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Properties of Random Graphs via Boltzmann
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This work is devoted to the understanding of properties of random graphs from graph classes with structural constraints.
We propose a method that is based on the analysis of the behaviour of Boltzmann sampler algorithms, and may be
used to obtain precise estimates for the maximum degree and maximum size of a biconnected block of a “typical”
member of the class in question. We illustrate how our method works on several graph classes, namely dissections and
triangulations of convex polygons, embedded trees, and block and cactus graphs.
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1 Introduction
In this paper we introduce a new method, which we apply to prove that graphs on n nodes, drawn uniformly
at random from a graph class with structural constraints, have specific properties with high probability
(w.h.p., i.e., with probability tending to 1 as n → ∞). In order to investigate properties of such random
graphs, we have to cope with the difficulty of the dependence of the edges. Such graph classes, however, are
important when modeling real-world scenarios, and developing and analysing (the average performance of)
algorithms, which take inputs from those classes. Popular examples in this area are trees, series-parallel,
outerplanar, and planar graphs, and models for the world-wide-web, which have been studied extensively
over the last few years.

In the literature there are two common approaches, which can be used to prove that a random member
of such a graph class has a specific property. Central to both is the enumeration of the objects in the class
under consideration. The first approach is purely combinatorial. McDiarmid, Steger, and Welsh were the
first to apply this method to obtain results about random planar graphs [MSW05], and later generalised
their results to other classes of graphs [MSW06]. Although the approach is quite powerful, it has some
disadvantages: one might have to adapt it already for slightly different graph classes, see e.g. [GMSW05],
and sometimes it only yields rough lower and/or upper bounds (see below). Furthermore, it seems to be
difficult to apply this method to estimate certain parameters, such as the expected number of edges.

The second approach is mainly based on analytic combinatorics and uses generating functions [FS05]. It
has recently led to immense progress in the enumeration and the understanding of several properties (such
as the distribution of the number of edges and the number of (bi-)connected components) of constrained
graph classes, as for instance planar, series parallel, and outerplanar graphs [GN05, BGKN05]. However, it
seems to be inherently difficult to investigate properties of those classes, which cannot be directly addressed
with (a finite number of) parameters of the generating functions, such as the maximum node degree or the
degree sequence.

In this context, there are two remarkable papers which provide solutions for special classes of graphs
and parameters. Gao and Wormald show in [GW00] that the distribution of the maximum node degree
in random triangulations of convex polygons with n nodes is essentially distributed as the maximum of n
independent identically distributed random variables G2, where G2 is the sum of two independent geomet-
ric variables with mean 2. Moreover, a similar result is shown to hold for general random planar maps.
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In [Gou98] Gourdon presents a unified analytic framework dedicated to the estimation of the size of the
largest component in random combinatorial structures. This framework may be used for instance to esti-
mate the size of a maximum biconnected block in random graphs. Unfortunately, the framework does not
cover all cases that might appear, as we demonstrate in the results section below.

Here we propose an alternative method, which is orthogonal to the approaches described above and can
support us in understanding properties of random graphs. Our approach does not yield the precise limiting
distribution of the parameters in question, but it has the big advantage that it provides us with very precise
(and we believe tight) bounds for the tail probabilities, i.e., for the probability that a parameter deviates
much from its expectation, even if these probabilities become very small. Such bounds are very important
if we want to analyse algorithms from an average-case point of view.

Our approach is based on the analysis of the behaviour of Boltzmann sampler algorithms. The frame-
work of Boltzmann samplers was developed by Duchon, Flajolet, Louchard and Schaeffer [DFLS04], and
enabled the design of very efficient and but surprisingly simple algorithms – in practice and in theory –
for sampling objects u.a.r. from several classes of combinatorial objects. As an additional advantage, these
samplers can be derived systematically. Here, our central idea is to analyse the execution of a Boltzmann
sampler for the graph classes in question. If we knew what properties the “typical” output of such an al-
gorithm has, then a random member of the considered graph class would also have those properties. On
the other hand, from a technical point of view, the analysis may become much easier if we reconceive, as
just described.

Let us briefly compare the combinatorial, the generating function, and our new approach on a simple
example, namely Cayley trees. With the combinatorial approach we easily obtain the exact number tn :=
nn−2 of labelled trees on n nodes. The method relies on a bijection between trees on n nodes and the
encoding of a tree as a string – the well-known Prüfer code. Moon [Moo68] used this to obtain precise
asymptotic bounds for the maximum node degree in a random tree. Although it works quite well for trees,
the problem-tailored approach yields difficulties (and often weaker results), as soon as the complexity of
the graph class in consideration increases. If we use generating functions, we obtain by singularity analysis
an asymptotic estimate of the form tn ∼ n!

(
en
√

2πn5 +O(n−7/2)
)

. This approach has the advantage that it
works for more complex graph classes as well, and that it might be used to obtain results about the expected
number of edges, for instance (of course, for graph classes different from trees). On the other hand, as soon
as we are interested in parameters like the maximum degree of the number of nodes of a given fixed degree,
especially in more complex graph classes, it becomes much harder to introduce the right parameters in the
generating functions and to analyse them. Contrary, our new method via Boltzmann samplers delivers the
precise asymptotic behaviour of the maximum node degree, as well as the complete degree sequence for
Cayley trees; moreover, it has the benefit that it generalises easily and mechanically to moderately complex
graph classes, as we will demonstrate in this paper. Our method yields precise estimates – that is the
precise asymptotic behaviour – for the maximum node degree and maximum size of a biconnected block
of a random graph within the class under consideration. We are confident that the method is applicable to
other parameters, and graph classes as well. This will be topic of further study.

Here we will study and illustrate how our method works on several graph classes, namely on block
graphs B, cactus graphs C, dissections D and triangulations T of convex polygons, and embedded trees E .
All graphs we consider are simple, labelled, and connected. A block graph is a graph whose maximal
biconnected blocks are cliques. A cactus graph is a graph in which each edge is contained in at most one
cycle. A dissection is a biconnected outerplanar graph. All these graphs are well-known and well-studied
combinatorial objects [FS05, DFLS04, FN99], which have plenty of applications in physics, computer
science, and bioinformatics (see e.g. [BHM02, Fle99]).

Our results We first derive for every graph class G ∈ {C,B,D, E , T } an efficient sampler based on the
Boltzmann sampler framework, which was recently introduced by Duchon et al. in [DFLS04]. They will
be crucial for our further analysis.

Theorem 1.1 Let n ∈ N, 0 < ε < 1, and G ∈ {C,B,D, E , T }. There exists a randomised algorithm
with expected running time O(nε−1), which outputs random graphs of G with size in the interval Iε =(
n(1 − ε), n(1 + ε)

)
, such that the distribution of graphs from G is uniform on each size k ∈ Iε. The



174 Konstantinos Panagiotou and Andreas Weißl

Graph Class Maximum Degree Maximum biconnected Block
Cactus graphs C mC(n) := 2 logn

log logn sC(n) := logC1
n

Block graphs B mB(n) := logn
log(3) n

sB(n) := logn
log logn

Embedded Trees E mE(n) := log2 n n
Dissections D mD(n) := logC2

n n
Triangulations T mT (n) := log2 n n

Tab. 1: Maximum degree and maximum biconnected block for the considered graph classes. The constants C1 ≈ 2.19
and C2 ≈ 2.38 are analytically given.

variance of the running time is O(n2ε−2).

Our main results on the structure of graphs drawn uniformly at random from Gn (i.e. graphs from G, re-
stricted to precisely n nodes) are summarised in the following theorem. Unless stated otherwise, logarithms
are to the base e.

Theorem 1.2 Let G be a graph class and denote by Gn a graph drawn u.a.r. from Gn. Let mG and sG be
as in Table 1. For every ε > 0, the following statements hold for almost all n.

• For G ∈ {C,B,D, E , T } the maximum node degree of Gn is with probability 1 − n−Ω(ε) in the
interval

(
(1− ε)mG(n), (1 + ε)mG(n)

)
.

• For G ∈ {C,B} the size of a largest biconnected block in Gn is with probability 1 − n−Ω(ε) in the
interval

(
(1− ε)sG(n), (1 + ε)sG(n)

)
.

Observe that in both cases we obtain the precise asymptotic behaviour of the parameters in question.
It seems that as soon as we consider more complex objects than trees, some of the involved constants
become quite unpredictable and it might be very difficult – if not impossible – to obtain them by a purely
combinatorial approach. Note that the result about random triangulations was already known (it was first
proved by Devroye, Flajolet, Hurtado, Noy, and Steiger in [DFH+99], and then made more precise by
the previously mentioned paper [GW00]), and we simply reprove it with our method. Moreover, the result
about the maximum size of a biconnected block in random cactus graphs can be proved by the more general
statements in [Gou98], but the similar statement for block graphs cannot (as the general case of the special
combination of generating functions involved in the description of the class of block graphs is not covered
there). Finally, note that block and cactus graphs are examples of graph classes, where the general lower
bound for the maximum node degree of (1 + o(1)) logn

log logn for addable graph classes, given in [MSW06,
Corollary 5.3], is not tight.

Roughly speaking, we proceed as follows to prove the above theorem: instead of investigating directly
the properties of the graph class, we consider the execution of its corresponding Boltzmann sampler. We
examine how the shape of a sampled object evolves over a run of the sampler and how this affects the
related property. From this knowledge, we can eventually deduce the probability that a sampled output
object has the property in interest.

As already mentioned, enumerating the objects in the graph class in question is important for under-
standing its structural properties. Here we exploit generating function techniques, which were only recently
applied to obtain similar results for planar, series parallel, and outerplanar graphs [BGKN05, GN05], and
are well described in the forthcoming book “Analytic Combinatorics” by Flajolet and Sedgewick [FS05].

Outline Due to space constraints, in this extended abstract we focus solely on the maximum degree of
random block graphs, and demonstrate how we can determine it by analysing the execution of a Boltzmann
sampler for this graph class. The proof is given in (almost) full detail. The proofs of the other results can be
proved analogously by applying a similar proof pattern, and all the details will be given in the full version
of the paper.

This paper is structured as follows. In Section 2 we describe briefly a few facts about block graphs and
introduce necessary notation. Section 3 presents our sampling algorithm in detail, as it is crucial for our
analysis. In Section 4 we demonstrate our method, where we prove tight bounds for the maximum degree
of random block graphs.
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2 Decomposition & Generating Functions
Before we proceed, let us introduce some necessary notation, which we are going to use in the remainder
of the paper. Let G be a class of graphs and denote by Gn the set of all graphs in G on n nodes, and
let G(x) =

∑
n gn

xn

n! denote its exponential generating function (egf), where gn := |Gn|. In the following,
we will frequently use the pointing and derivative operators. Given G, we define G• as the class of pointed
(or rooted) graphs, where a node is distinguished from all other nodes. The derivated class G′n is obtained
by removing the label n from every object of Gn, such that the obtained objects have size n− 1, i.e., node
n can be considered as a distinguished node that does not contribute to the size. We set G′ :=

⋃
n≥0 G′n.

On generating function level, the pointing operation means taking the derivative with respect to x, and
multiplying by it, i.e. the egf G•(x) =

∑
n≥0 g

•
n
xn

n! satisfies G•(x) := xG′(x), where g•n := |G•n| = ngn.
Similarly, the egf of G′ satisfies G′(x) =

∑
n≥0 g

′
n
xn

n! = ∂
∂xG(x).

By applying a standard decomposition of a graph into 2-connected blocks (see [HP73, p. 10]), and by
using singularity analysis (see [FS05]) we obtain the following lemma. Here we denote by Z the graph
class consisting of one single labelled node. Furthermore, for two graph classes X and Y , we denote
by X × Y the cartesian product of X and Y , followed by a relabelling step, so as to guarantee that all
labels are distinct for an object γ ∈ X × Y . Moreover, Set(X ) is the graph class such that each object
in it is a set of graphs in X . Finally, the class X ◦ Y (substitution) consists of all graphs that are obtained
from graphs from X , where each node is replaced by a Y graph. For a more detailed description we refer
to [DFLS04].

Lemma 2.1 Let Q be the class of all labelled cliques on at least two nodes. The class B• satisfies B• =
Z ×Set(Q′ ◦ B•). Furthermore, the egf for B• admits a singular expansion around its singularity ρB of
the form B•(x) = B•0 + B•1X

1/2 + o
(
X1/2

)
, where X = 1 − x

ρB
, and B•0 , B•1 , and ρB are implicitly

given constants.

The proof is an application of singularity analysis, and we omit the details due to space constraints. Proofs
of similar results can be found e.g. in [BGKN05].

3 Sampling
In this section we will demonstrate how we can obtain efficient sampling procedures for the graph classes
in interest. The framework of Boltzmann samplers was introduced by Duchon et al. in [DFLS04], and was
only recently extended and applied to obtain an efficient sampler for random planar graphs by Fusy [Fus05].
This framework will allow us to derive an algorithm whose running time is expected linear in the size of
the output object for approximate-size sampling and expected quadratic for exact-size sampling.

Here we just present the basic ideas of this framework for the case of exponential generating functions;
for further details see [DFLS04]. Let G denote the class of objects, in which we are interested, and letG(x)
denote its egf. In the Boltzmann model of parameter x, we assign to any object γ ∈ G of size |γ| the
probability

Pr[γ] =
1

G(x)
· x
|γ|

|γ|!
, (1)

if the above expression is well-defined. A Boltzmann sampler ΓG(x) for class G is a process that produces
objects from G according to the corresponding Boltzmann model. In [DFLS04] several general procedures
are given, which translate construction rules like union, set, etc. into Boltzmann samplers. Fusy (see
[Fus05]) extended these by further constructions, as for instance substitution. Our classes can be described
within this set of rules, which implies that we can derive systematically a Boltzmann sampler for them.

The efficiency of a Boltzmann sampler for a class G depends highly on the type of the singular expansion
of its generating function, see Theorems 6.3 and 7.3 in [DFLS04]. More precisely, in order to obtain an
expected linear running time sampler, either the exponent α of the singular expansion of G(x) has to be
negative or, in the special case that−α = 1

2 , we can use a so-called singular ceiled rejection sampler. This
sampler simply discards objects during sampling, as soon as they become too large.

The ceiled rejection sampler has the advantages that it is not necessary to tune it explicitly for a specific
output size and that only a very small amount of constants has to be calculated (in our case only two, see
below). In contrast, if we want to obtain an efficient sampler of the first type, we have to point our objects as
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many times as it is necessary to obtain a negative singular exponent (which increases the number of involved
generating functions and hence the complexity of the resulting sampler) and tune the input parameters
for every desired output size, see Theorem 6.3 in [DFLS04]. Furthermore, if we want to implement the
sampler, the generating functions have to be evaluated very precise for values near their singularities,
which means that we might have to calculate many terms of the singular expansions. Therefore we design
a singular rejection sampler for the considered graph classes. Finally, it turns out that the singular rejection
sampler is very well suited for our further analysis.

The singular rejection sampler repeatedly samples pointed block graphs according to (1), until an object
with size in ((1−ε)n, (1+ε)n) is sampled. It maintains a global variable nodes, which counts the number
nodes which were generated through recursive calls.

ΓνB(n, ε): repeat
nodes← 0
γ ← ΓB•(n, ε)

until |γ| > (1− ε)n
label the nodes of γ uniformly at random
return γ (and discard the root)

The sampler for rooted block graphs ΓB• works as follows. Roughly speaking, due to Lemma 2.1, a
rooted block graph is a set of biconnected rooted block graphs, merged at their roots, in which every node
is again replaced by a rooted block graph. The sampler reverses this decomposition: it starts with a single
node, chooses according to a carefully chosen probability distribution a random number of cliques adjacent
to it, and then replaces each generated node by a randomly drawn rooted block graph.

ΓB•(n, ε): γ ← a single root node r
nodes← nodes+ 1
k ← Po (Q′(B•(ρB))) // ρB denotes the singularity of B•
for (j = 1 . . . k)
γ′ ← ΓQ′<(1+ε)n(B•(ρB))
if (γ′ equals ⊥) return ⊥
γ ← merge γ and γ′ at their root nodes

for (each node v 6= r of γ)
nodes← nodes− 1
γv ← ΓB•(n, ε)
if (γv equals ⊥) return ⊥

replace all nodes v 6= r of γ with γv
return γ

Finally, the sampler ΓQ′<m for cliques choses the size of the objects it outputs according to its probability
in the Boltzmann model. It returns a default empty object (⊥), if the size of the generated object would
have been too large. Before we can state it formally, let us define the distribution it samples from.

Definition 3.1 The clique distribution with parameter x > 0, denoted by Cl(x), is defined by

Pr[Cl(x) = k] :=

{
xk

Q′(x)k! , k ≥ 1
0, otherwise,

where Q′(x) := ex − 1 is the egf of Q′, where Q is the class of cliques of size ≥ 2.

With this, the sampler can be implemented as follows:

ΓQ′<m(x): k ← Cl (x)
nodes← nodes+ k
if(nodes ≥ m)

generate k − (nodes−m) nodes (?)
return ⊥

else return a rooted clique on k + 1 nodes
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It can easily be checked that the sampler above generates cliques according to the Boltzmann distri-
bution (1), if it does not early interrupt (returning ⊥). Note that in the line marked by (?), the sampler
returns⊥ after it has generated as many nodes as it is necessary to have generated precisely m nodes in the
object sampled in the current execution of ΓB•. This is a detail convenient for the analysis which is useful
in the proof of Theorem 4.2.

This completes the specification of the sampler for block graphs. By applying Lemma 2.1, Theorem 7.3
of [DFLS04], and Proposition 1 from [Fus05] we obtain straightforwardly the following lemma.

Lemma 3.2 Let 0 < ε < 1 and n ∈ N0. The following two statements hold.

• ΓB•(n, ε) is a Boltzmann sampler for the class B• of rooted block graphs. For each (1 − ε)n <
N < (1 + ε)N it satisfies Pr [|ΓB•(n, ε)| = N ] = Θ(n−3/2).

• ΓνB(n, ε) outputs a graph from B with size in Iε = (n(1− ε), n(1 + ε))), such that the distribution
is uniform for each size in Iε. Furthermore, let T be the running time of ΓνB(n, ε). Then E [T ] =
O(nε−1) and Var [T ] = O(n2ε−2).

Note that in a similar fashion we can design Boltzmann samplers for the graph classes C, E , T andD. With
the above lemma, Theorem 1.1 follows immediately. As a technical tool, we will later need the following
observation, which says that all possible output sizes are almost equally probable to occur, even if we
constrain the number of atoms the sampler can generate.

Lemma 3.3 Let 0 < ε ≤ 1
2 . Whenever n is sufficiently large the following statement holds. For every

s ∈ N and t ∈ N0 define the quantity

ps,t := Pr [|ΓνB(n, ε)| = s and ΓνB(n, ε) created precisely t+ s nodes] . (2)

For all s = αn, where α ∈ (1 − ε, 1 + ε) it holds ps,t ∼ α−3/2 · pn,t (where “∼” is with respect to
n→∞).

4 The maximum degree of a random block graph
In this chapter we are going to demonstrate our proof method by estimating the maximum node degree in
a random block graph. Following the same proof pattern, one can show the corresponding results of Theo-
rem 1.2 for the other graph classes, as well as the statements about the size of maximum blocks. Before we
proceed, let us first make a technical definition. We say that a random variable X is sumClique-distributed
with parameters λ and µ, X ∼ SCl (λ, µ), if it is the sum of Po (λ) independent Cl (µ) distributed random
variables. A crucial ingredient in our proof for the magnitude of the maximum degree in a random block
graph will be the following lemma, which is a statement about the tail of a sumClique distributed random
variable.

Lemma 4.1 Let λ, µ > 0 and 0 < ε < 1
9 be constants. There is an n0 = n0(ε) ≥ 0 such that whenever

n > n0 it holds

Pr

[
SCl(λ, µ) ≥ (1− ε) log n

log(3)(n)

]
� n−1+ ε

2 and Pr

[
SCl(λ, µ) ≥ (1 + ε)

log n

log(3)(n)

]
� n−1− ε

2 .

The proof can be found at the end of the section. Observe that this lemma in fact implies that the maximum
of n independent SCl(λ, µ) variables is concentrated around logn

log(3)(n)
(independent of the actual values of

λ and µ). With these preparations, we are ready to prove one of our main results.

Theorem 4.2 Let ε > 0. For almost all n, the maximum node degree in a random block graph is with
probability at least 1− n−ε/40 in the interval Iε,n := ((1− ε)d(n), (1 + ε)d(n)), where d(n) := logn

log(3) n
.

Proof:
The main idea in the following proof is to consider the process of object construction during a run of the

singular Boltzmann sampler ΓνB for block graphs, as it is described in Section 3. Recall that the output
of ΓνB is a random block graph of varying size from a well-defined distribution (Lemma 3.3), and here



178 Konstantinos Panagiotou and Andreas Weißl

we want to make a statement about random block graphs Bn of a given size n. As described below, it
turns out to be very convenient to study the properties of the generated shapes of ΓνB, instead of studying
properties of Bn directly. We shall see that these translate to properties of Bn in a straightforward way.

Before we proceed, let us slightly modify the sampling algorithm defined in Section 3. This is done for
solely technical reasons, and will become clear later. The idea behind the singular rejection sampler ΓνB
is to repeatedly sample and reject rooted block graphs, until ΓB• outputs an object of the desired size. ΓB•

proceeds as follows: for every generated node v, it calculates a random value pv according to a Poisson law
with parameter λ := Q′(B•(ρB)), and then calculates pv independent random values according to a clique
law with parameter µ := B•(ρB). Then it generates rooted cliques with sizes given by the random values,
joins them at their roots, and proceeds in an identical way for all newly created nodes, until the process
dies out. The important modification in the sampling procedure below is that we let the sampler ΓνB
make precisely c(n) := dn1+ε/100e random choices, abort after that immediately its execution, and output
the first object of size in Iε,n := (n2 ,

3n
2 ), if there is any, that was generated during a call of ΓB•:

Γ̃νB(n): for(i = 1 . . . dn1+ε/100e)
pi ← random value according to Po (λ)
(C(i)

1 , . . . , C
(i)
pi )← pi independent random values according to Cl (µ)

di :←
∑

1≤j≤pi
C

(i)
j (??)

run the sampler ΓνB(n, 1
2 ) with the above random values, and do not

stop its execution if it generated an object with size in (n2 ,
3n
2 ), and

abort it as soon as all dn1+ε/100e random values were exhausted

if
(
above execution of ΓνB(n, 1

2 ) generated an object with size in (n2 ,
3n
2 )
)

return the first such object
else return ⊥

The values di calculated in the line marked with (??) are needed later in the analysis. Before we proceed,
let us make some important observations. Γ̃νB behaves very similar to the sampler ΓνB described in
Section 3. The only difference is that if it generates an object of size in I, it does not output it directly,
but continues its execution until it has generated at least dn1+ε/100e nodes. On the other hand, if it does
not succeed in sampling an object of the desired size, it returns a default object ⊥. Moreover, observe that
if the sampler ΓB•, called by the algorithm above, had built a graph on s nodes, then it would have used
exactly s consecutive values pi, . . . , pi+s, and the corresponding random clique-distributed values to do so.

In order to prove the theorem, we will proceed in two steps. Let

B̃ :=
{
γ ∈ B | the maximum degree of γ is in Iε,|γ|

}
.

First, we are going to show

Pr
[
Γ̃νB(n) ∈ B̃

]
= 1− n−ε/20, (3)

i.e., with high probability, the sampler Γ̃νB(n) will output an object, which is not ⊥, and which has the
property that its maximum degree lies in the desired interval. Then, in the second part of the proof, we will
show that the above statement indeed proves the theorem.

First we show (3). Observe that the sampler ΓνB, when called by Γ̃νB, samples firstly the shape of a
graph – the labels are distributed on the nodes at the end of the process. For a labelled graph G define s(G)
to be its shape, i.e., the corresponding unlabelled graph, and for a shape S, let `(S) be the set of labelled
graphs with shape S, and let |S| denote the number of nodes in S. Furthermore, set s(B̃) :=

⋃
G∈B̃ s(G).

Now, for a shape S with |S| ∈ I, let Pr [S] be the probability that S is the first shape which has size in
Iε,n generated by the repeated execution of ΓB•, and let Pr [G | S] be the probability that the sampler
outputs the labelled graph G, given that the shape S had been generated. Observe that Pr [G | S] = aut(S)

|S|! ,
if S = s(G), and 0 otherwise, where aut(S) denotes the number of automorphisms of S. With this, we get
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Pr
[
ΓνB(n) ∈ B̃

]
=

∑
S∈s(B̃)

Pr [S] ·
∑

G∈`(S)

Pr [G | S] =
∑

S∈s(B̃)

Pr [S] · |`(S)| · aut(S)
|S|!

=
∑

S∈s(B̃)

Pr [S] ,

(4)
where the last step follows from the fact |`(S)| = |S|!

aut(S) . Hence, in order to show (3), it will suffice to

prove that the shape generated by ΓνB, during its execution in Γ̃νB, has with high probability the property
that all its nodes have maximum degree in the desired interval.

Let us now focus on the evolution of the node degrees during the sampling process. The sampler re-
peatedly calls ΓB•(n, 1

2 ), which starts with a single node v. This algorithm calculates a random value pv
according to a Poisson law with parameter λ, and then calculates pv random values C(v)

1 , . . . , C
(v)
pv accord-

ing to a clique law with parameter µ. This determines the size and structure of the neighbourhood of v.
Then it creates pv cliques with sizes C(v)

1 + 1, . . . , C(v)
pv + 1, and joins them together at their roots (and

v). Finally, for each of the newly created nodes, the same procedure is repeated independently until the
process dies out, or it is interrupted, because too many nodes were generated. Thus, the degree of a node
is given by the outcome of a sumClique-distributed random variable with parameters λ and µ, plus the size
of the clique, in which this node is contained, minus one. All in all, a lower bound for the degree of a node
v generated during the sampling process is its sumClique-value scl (v), and an upper bound is the size of
the clique it is contained in plus scl (v).

Let ε′ := ε
2 . With the above discussion in mind, consider the execution of Γ̃νB(n), which generates the

random values pi, C
(i)
j and di (in the line marked with (??) in the exposition of the algorithm), and let us

define the following four events:

(A) Γ̃νB(n) 6= ⊥.
(B) Every sequence of n2 consecutive values di contains a value larger than (1− ε′)d(n), i.e.,

B :=
{

(d1, . . . , ddn1+ε/100e)
∣∣∣ ∀1 ≤ i ≤ dn1+ε/100e − n

2
: ∃i ≤ j ≤ i+

n

2
: dj ≥ (1− ε′)d(n)

}
.

(C) There is no 1 ≤ i ≤ dn1+ε/100e such that di ≥ (1 + ε′)d(n).
(D) For all 1 ≤ i ≤ dn1+ε/100e and 1 ≤ j ≤ pi we have C(i)

j ≤ 5 logn
log logn .

The motivation behind the above events is that if they occured simultaneously, then the shape generated
by Γ̃νB would have the property that the maximum node degree is in Iε,n. In fact, suppose that Γ̃νB(n) 6=
⊥, i.e. (A) holds. Then there is an index i0 and a number s ∈ (n2 ,

3n
2 ), such that the sampler ΓB•, given the

random choices pi0 , . . . , pi0+s and the corresponding values (C(i0)
1 , . . . , C

(i0)
pi0

), . . . , (C(i0+s)
1 , . . . , C

(i0+s)
pi0+s ),

outputs a shape of size s. Now, suppose that additionally B, C and D occur. Then, due to B, there is an
index i0 ≤ i′ ≤ i0 + s, such that di′ =

∑pi′
j=1 C

(i′)
j ≥ (1− ε′)d(n), i.e. Γ̃νB(n) has a node of at least that

degree. Furthermore, due to C and D, there is for sufficiently large n no node with degree larger than

5
log n

log log n
+ (1 + ε′)d(n) = 5

log n
log log n

+ (1 + ε′)
log n

log(3) n
< (1 + ε)d(n).

Hence, with (4) we have Pr[Γ̃νB(n) ∈ B̃] ≥ Pr [A and B and C and D] . In order to show (3), we have to
prove that the probabilities for the complementary events A, B, C, and D are all at most n−ε/10. These
proofs merely consist of routine calculations, and exploit Lemma 4.1 – we omit them due to space limita-
tions.

To complete the proof, we now show how (3) implies the theorem. In fact, let Bn be a random block
graph on n nodes. Let δ := n−ε/20, and choose a sufficiently large n such that

Pr
[
Γ̃νB(n) ∈ B̃

]
> 1− δ and

∑
n/2<s<3n/2

Pr
[
|Γ̃νB(n)| = s

]
> 1− δ.

Such an n always exists, due to (3) and Lemma 3.2. But then we have

Pr
[
Γ̃νB(n) ∈ B̃

]
< δ +

∑
n/2<s<3n/2

Pr
[
Γ̃νB(n) ∈ B̃

∣∣∣ |Γ̃νB(n)| = s
]

Pr
[
|Γ̃νB(n)| = s

]
,
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which yields with our assumptions on δ

1− 2δ <
∑

n/2<s<3n/2

Pr [Bs ∈ B′] Pr
[
|Γ̃νB(n)| = s

]
. (5)

Letα ∈ ( 1
2 ,

3
2 ). Before we proceed, we are going to show that for all s = αn the probabilities Pr

[
|Γ̃νB(n)| = s

]
differ by at most a multiplicative factor. In fact, denote as in Lemma 3.3 with ps,t the probability that ΓνB
returns an object of size s, and having generated precisely t+ s nodes during its execution. Then, for all s
as above

Pr
[
|Γ̃νB(n)| = s

]
=

∑
t≤dn1+ε/100e

ps,t
(Lemma 3.3)∼ α−3/2 ·

∑
t≤dn1+ε/100e

pn,t,

and the claim follows, as the last sum is independent of s. But this yields with (5) that, say, for more
than (1 − 30

√
δ)n numbers s1, . . . in the interval (n2 ,

3n
2 ), we have Pr[Bsi

∈ B̃] ≥ 1 −
√
δ, as otherwise

the sum on the right-hand side of (5) would have been smaller than 1 − 2δ. Hence, for every δ > 0, in
every interval of the form (n2 ,

3n
2 ), when n is sufficiently large, we have at most 30

√
δn numbers with

Pr[Bsi ∈ B̃] ≤ 1−
√
δ. This completes the proof. 2 Proof Proof of Lemma

4.1: In the following we shall omit d.e to keep the calculations concise, but it can easily be verified that our
statements are also true in the general case. It is well-known that a sum of Poisson variables is distributed
as a single Poisson variable with the sum of their parameters. Furthermore note that that there is a constant
cµ such that Po (µ = x) ≤ Pr [Cl (µ) = x] ≤ cµPo (µ = x).Then, and for all t, s ∈ N, if C1, . . . , Ct are
independent clique-distributed variables with parameter µ, we obtain

Pr [Po (tµ) = s] ≤ Pr

[
t∑
i=1

Ci − 1 = s

]
≤ ctµ · Pr [Po (tµ) = s] . (6)

Let us abbreviate b(n) := logn
log(3) n

and q(n) := logn
log logn . With (6) we obtain

Pr [SCl (λ, µ) ≥ (1− ε)b(n)] ≥ Pr
[
Po (λ) =

ε

9
q(n)

]
Pr
[
Po
(εµ

9
q(n)

)
≥ (1− ε)b(n)

]
.

We estimate the terms on the right hand side of the above inequality one by one. The first probability is
easily seen to be n−ε/9+o(1), if n is sufficiently large. In the sequel we will show that for all α, β > 0

Pr [Po (αq(n)) ≥ βb(n)] = n−β+o(1), (7)

which immediately completes the proof of the first statement of the lemma. Indeed, with the definition of
the Poisson distribution and the estimate x! = (1 + o(1))

(
x
e

)x√2πx we obtain

Pr [Po (αq(n)) ≥ βb(n)] =
∑

t≥βb(n)

e−αq(n) · (αq(n))t

t!
= (1 + o(1)) · e−αq(n) · (αq(n))βb(n)

(βb(n))!

= no(1) ·

(
eα

β
· log(3) n

log log n

)β log n

log(3) n

= n−β+o(1).

Now we show the second statement of the lemma. Recall (6) and note that for all t ≥ λ1 ≥ λ2 ≥ 1 we
have Pr [Po (λ1) ≥ t] ≥ Pr [Po (λ2) ≥ t]. We obtain with q(n) = logn

log logn

Pr [SCl (λ, µ) ≥ (1 + ε)b(n)] =
∑
t≥0

Pr [Po (λ) = t] · Pr

[
t∑
i=1

Cl (µ)− 1 ≥ (1 + ε)b(n)

]

≤
2q(n)∑
t=0

Pr [Po (λ) = t] · Pr [Po (tµ) ≥ (1 + ε)b(n)] · ctµ + Pr [Po (λ) ≥ 2q(n)]

≤ no(1) · Pr [Po (2q(n)) ≥ (1 + ε)b(n)] + n−2+o(1)

(7)
≤ n−1−ε+o(1) + n−2+o(1) � n−1− ε

2 .
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