1 equal to the (n+θ−1)th order statistic in V1, . . . , Vd,W1, . . . ,Wn,Wn+1,
if Wn+1 < min(X1, . . . , Xn) we set Xn+1 equal to the θth order statistic in the same sequence, and oth-
erwise let Xn+1 = Wn+1. This works, since there are always θ spacings below min(X1, . . . , Xn) and ζ
spacings above max(X1, . . . , Xn), thus the resulting ranking is as in the proof of Proposition 3.

The described process shows that, for integer θ ≥ 1, ζ ≥ 1, Proposition 7 is a consequence of properties
of the uniform order statistics. For all other values of θ, ζ the result can be interpolated from the integer
case, because the law of each πn is a rational function of the parameters of beta laws for Tk, Zk.
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