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We consider Markovian models on graphs with local dynamics.We show that, under suitable conditions, such Markov
chains exhibit both rapid convergence to equilibrium and strong concentration of measure in the stationary distribu-
tion. We illustrate our results with applications to some known chains from computer science and statistical mechan-
ics.

Keywords: Markov chains, concentration of measure, rapid mixing

1 Introduction
Recent years have witnessed a surge of activity in the mathematics of real-world networks, especially the
study of combinatorial and stochastic models. Such networks include, for instance, the Internet, social
networks, and biological networks. The techniques used to analyse them draw from a range of math-
ematical disciplines, such as graph theory, probability, statistical physics, analysis. Strikingly, random
processes with rather similar characteristics can occur asmodels of very different real-world settings.

Random networks can often be regarded as interacting systems of individuals or particles. Under certain
conditions, there is a law of large numbers, that is, a large system is close to a deterministic process solving
a differential equation derived from the average ‘drift’, with much simpler dynamics. Further, one may
frequently observechaoticity, i.e. asymptotic approximate independence of particles. Unfortunately, it is
often difficult to prove the validity of such approximations, especially when the random process has an
unbounded number of components in the limit (e.g. the numberof vertices or components of sizek in a
graph of sizen, for k = 1, 2, . . ., asn → ∞).

In other instances, it may be difficult to establish good rates of convergence for mean-field approxima-
tions, or determine whether the long-term and equilibrium behaviour of the random process also follows
that of the deterministic system. Furthermore, some recentattempts at a more accurate representation of
real networks still await any kind of mathematically rigorous analysis. We would hope that over the com-
ing years, the intense interest will produce a coherent and widely applicable theory. However, at present,
it often appears that each new problem defies the existing theory in an interesting way.

In many complex systems, laws of large numbers and high concentration of measure in equilibrium
have been found to co-exist with so-calledrapid mixing [2; 12; 31], that is mixing in timeO(n log n),
wheren is a measure of the system size. (Traditionally, such a system was considered to be rapidly mixing
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if it converged to equilibrium in a time polynomial inn, but currently the term is more and more restricted
to the ‘optimal’ mixing timeO(n log n), see for example [31; 7].) There are some very notable examples
of such behaviour, for instance, the subcritical Ising model, see [4; 15] and references therein, as well as
the discussion in Section 3.1 of this paper.

The purpose of this article is to propose a new method to establish concentration of measure in complex
systems modelled by Markov chains. We illustrate the technique with an application to a balls-and-bins
model analysed in some earlier works by this author and McDiarmid, thesupermarket model[18; 19].
Strong concentration of measure for this model, over long time intervals starting from a given state, as
well as in equilibrium, was established in [18; 19] using theunderlying structure of the model that enabled
certain functions to be considered as functions of independent random variables so that the bounded
differences method could be used.

In Section 4 of the present article we show that such concentration of measure inequalities hold more
generally, with fewer assumptions on the structure of the Markov process involved. Our result is somewhat
related, in spirit, to results (and arguments) in [16], which establishes transportation cost inequalities for
the measure at timet and the stationary measure of a contracting Markov chain, assuming transportation
cost inequalities for the kernel. However, the technical approach adopted here is rather different from [16]
– discrete and coupling-based rather than functional analytic, and, we think, more ‘hands on’ and easier to
use in practice (though our setting is less general than in [16]). It is striking that our approach, considerably
more general than the one taken in [18], enables us to improveon the concentration of measure results
proved in [18]. (Accordingly, we could also prove improved versions of results in [19], but we choose not
to pursue this here.) The results in Section 4 also significantly extend Lemma 2.6 in [15], which bounds
the variance of a real-valued, discrete-time, contractingMarkov chain at timet and in equilibrium. We
hope many more applications for the ideas presented here will be found in the future.

2 Notation and definitions
Let X = (Xt)t∈Z+ be a discrete-time Markov chain with a discrete state spaceS and transition proba-
bilities P (x, y) for x, y ∈ S, where

∑

y∈S P (x, y) = 1 for eachx ∈ S. We assume that, for every pair
of statesx, y ∈ S, P (x, y) > 0 if and only if P (y, x) > 0. Then we can form an undirected graph with
vertex setS where{x, y} is an edge if and only ifP (x, y) > 0 andx 6= y. In general, our chains may be
lazy, that is we can haveP (x, x) > 0 for somex ∈ S. We assume that the graph is locally finite, that is,
each vertex is adjacent to only finitely many other vertices.We now endowS with a graph metricd given
by d(x, y) = 1 if P (x, y) > 0 andx 6= y, and for all otherx, y d(x, y) the length of the shortest path
betweenx andy in the graph, which is assumed to be connected.

This kind of setting is natural and many models in applied probability and combinatorics fit into this
framework, including those discussed in Section 3.

For eacht ∈ Z
+, Xt may be viewed as a random variable on a measurable space(Ω,F), where

Ω = {ω = (ω0, ω1, . . .) : ωi ∈ S ∀i},

andF = σ(∪∞
t=0Ft), with Ft = σ(Xi : i ≤ t). Then eachXi is the i-co-ordinate projection, that is

Xi(ω) = ωi for i ∈ Z
+. Then theσ-fieldsFt form the natural filtration for the process.

Let P(S) be the power set ofS. The law of the Markov chain is a probability measureP on (Ω,F),
and is determined uniquely by the transition matrixP together with a probability measureµ on(S,P(S))
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that gives the law of the initial stateX0, according to

P({ω : ωj = xj : j ≤ i}) = µ({x0})
i−1
∏

j=0

P (xj , xj+1),

for eachx0, . . . , xi ∈ S, for eachi ∈ Z
+. This gives the law of(Xt) conditional onL(X0) = µ, and

will be denoted byPµ in what follows. LetP t(x, y) be thet-step transition probability fromx to y, given
inductively by

P t(x, y) =
∑

z∈S

P t−1(x, z)P (z, y).

ThenPµ(Xt ∈ A) = (µP t)(A) for A ⊆ S.
Let Eµ denote the expectation operator corresponding toPµ. For t ∈ Z

+ andf : S → R, define the
functionP tf by

(P tf)(x) =
∑

y

P t(x, y)f(y), x ∈ S.

In other words,(P tf)(x) = Eδx
[f(Xt)] = (δxP t)(f), the expected value off(Xt) at timet conditional

on the Markov process starting atx, i.e. the expectation of the functionf with respect to measureδxP t.
In general, we writeEµ[f(Xt)] = (µP t)(f).

A real-valued functionf onS is said to be Lipschitz (or 1-Lipschtitz) if

‖ f ‖Lip= sup
x 6=y

|f(x) − f(y)|
d(x, y)

≤ 1.

Here, equivalently, we only need to consider vertices at distance 1, sof is Lipschitz if and only if
supx,y:d(x,y)=1 |f(x) − f(y)| ≤ 1.

Given a probability measureµ on (S,P(S)) and anS-valued random variableX with lawL(X) = µ,
we say thatµ or X hasnormal concentrationif there exist constantsC, c > 0 such that, for everyu > 0,
uniformly over 1-Lipschitz functionsf : S → R,

µ(|f(X) − µ(f)| ≥ u) ≤ Ce−cu2

. (2.1)

We say thatµ or X hasexponential concentrationif there exist constantsC, c > 0 such that, for every
u > 0, uniformly over 1-Lipschitz functionsf : S → R,

µ(|f(X) − µ(f)| ≥ u) ≤ Ce−cu. (2.2)

These definitions are closely related to the notions used by Ledoux [14].
In Section 4 we shall give conditions under which a discrete-time Markov chain(Xt) exhibits normal

concentration of measure over long time intervals and in equilibrium.
For probability measuresµ1, µ2 on (S, P(S)), thetotal variation distancebetweenµ1 andµ2 is given

by

dTV(µ1, µ2) =
1

2

∑

x∈S

|µ1(x) − µ2(x)| = sup
A⊆S

|µ1(A) − µ2(A)|.
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It is well known that the total variation distance satisfies

dTV(µ1, µ2) = inf
π

π(X 6= Y ),

where the infimum is over all couplingsπ = L(X, Y ) of S-valued random variablesX, Y such that the
marginals areL(X) = µ1 andL(Y ) = µ2.

TheWasserstein distancebetween probability measuresµ1 andµ2 is defined as

dW(µ1, µ2) = sup
f

∣

∣

∣

∣

∫

fdµ1 −
∫

fdµ2

∣

∣

∣

∣

= sup
f

|µ1(f) − µ2(f)|,

where the supremum is over all measurable 1-Lipschitz functions f : S → R. By the Kantorovich –
Rubinstein theorem (see [5], Section 11.8),

dW = inf
π
{π[d(X, Y )] : L(X) = µ1,L(Y ) = µ2},

where the infimum is taken over all couplingsπ on S × S with marginalsµ1 and µ2, and we write
π[d(X, Y )] for the expectation ofd(X, Y ) under the couplingπ. It is well known that the Wasserstein dis-
tance metrises weak convergence in spaces of bounded diameter. Also, since the discrete space(S,P(S))
is necessarily complete and separable, so is the space of probability measures on(S,P(S)) metrised by
the Wasserstein distance. See [28] for detailed discussions of various metrics on probability measures and
relationships between them.

3 Examples of rapid mixing and concentration
In this section we give some examples of known Markov chains exhibiting both concentration of measure
in equilibrium and rapid mixing.

3.1 Mean-field Ising model
LetG = (V, E) be a finite graph. Elements of the state spaceS := {−1, 1}V will be calledconfigurations,
and forσ ∈ S, the valueσ(v) will be called thespin at v. The nearest-neighbour energyH(σ) of a
configurationσ ∈ {−1, 1}V is defined by

H(σ) := −
∑

v,w∈V,
v∼w

J(v, w)σ(v)σ(w), (3.1)

wherew ∼ v means that{w, v} ∈ E . The parametersJ(v, w) measure the interaction strength between
vertices; we will always takeJ(v, w) ≡ J , whereJ is a positive constant.

For β ≥ 0, theIsing modelon the graphG with parameterβ is the probability measureπ on S given
by

π(σ) =
e−βH(σ)

Z(β)
, (3.2)

whereZ(β) =
∑

σ∈Ω e−βH(σ) is a normalising constant.
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The parameterβ is interpreted physically as the inverse of temperature, and measures the influence of
the energy functionH on the probability distribution. Atinfinite temperature, corresponding toβ = 0,
the measureπ is uniform overS and the random variables{σ(v)}v∈V are independent.

The (single-site)Glauber dynamicsfor π is the Markov chain(Xt) on S with transitions as follows.
When atσ, a vertexv is chosen uniformly at random fromV , and a new configuration is generated from
π conditioned on the set

{η ∈ Ω : η(w) = σ(w), w 6= v}.
In other words, if vertexv is selected, the new configuration will agree withσ everywhere except possibly
atv, and atv the spin is+1 with probability

p(σ; v) :=
eβMv(σ)

eβMv(σ) + e−βMv(σ)
, (3.3)

whereMv(σ) := J
∑

w : w∼v σ(w). Evidently, the distribution of the new spin atv depends only on the
current spins at the neighbours ofv. It is easily seen that(Xt) is reversible with respect to the measureπ
in (3.2), which is thus its stationary measure.

Given a sequenceGn = (Vn, En) of graphs, writeπn for the Ising measure and(X(n)
t ) for the Glauber

dynamics onGn. For a given configurationσ ∈ Sn, letL(X
(n)
t , σ) denote the law ofX(n)

t starting from
σ. The worst-case distance to stationarity of the Glauber dynamics chain aftert steps is

dn(t) := max
σ∈Sn

dTV(L(X
(n)
t , σ), πn). (3.4)

Themixing timetmix(n) is defined as

tmix(n) := min{t : dn(t) ≤ 1/4}. (3.5)

Note thattmix(n) is finite for each fixedn since, by the convergence theorem for ergodic Markov chains,
dn(t) → 0 ast → ∞. Nevertheless,tmix(n) will in general tend to infinity withn. It is natural to ask
about the growth rate of the sequencetmix(n).

Definition 1 The Glauber dynamics is said to exhibit acut-off at {tn} with window size{wn} if wn =
o(tn) and

lim
γ→∞

lim inf
n→∞

dn(tn − γwn) = 1,

lim
γ→∞

lim sup
n→∞

dn(tn + γwn) = 0.

Informally, a cut-off is a sharp threshold for mixing. For background on mixing times and cut-off, see
[21].

Here we consider the mean-field case, takingGn to beKn, the complete graph onn vertices. That is,
the vertex set isVn = {1, 2, . . . , n}, and the edge setEn contains all

(

n
2

)

pairs{i, j} for 1 ≤ i < j ≤ n.
We take the interaction parameterJ to be1/n; in this case, the Ising measureπ on{−1, 1}n is given by

π(σ) = πn(σ) =
1

Z(β)
exp





β

n

∑

1≤i<j≤n

σ(i)σ(j)



 . (3.6)
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In the physics literature, this is usually referred to as theCurie-Weissmodel. To put this into the framework
introduced in Section 2, the state spaceS consists of alln-vectors with components taking values in
{−1, 1}, and two vectors are adjacent if they differ in exactly one co-ordinate.

It is a consequence of the Dobrushin-Shlosman uniqueness criterion thattmix(n) = O(n log n) when
β < 1; see [1]. (See also [2; 31]). We shall see in Section 4 that, inthe same regime, the stationary
measureπ (the Gibbs measure) exhibits normal concentration of measure for Lipschitz functions in the
following sense. LetX(n) be a stationary version ofX(n)

t . Then, for some constantsc, C > 0, for all
u > 0

Pπ(|f(X(n)) − Eπ(f(X(n))) ≥ u) ≤ Ce−u2/cn, (3.7)

uniformly over all 1-Lipschitz functions onS and over alln. Thinking about (3.7) simply as a statement
about the measureπ without any mention of the processX

(n)
t , we can also rewrite it in the form

π({σ : |f(σ) − π(f)| ≥ u}) ≤ Ce−u2/cn.

Inequality (3.7) will follow from Theorem 4.1 (i), and is an improvement on Proposition 2.7 in [15].
More precise results about the speed of mixing forβ < 1 can be found in [15], where the occurrence

of a cut-off is established. The following is Theorem 1 from [15]:

Theorem 3.1 Suppose thatβ < 1. The Glauber dynamics for the Ising model onKn has a cut-off at
tn = [2(1 − β)]−1n logn with window sizen.

It is also easy to show, using the concentration of the Gibbs measure and the method used to prove
Theorem 1.4 in [19], that asymptotically the spin values in abounded set of vertices become almost
independent. (In the language of [31] – see also references therein – this corresponds to the decay of
correlations or spatial mixing.)

On the other hand, in the caseβ ≥ 1, there is no rapid mixing, and no cut-off (see [15; 4] and references
therein): tmix(n) is of the ordern3/2 whenβ = 1 and is exponential inn whenβ > 1. For the same
range ofβ, the Gibbs measure fails to exhibit normal concentration.

In particular, consider the functionm : S → R given bym(σ) =
∑n

i=1 σ(i), themagnetisation; it is
easy to see that12m is 1-Lipschitz, andEπ(m(X)) = π(m) = 0. However, whenβ > 1, then there is a
constantc > 0 such that

π({σ : m(σ) ≥ cn}) = π({σ : m(σ) ≤ −cn}) ≥ 1/4,

i.e. m(X) is bi-modal forβ > 1. While there is no bi-modality in the caseβ = 1, it is easy to calculate
directly thatm(X) is not concentrated in the sense of (3.7). Further, forβ ≥ 1, the spins of vertices are
no longer approximately independent for largen.

3.2 Supermarket model
Consider the following well-known queueing model withn separate queues, each with a single server.
Customers arrive into the system in a Poisson process at rateλn, where0 < λ < 1 is a constant. Upon
arrival each customer choosesd queues uniformly at random with replacement, and joins a shortest queue
amongst those chosen (where she breaks ties by choosing the first of the shortest queues in the list ofd).
Hered is a fixed positive integer. Customers are served according to the first-come first-served discipline.
Service times are independent exponentially distributed random variables with mean 1.
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A number of authors have studied this model, as well as its extension to a Jackson network setting [10;
11; 18; 19; 20; 22; 23; 25; 30].

For instance, it is shown by Graham in [10] that the system ischaotic, provided that it starts close to
a suitable deterministic initial state, or is in equilibrium. This means that the paths of members of any
fixed finite subset of queues are asymptotically independentof one another, uniformly on bounded time
intervals. This result implies a law of large numbers for thetime evolution of the proportion of queues of
different lengths, that is, for the empirical measure on path space [10]. In particular, for each fixed positive
integerk0, asn tends to infinity the proportion of queues with length at least k0 converges weakly (when
the infinite-dimensional state space is endowed with the product topology) to a functionvt(k0), where
vt(0) = 1 for all t ≥ 0 and(vt(k) : k ∈ N) is the unique solution to the system of differential equations

dvt(k)

dt
= λ(vt(k − 1)d − vt(k)d) − (vt(k) − vt(k + 1)) (3.8)

for k ∈ N. Here one needs to assume appropriate initial conditions(v0(k) : k ∈ N) such that1 ≥ v0(1) ≥
v0(2) ≥ · · · ≥ 0. Further, again for a fixed positive integerk0, asn tends to infinity, in the equilibrium
distribution this proportion converges in probability toλ1+d+···+dk0−1

, and thus the probability that a
given queue has length at leastk0 also converges toλ1+d+···+dk0−1

.
Although the above results refer only to fixed queue lengthk0 and bounded time intervals, they suggest

that whend ≥ 2, in equilibrium the maximum queue length may usually beO(log log n). Indeed, one of
the contributions of [18] is to show that this is indeed the case, and to give precise results on the behaviour
of the maximum queue length. In particular, it turns out thatwhend ≥ 2, with probability tending
to 1 asn → ∞, in the equilibrium distribution the maximum queue length takes at most two values;
and these values arelog log n/ log d + O(1). Along the way, it is also shown in [18] that the system is
rapidly mixing, that is the distribution settles down quickly to the equilibrium distribution. In this context,
‘quickly’ will mean ‘in time O(log n), as this is a continuous time process with events happening at raten,
and soO(log n) corresponds toO(n log n) steps of the discrete-time jump chain. It is further established
in [18] that the equilibrium measure is strongly concentrated.

Another natural question concerns fluctuations when in the equilibrium distribution: how long does it
take to see large deviations of the maximum queue length fromits stationary median? An answer is pro-
vided in [18] by establishing strong concentration estimates (for Lipschitz functions of the queue lengths
vector) over time intervals of length polynomial inn. The techniques in [18] are partly combinatorial,
and are used also in [17] and [19]. In particular, in [19], theconcentration estimates obtained in [18]
are used to establish quantitative results on the convergence of the distribution of a queue length and on
‘propagation of chaos’.

Let us start by discussing the rapid mixing results known forthe supermarket model. In [18] two rapid
mixing results are established, one in terms of the Wasserstein distance and one in terms of the total
variation distance. Unlike for the Ising model in Section 3.1, it turns out to be inappropriate to be looking
at the worst-case mixing time, that is the supremum of the mixing times over all possible starting states.
In the present case, this quantity is unbounded: the state space is unbounded, and the time to equilibrium
from statesx with the total number of customers‖ x ‖1= k ≫ n is of the order at leastk. Then the best
one can do is to obtain good upper bounds on the mixing time forcopies of the Markov chain starting
from nice states – that is, states where the queues are not too‘over-loaded’. This is made more precise
below.
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Let X
(n)
t or Xt be the queue-lengths vector(X

(n)
t (1), . . . , X

(n)
t (n)) in the supermarket model with

n servers. For a positive integern, (X
(n)
t ) is an ergodic continuous-time Markov chain, with a unique

distributionπ(n) or π.
For any given statex write L(X

(n)
t , x) to denote the law ofX(n)

t givenX
(n)
0 = x. Also, for ǫ > 0, the

mixing timeτ (n)(ǫ, x) starting fromx us defined by

τ (n)(ǫ, x) = inf{t ≥ 0 : dTV(L(X
(n)
t , x), π(n)) ≤ ǫ}.

The result below, Theorem 1.1 in [18], shows that starting from an initial state in which the queues are
not too long, the mixing time is small. In particular, ifǫ > 0 is fixed and0 denotes the all-zeron-vector,
thenτ (n)(ǫ,0) is O(log n).

Theorem 3.2 Let 0 < λ < 1 and letd be a fixed positive integer. For each constantc > 0 there exists a
constantη > 0 such that the following holds for each positive integern. Consider any distribution of the
initial queue-lengths vectorX(n)

0 , and for each timet ≥ 0 let

δn,t = P(|X(n)
0 | > cn) + P(M

(n)
0 > ηt).

Then
dTV(L(X

(n)
t ), π(n)) ≤ ne−ηt + 2e−ηn + δn,t.

TheO(log n) upper bound on the mixing timeτ is of the right order. Indeed, it is also proven in [18]
that, for a suitable constantθ > 0, if t ≤ θ log n then

dTV(L(X
(n)
t ), π(n)) = 1 − e−Ω(log2 n). (3.9)

Thusτ (n)(ǫ,0) is Θ(log n) as long as bothǫ−1 and(1 − ǫ)−1 are bounded polynomially inn.
It would be interesting to consider the mixing times more precisely, to establish whether the supermar-

ket model exhibits a cut-off. Again, here we should not be considering the worst-case mixing time, but
rather the worst case over a subset of ‘good’ initial states,which are states where the total number of
customers is not too large and the maximum queue not too long.Also, to bring the supermarket model
into the discrete framework of Section 2, let us consider thejump chain of the supermarket model. We
shall denote the jump chain bŷX(n)

t or X̂t in what follows, and its stationary measure byπ̂(n) or π̂.
The transition probabilities of the jump chain are as follows. Given the state at timet is x, the next

event is an arrival with probabilityλ/(λ + 1) and is apotentialdeparture with probability1/(λ + 1).
Here ‘potential’ means that it may be a departure or no changeof state at all. Given that the next event
is an arrival, the queue to which the new customer is sent is determined by selecting a uniformly random
d-tuple of queues and directing the customer to a shortest queue among those chosen, in the same way as
for the continuous-time process. Given that the next event is a potential departure, the departure queue is
chosen uniformly at random from among alln queues. Then a customer will depart if the selected queue
is non-empty; otherwise, nothing happens. It is easy to adapt the proofs in [18] (where the arguments are,
in fact, based on analysing the jump chain) to show that Theorem 3.2 implies mixing in time of the order
O(n log n) from initial statesx such that‖ x ‖1= O(n) and‖ x ‖∞= O(log n).

Accordingly, we make the following conjecture:
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Conjecture 3.3 Let c be a positive constant, and letS
(n)
0 be the set of all queue lengths vectorsx in the

n server supermarket model such that‖ x ‖1≤ cn and‖ x ‖∞≤ c log n. Letǫ > 0, and let

dn(ǫ, t) = sup
x∈S

(n)
0

dTV(L(X̂
(n)
t , x), π̂(n)).

Thendn(ǫ, t) has a cut-off in the sense of Definition 1, with window sizen.

Our conjecture appears supported by some simulation results. Also it is supported by Conjecture 1
from [15], which states that the Glauber dynamics for the Ising model on transitive graphsGn has a
cutoff if the mixing time isO(n log n). The jump chain of the supermarket process is of a similar type
to Glauber dynamics in that it makes only local transitions,and has mixing time of the orderO(n log n),
starting from good initial states. Also, it has a lot of symmetry – its stationary distribution is exchangeable.
Thus the supermarket chain appears a good candidate for cut-off, though proving it may not be easy.

More generally, perhaps cut-off can be proven to be a phenomenon that also co-occurs with rapid
mixing and concentration of measure in equilibrium much more widely, in the context of Markov chains
whose jumps are suitably local.

In [18], the authors upper bound mixing in terms of the total variation distance by first upper bounding
the Wasserstein distance between the distribution of the process at timet and the stationary distribution.
The following result is Lemma 2.1 in [18].

Theorem 3.4 Let0 < λ < 1 and letd be a fixed positive integer. For each constantc > λ
1−λ there exists

a constantη > 0 such that the following holds for each positive integern. LetM denote the stationary
maximum queue length. Consider any distribution of the initial queue-lengths vectorX0 such that|X0|
has finite mean. For each timet ≥ 0 let

δn,t = 2 E[|X0|1|X0|>cn] + 2cn P(M0 > ηt).

Then
dW(L(Xt), π) ≤ ne−ηt + 2cn Pπ(M > ηt) + 2e−ηn + δn,t.

The upper bounds on the Wasserstein and total variation distance, and thus on the mixing time, are
proven in [18] by means of a monotone coupling. The coupling takes two copies of the queueing process
starting in adjacent states (that is, states differing in one customer in one queue) and couples their paths
together in such a way that theℓ1-distance between them is non-increasing (and so always stays equal
to 1 until the processes coalesce). Furthermore, the coupling is such that with high probability theℓ1-
distance rapidly becomes 0. The coupling is then extended toall pairs of starting states with not too many
customers in queues using the fact that the Wasserstein distance is a metric on the space of probability
measures, or apath-couplingargument [2].

The property that theℓ1-distance is non-increasing in the coupling in [18] is very strong and not com-
monly encountered in path-coupling scenarios. This property is exploited in [18] to prove strong concen-
tration of measure for the supermarket process, starting from a fixed (or highly concentrated state) for a
long time interval. The following is Lemma 4.3 in [18].

Lemma 3.5 There is a constantc > 0 such that the following holds. Letn ≥ 2 be an integer and let
f be a 1-Lipschitz function on the state space (set of all queuelengths vectors)S. Let alsox0 ∈ S and
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assume that the queue-lengths process(Xt) satisfiesX0 = x0 a.s. Letµt = Eδx0
[f(Xt)]. Then for all

timest > 0 and allu ≥ 0,

Pδx0
(|f(Xt) − µt| ≥ u) ≤ ne−

cu2

nt+u . (3.10)

Lemma 4.3 in [18] is proven by observing that the supermarketprocess can be ‘simulated’ by two
independent Poisson processes, the arrivals process (withrateλn) and the (potential) departure process
(with raten), together with corresponding independent choices of queues (d independent uniformly ran-
dom choices for each event in the arrivals process, and one uniformly random choice in the departures
process). One then conditions on the number of events in the interval[0, t], and then the state at timet
is conditionally determined by a finite family of independent random variables. In other words, the argu-
ment is, just like most of the other arguments in [18], based on studying the jump chain(X̂t), although
this is not made explicit therein.

The non-increasing distance coupling property is used to show that a Lipschitz function of the queue
lengths vector must satisfy a bounded differences condition, so that the discrete bounded differences
inequality can be applied to show concentration of measure for Lipschitz functions in the conditional
space. The proof is then completed by deconditioning.

The rapid mixing result can be combined with the long-term concentration of measure result to prove
concentration of measure in equilibrium for Lipschitz functions of the queue-lengths vector. The following
is Lemma 4.1 in [18].

Lemma 3.6 There is a constantc > 0 such that the following holds. Letn ≥ 2 be an integer and
consider then-queue system. Let the queue-lengths vectorY have the equilibrium distribution. Letf be
a 1-Lipschitz function onS. Then for eachu ≥ 0

Pπ (|f(Y ) − Eπ[f(Y )]| ≥ u) ≤ ne−cu/n
1
2 . (3.11)

Lemmas 3.5 and 3.6 prove strong concentration of measure – normal concentration for small devia-
tions and exponential concentration for larger deviationsin the case of starting from a fixed state, and
exponential concentration in equilibrium. The factorn in the bound on the right-hand sides of both (3.10)
and (3.11) is a limitation of the technique and not the right answer. It is natural to expect the truth to be a
lot better – that it can be replaced by a constant. In Section 4we develop concentration inequalities that
achieve that. Although we work with the discrete-time jump chain, it is easy to see that our results apply
also to the continuous time chain. One further advantage of our inequalities is that they apply to other
settings – for instance where rapid mixing is established bya coupling, but the coupling does not have
additional useful properties such as the non-increasing Wasserstein distance.

Even so Lemmas 3.5 and 3.6 are quite powerful. We now explore,briefly, some results concerning
the queue lengths in the supermarket model in equilibrium that can be obtained using Lemma 3.6. The
following is Lemma 4.2 in [18]. (We drop the subscriptπ to lighten up the notation.)

Lemma 3.7 Consider then-queue system, and let the queue-lengths vectorY have the equilibrium dis-
tribution. For each non-negative integerk, let ℓ(k, y) denote the number of queues of length at leastk in
statey. Also, for each non-negative integerk, let ℓ(k) = E[ℓ(k, Y )]. Then for any constantc > 0,

P(sup
k

|ℓ(k, Y ) − ℓ(k)| ≥ cn
1
2 log2 n) = e−Ω(log2 n).
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Also, there exists a constantc > 0 such that

sup
k

P(|ℓ(k, Y ) − ℓ(k)| ≥ cn
1
2 log n) = o(1).

Furthermore, for each integerr ≥ 2

sup
k

|E[ℓ(k, Y )r] − ℓ(k)r| = O(nr−1 log2 n).

Lemma 5.1 in [18], stated below, yields further precise information about the equilibrium behaviour,
over long time intervals.

Lemma 3.8 LetK > 0 be an arbitrary constant and letτ = nK . Let(Yt) be in equilibrium and letc > 0
be a constant. LetBτ be the event that for all timest with 0 ≤ t ≤ τ

sup
i

|ℓ(i, Yt) − nλ1+d+···+di−1 | ≤ cn1/2 log2 n.

ThenP(Bτ ) ≤ e−Ω(log2 n).

In [18], Lemma 5.1 is used to prove two-point concentration for the stationary maximum queue length
and its concentration on only a constant number of values over long time intervals. This is Theorem 1.3
in [18]:

Theorem 3.9 Let 0 < λ < 1 and letd ≥ 2 be an integer. Then there exists an integer-valued function
md = md(n) = log log n/log d + O(1) such that the following holds. For each positive integern,

suppose that the queue-lengths vectorY
(n)
0 is in the stationary distribution (and thus so is the maximum

queue lengthM (n)
t ). Then for each timet ≥ 0, M

(n)
t is md(n) or md(n) − 1 with probability tending

to 1 asn → ∞; and further, for any constantK > 0 there existsc = c(K) such that, with probability
tending to 1 asn → ∞,

max
0≤t≤nK

|M (n)
t − log log n/ log d| ≤ c. (3.12)

The functionsm2(n), m3(n), ... may be defined as follows. Ford = 2, 3, . . . let id(n) be the least integer

i such thatλ
di

−1
d−1 < n− 1

2 log2 n. Then we letm2(n) = i2(n) + 1, and ford ≥ 3 let md(n) = id(n). (As

we have seen, with high probability the proportion of queuesof length at leasti is close toλ
di

−1
d−1 .)

Also, equation (37) in [18] shows that, forr = O(log n),

P(M ≥ md(n) + r) ≤ e−cr log n, (3.13)

for a constantc > 0.

In [19], strong concentration of measure results from [18] are used to show that in equilibrium the
distribution of a typical queue length converges to an explicit limiting distribution and provide explicit
convergence rates. LetY (n)(1) denote the equilibrium length of of queue 1. (Note that the equilibrium
distribution is exchangeable.) The following is Theorem 1.1 in [19]. LetLλ,d denote the law of a random

variableY such thatP(Y ≥ k) = λ(dk−1)/(d−1) for eachk = 0, 1, . . ..
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Theorem 3.10 For each positive integern let Y (n) be a queue-lengthsn-vector in equilibrium, and
consider the lengthY (n)(1) of queue 1. Then

dTV(L(Y (n)(1)),Lλ,d)

is of ordern−1 up to logarithmic factors.

In fact, it is proven in [19] that the above total variation distance iso(n−1 log3 n) and isΩ(n−1). Also,
the following holds (Corollary 1.2 in [19]).

Corollary 3.11 For each positive integerk, the difference between thekth momentE[Y (n)(1)k] and the
kth moment ofLλ,d is of ordern−1 up to logarithmic factors.

The above results concern the distribution of a single queuelength. One may also consider collec-
tions of queues and chaoticity. The terms ‘chaoticity’ and ‘propagation of chaos’ come from statistical
physics [13], and the original motivation was the evolutionof particles in physical systems. The subject
has since then received considerable attention, especially following the ground-breaking work of Sznit-
man [29].

The result below (Theorem 1.4 in [19]) establishes chaoticity for the supermarket model in equilibrium.
We see that for fixedr the total variation distance between the joint law ofr queue lengths and the product
law is at mostO(n−1), up to logarithmic factors. More precisely and more generally we have:

Theorem 3.12 For each positive integern, let Y (n) be a queue-lengthsn-vector in equilibrium. Then,
uniformly over all positive integersr ≤ n, the total variation distance between the joint law ofY (n)(1), . . . , Y (n)(r)
and the product lawL(Y (n)(1))⊗r is at mostO(n−1 log2 n(2 log log n)r); and the total variation dis-
tance between the joint law ofY (n)(1), . . . , Y (n)(r) and the limiting product lawL⊗r

λ,d is at mostO(n−1 log2 n(2 log log n)r+1).

Analogous time-dependent results (away from equilibrium)are also given in [19] – proven using
Lemma 3.5 above (Lemma 4.3 in [18]) but we omit them here for the sake of brevity. Let us mention
that the arguments used in [19] to prove Theorems 1.1 and 1.4 (Theorems 3.10 and 3.12 above) are quite
generic and would apply in many other settings. The main property needed is concentration of measure
for Lipschitz functions of the state vector, the polynomialform of the generator of the Markov process,
and, in the case of Theorem 1.1, also the exchangeability of the stationary distribution. The chaoticity
result Theorem 3.12 above is a quantitative version of some of the results in [29].

To conclude this section, we mention that analogues of results in [18; 19] are proved in [17] for a related
balls-and-bins model, where, instead of queueing up to receive service on a first-come first-served basis,
customers (balls) have independent exponentially distributed ‘lifetimes’ and each departs its queue (bin)
as soon as its lifetime has expired.

Current work in progress [9] includes extensions of the results in [18; 19] to the supermarket model
where the number of choicesd = d(n) and the arrival rateλ = λ(n) aren-dependent, including the
interesting case whered → ∞ andλ → 1 with various functional dependencies betweenλ andd.

4 Coupling and bounded differences method generalised
This section contains our main results and applications. Weuse the notation introduced in Section 2.

Let us state our first theorem, which gives concentration of measure for Lipschitz functions of a discrete-
time Markov chain on state spaceS and with transition matrixP at time t, under assumptions on the
Wasserstein distance between itsi step transition measures fori ≤ t.
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Theorem 4.1 Let P be the transition matrix of a discrete-time Markov chain with discrete state space
S.

(i) Let (αi : i ∈ N) be a sequence of positive constants such that, for alli,

sup
x,y∈S:d(x,y)=1

dW(δxP i, δyP i) ≤ αi. (4.1)

Letf be a 1-Lipschitz function. Then for allu > 0, x0 ∈ S, andt > 0,

Pδx0
(|f(Xt) − Eδx0

[f(Xt)]| ≥ u) ≤ 2e−u2/2(
P

t
i=1 α2

i ). (4.2)

(ii) More generally, letS0 be a non-empty subset ofS, and let(αi : i ∈ N) be a sequence of positive
constants such that, for alli,

sup
x,y∈S0:d(x,y)=1

dW(δxP i, δyP i) ≤ αi. (4.3)

Let
S0

0 = {x ∈ S0 : y ∈ S0 wheneverd(x, y) = 1}.
Letf be a 1-Lipschitz function. Then for allx0 ∈ S0

0 , u > 0 andt > 0,

Pδx0

(

{|f(Xt) − Eδx0
[f(Xt)]| ≥ u} ∩ {Xs ∈ S0

0 : 0 ≤ s ≤ t}
)

≤ 2e−u2/2(
P

t
i=1 α2

i ). (4.4)

If the Markov chain becomes contractive after a finite numberof steps, then one can deduce from
Theorem 4.1 concentration results for the stationary measure of the Markov chain, as in the following
corollary.

Corollary 4.2 (i) Suppose that there existsx ∈ S and a sequenceαi : S → R
+ of functions such that,

for all y ∈ S,
dW(δxP i, δyP i) ≤ αi(y), (4.5)

whereαi(y) → 0 asi → ∞ for eachy, and

sup
k

Eδx
[αi(Xk)] = sup

k
(P kαi)(x) → 0 asi → ∞. (4.6)

Then(Xt) has a unique stationary measureπ, andδyP t → π ast → ∞ for eachy.
(ii) Suppose that (4.1) holds, and the constantsαi in Theorem 4.1 satisfy

∑

i α2
i < ∞. Suppose further

there existsx ∈ S such that
sup

k
(P kg)(x) < ∞,

whereg(y) = d(x, y). Then(Xt) has a unique stationary measureπ, δxP t → π ast → ∞ for eachx.
Furthermore, letX be a stationary copy ofXt. Then, for allu > 0, and uniformly over all 1-Lipschitz

functionsf ,
Pπ(|f(X) − Eπ[f(X)]| ≥ 2u) ≤ 2e−u2/2(

P

∞

i=1 α2
i ). (4.7)

(iii) Suppose that(Xt) has a unique stationary measureπ and condition (4.3) holds, where
∑

i α2
i <

∞. Letx ∈ S0
0 , and supposeδ > 0 andt0 > 0 are such thatdW(δxP t0 , π) < δ and

Pδx
(Xt ∈ S0

0 for t ≤ t0) ≥ 1 − δ.
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LetX be a stationary copy ofXt. Then, for allu ≥ δ, uniformly over all 1-Lipschitz functionsf ,

Pπ(|f(X) − Eπ[f(X)]| ≥ 2u) ≤ 2e−u2/2(
Pt0

i=1 α2
i ) + 2δ. (4.8)

Proof:
(i) Consider the sequencePi of measures on(S,P(S)) given by Pi = δxP i; we have, using the

coupling characterisation of the Wasserstein distance,

dW(Pi, Pi+k) = dW(δxP i, (δxP k)P i) ≤
∑

y∈S

(δxP k)(y)dW(δxP i, δyP
i)

≤
∑

y∈S

(δxP k)(y)αi(y) ≤ sup
k

Eδx
[αi(Xk)] → 0

as i → ∞, by assumption. Thus the sequence(Pi) is a Cauchy sequence and so, since the space of
probability measures on(S,P(S)) is complete with respect to the Wasserstein distance, it must converge
to a probability measureπ on (S,P(S)). It is obvious that this measure must be stationary forP .

Now, takey ∈ S, and letQi = δyP i. Then

dW(Pi, Qi) = dW(δxP i, δyP i) ≤ αi(y) → 0 asi → ∞.

It follows thatQi → π asi → ∞, and soπ must be the unique stationary measure.
(ii) The assumption that

∑

i α2
i < ∞ implies thatαi → 0 asi → ∞. Then it is easily seen (using the

fact that the distanced(y, z) between each pairy, z of states in finite) that conditions (4.5) and (4.6) of
part (i) hold forx, with αi(y) ≤ αid(x, y), and so, as in (i) one can prove that there exists a (necessarily
unique) stationary measureπ, and thatδxP t → π ast → ∞ for eachx ∈ S.

Let us now prove the concentration of measure result, inequality (4.7). Take somex ∈ S. Givenǫ > 0,
for t large enough the Wasserstein distance, and hence the total variation distance, betweenδxP t andπ is
at mostǫ. Then, foru ≥ ǫ and all sucht, by Theorem 4.1 part (i),

Pπ(|f(X) − Eπ[f(X)]| ≥ 2u) ≤ Pδx
(|f(Xt) − Eδx

[f(Xt)]| ≥ u) + ε

≤ 2e−u2/2(
P

∞

i=1 α2
i ) + ε.

Here we have used the fact that

|Eπ[f(X)] − Eδx
[f(Xt)]| ≤ ǫ ≤ u.

Sinceε is arbitrary, the result follows.
(iii) Let

At0 = {ω : Xt(ω) ∈ S0 ∀t ∈ [0, t0]}.
Arguing as in (ii), and using Theorem 4.1 part (ii), we can write, foru ≥ δ,

Pπ(|f(X) − Eπ[f(X)]| ≥ 2u) ≤ Pδx
(|f(Xt0) − Eδx

[f(Xt0)]| ≥ u) + δ

≤ Pδx

(

{|f(Xt0) − Eδx
[f(Xt0)]| ≥ u} ∩ At0

)
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+ 2δ

≤ 2e−u2/2(
Pt0

i=1 α2
i ) + 2δ,

as required.
2

To prove Theorem 4.1, we shall make use of a concentration inequality from [26]. Let(Ω̃, F̃ , P̃) be
a probability space, with̃Ω finite. Let G̃ ⊆ F̃ be aσ-field. Given a bounded random variableZ on
(Ω̃, F̃ , P̃), thesupremumof Z in G̃ is theG̃-measurable function given by

sup(Z|G̃)(ω) = min
A∈G̃:ω∈A

max
ω′∈A

Z(ω′). (4.9)

Thussup(Z) takes the value atω equal to the maximum value ofZ over the ‘smallest’ event iñG con-
tainingω. SinceΩ̃ is finite, we are assured that the smallest event containingω does exist; the arguments
used here would work also in many cases whereΩ̃ is countably infinite.

Theconditional rangeof Z in G̃, denoted byran(Z), is theG̃-measurable function

ran(Z | G̃) = sup(Z|G̃) + sup(−Z|G̃). (4.10)

Let {∅, Ω̃} = F̃0 ⊆ F̃1 ⊆ . . . be a filtration inF̃ , and letZ0, . . . , be the martingale obtained by
settingZt = E(Z|F̃t) for eacht. For eacht let rant denoteran(Zt|F̃t−1); by definition,rant is anF̃t−1-
measurable function. For eacht, let thesum of squared conditional rangesR2

t be the random variable
∑t

i=1 ran2
i , and let themaximum sum of squared conditional rangesr̂2

t be the supremum of the random
variableR2

t , that is
r̂2
t = sup

ω̃∈Ω̃

R2
t (ω̃).

The following result is Theorem 3.14 in [26].

Lemma 4.3 LetZ be a bounded random variable on a probability space(Ω̃, F̃ , P̃) with Ẽ(Z) = m. Let
{∅, Ω̃} = F̃0 ⊆ F̃1 ⊆ . . . ⊆ F̃t be a filtration inF̃ . Then for anyu ≥ 0,

P̃(|Z − m| ≥ u) ≤ 2e−2u2/r̂2
t .

More generally, for anyu ≥ 0 and any valuer2
t ,

P̃({|Z − m| ≥ u} ∩ {R2
t ≤ r2

t }) ≤ 2e−2u2/r2
t .

Proof of Theorem 4.1. Let f : S → R be 1-Lipschitz. Fix a timet ∈ N, x0 ∈ S and consider the
evolution ofXt conditional onX0 = x0 for t steps, that is until timet. Since we have assumed that
there are only a finite number of possible transitions from any givenx ∈ S, we can build this conditional
process until timet on a finite probability space(Ω̃, F̃ , P̃δx0

): we can takẽΩ to be the finite set of all

possible paths of the process starting at time 0 in statex0 until time t, andF̃ to be the power set of̃Ω.
In the conditional space, for each timej = 0, . . . , t, let F̃j = σ(X0, . . . , Xj), theσ-field generated

by X0, . . . , Xj ; so F̃0 = {∅, Ω̃} andF̃t = F̃ . We writeE instead ofẼ in what follows to lighten the
notation.
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Consider the random variableZ = f(Xt) : Ω̃ → R. Also, forj = 0, . . . , t let Zj be given by

Zj = E[f(Xt)|F̃j ] = Eδx0
[f(Xt)|X0, . . . , Xj] = (P t−jf)(Xj),

where we have used the Markov property in the last equality.
Fix 1 ≤ j ≤ t; we want to upper boundranj = ran(Zj | F̃j−1). Fix alsox1, . . . , xj−1 ∈ S, and for

x ∈ S consider

g(x) = E[f(Xt)|Xj = x] = E[f(Xt−j)|X0 = x]

= (P t−jf)(x).

Note thatZj(ω̃) ∈ {g(x) : d(x, xj−1) ≤ 1} for ω̃ such thatXj−1(ω̃) = xj−1. It follows that, for such̃ω,

ranj(ω̃) = sup
x,y:d(x,xj−1)≤1,d(y,xj−1)≤1

|g(x) − g(y)|.

Let us prove part (i) of the theorem. Asf is 1-Lipschitz,

sup
x,y:d(x,y)≤2

|g(x) − g(y)| = sup
x,y:d(x,y)≤2

|(P t−jf)(x) − (P t−jf)(y)|

= sup
x,y:d(x,y)≤2

|EδxP t−j (f) − EδyP t−j (f)|

≤ 2 sup
x,y:d(x,y)≤1

|EδxP t−j (f) − EδyP t−j (f)|

≤ 2 sup
x,y:d(x,y)≤1

dW(δxP t−j , δyP
t−j)

≤ 2αt−j ,

by assumption. We deduce thatranj(ω̃) ≤ 2αt−j for all ω̃ ∈ Ω̃. It follows that

r̂2
t (ω̃) ≤ 4

t−1
∑

r=0

α2
t−r,

uniformly overω̃ ∈ Ω̃. Part (i) of Theorem 4.1 now follows from Lemma 4.3.
To prove (ii), observe that the bound

ranj(ω) = ran(Zj | F̃j−1)(ω) ≤ 2αt−j

still holds on the eventAt = {ω : Xj(ω) ∈ S0
0 for j = 0, . . . , t}.

The following special case of model satisfying the hypotheses of Theorem 4.1 is of particular interest
and has received considerable attention in computer science literature; see for instance [2; 8; 12]. Sup-
pose (4.1) is satisfied withαi = αi, where0 < α < 1 is a constant. In the language of [2] this corresponds
to the following situation. Consider different copies(Xt), (X

′
t) of the process with initial statesx, x′ re-

spectively, that isX0 = x andX ′
0 = x′ almost surely. Suppose that we can couple(Xt), (X

′
t) so that,

uniformly over all pairs of statesx, x′ ∈ S with d(x, x′) = 1,

E[d(X1, X
′
1)|X0 = x, X ′

0 = x′] ≤ α,
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for a constant0 < α < 1. Thus, under the coupling,(Xt), (X
′
t) will be getting closer and closer together

on average ast gets larger, which implies strong mixing properties [2; 12]. Then, uniformly overx, x′ ∈ S
with d(x, x′) = 1, dW(δxP, δx′P ) ≤ α. By ‘path coupling’ [2; 12]

E[d(X1, X
′
1)|X0 = x, X ′

0 = x′] ≤ αd(x, x′),

and hencedW(δxP, δx′P ) ≤ αdW(δx, δx′) for all pairsx, x′ ∈ S. By induction ont,

dW(δxP t, δx′P t) ≤ αtd(x, x′)

for all x, x′ ∈ S and allt ∈ N. Then, in the same notation as earlier, we can upper bound

r̂2 ≤ 4

t
∑

r=1

α2r ≤ 4α2(1 − α2)−1,

for all t. Hence we obtain the following corollary.

Corollary 4.4 Suppose that there is a constant0 < α < 1 such that

dW(δxP, δx′P ) ≤ α (4.11)

for all x, x′ ∈ S such thatd(x, x′) = 1. Then for allt > 0

Pδx0
(|f(Xt) − Eδx0

[f(Xt)]| ≥ u) ≤ 2e−u2(1−α2)/2α2

(4.12)

for all u > 0, all x0 ∈ S, and for every 1-Lipschitz function onS.
Hence, ifX has the equilibrium distributionπ then, for allu > 0 and every 1-Lipschitz functionf ,

Pπ(|f(X) − Eπ[f(X)]| ≥ u) ≤ 2e−u2(1−α2)/2α2

(4.13)

The particular choice ofα = 1 − c1/n for a constantc1 > 0 corresponds to the ‘optimal’ mixing time
O(n log n) for a Markov chain in a system with size measuren, and gives concentration of measure in
equilibrium of the form

Pπ(|f(Xt) − Eπ[f(Xt)]| ≥ u) ≤ 2e−u2/c2n, (4.14)

wherec2 > 0 is a constant. This is the case, for example, for the subcritical (β < 1) mean-field Ising
model discussed in Section 3 – see for example [21] or [15] fora description of the coupling that implies
fast decay of the Wasserstein distance. The same also applies to the Glauber dynamics for colourings on
bounded-degree graphs analysed in [7] (see also [8] and [27]). The application is straightforward when
the number of coloursk is greater than2D, whereD is the maximum degree of the graph. It is only a little
more involved in the case(2−η)D ≤ k ≤ 2D, where the proof in [7] relies ondelayed path-coupling[3],
whereby a new Markov chain is used with one step corresponding to cn steps of the original one,n being
the size of the graph to colour.

On the other handα = 1− 6/(n3 −n) for the Glauber dynamics on linear extensions of a partial order
of sizen [2; 12] gives an upper boundO(n3 log n) on mixing. The corresponding bound on deviations of
a 1-Lipschitz function from its mean of sizeu is of the form2e−u2/cn3

, which is useless. However, one
cannot do much better in general. To see this, consider the partial order onn points consisting of a chain
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of lengthn − 1 and a single incomparable element. It is not hard to check that in this case the mixing
time is of the ordern3 – see [2] for details. It is also easy to see that there is no normal concentration of
measure in the sense of (4.14).

We shall now apply Theorem 4.1 and Corollary 4.2 to the supermarket process described in Section 3.2,
or rather to the corresponding discrete-time jump chainX̂t. Recall that, when in statex, the next event is
an arrival with probabilityλ/(1 + λ), and is a potential departure with probability1/(1 + λ). Given that
the next event is an arrival, the queue to which the arrival will go is determined by selecting a uniformly
randomd-tuple of queues and sending the customer to a shortest one among those chosen, ties being split
by always going to the first best queue in the list. Given that the next event is a potential departure, the
departure queue is chosen uniformly at random among then possible queues, and departures from empty
queues are ignored. In the Markov chain graph, two states areconnected by an edge if and only if they
differ exactly in one customer in one queue. Then a functionf is 1-Lipschitz if and only if it is 1-Lipschitz
with respect to theℓ1 distance on the state spaceS.

We focus on the cased ≥ 2. For d = 1, in equilibrium the queue lengths are independent geomet-
ric random variables, so normal concentration of measure can be obtained using the standard bounded
differences inequality [26].

By Lemma 2.3 in [18], for allx, y ∈ S such thatd(x, y) = 1, and allt ≥ 0,

dW(δxP t, δyP t) ≤ 1.

Let c be a positive constant, and letS0 be given by

S0 = {x ∈ S :‖ x ‖1≤ cn, ‖ x ‖∞≤ c log n}.

It is very easy to modify the proof of Lemma 2.6 in [18] to show that, if x, y ∈ S0 andd(x, y) = 1, then
for some constantsα, β > 0,

dW(δxP t, δyP
t) ≤ e−βt/n + 2e−βn (4.15)

for t ≥ αn log n.
Take a constantK > 2 and letτ = nK . Then we can putαi = 1 for t ≤ αn log n, andαi =

e−βt/n + 2e−βn for αn log n < t ≤ τ . Then fort ≤ τ , we can upper bound

t
∑

i=1

α2
i ≤ min{t, αn logn + n1−β/αβ−1 + 2e−βn/2} ≤ min{t, 2αn logn}.

Consider the all-empty state,0 ∈ S0
0 . Then by choosing the constantc in the definition ofS0 sufficiently

large, we can ensure that, ford ≥ 2,

P0(X̂t ∈ S0
0 ∀ t ≤ τ) ≥ 1 − e−(log n)2/c.

This follows from Lemma 2.3 (monotone coupling for givenn andd), Lemma 2.4 (a) and the monotone
coupling for givenn and differentd, d′ (see the proof of Lemma 2.4 in [18]) and equation (37) in [18].
(See also the statements of these results in Section 3.2.)

By Theorem 4.1 (i), we can choosec sufficiently large so that, for allt > 0, all u > 0, and every
Lipschitz functionf ,

Pδ0(|f(X̂t) − Eδ0 [f(X̂t)]| ≥ u) ≤ 2e−u2/ct. (4.16)
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By Theorem 4.1 (ii), forαn log n ≤ t ≤ τ , and allu > 0,

Pδ0(|f(X̂t) − Eδ0 [f(X̂t)]| ≥ u) ≤ 2e−u2/αn log n + e−(log n)2/c. (4.17)

In particular, forαn log n ≤ t ≤ τ , andu ≤ c0
√

n log n,

Pδ0(|f(X̂t) − Eδ0 [f(X̂t)]| ≥ u) ≤ 2e−u2/cn log n, (4.18)

provided thatc is large enough. Inequalities (4.16) – (4.18) improve on what one could obtain for the jump
chain from Lemma 3.5 above, for an interesting range ofu andt – and it is easy to use them to derive
improved concentration of measure inequalities for the continuous chain also. (It is possible to optimise
inequality (4.17) by playing with the definition ofS0 to obtain normal concentration for largeru.)

We now want to relate this to concentration of measure in equilibrium, via Corollary 4.2. It is easy
to see from earlier work (see [18] and references therein) that the supermarket jump chain has a unique
stationary measure. (This could also be proven showing thatthe hypotheses of Corollary 4.2 (i) are
satisfied, via (4.15) above.)

By Lemma 2.1 in [18] and straightforward calculations for the Poisson process, there is a constant
η > 0 such that

dW(L(X̂t,0), π̂) ≤ ne−ηt/n + 2cn Pπ̂(M > ηt/n) + 2e−ηn, (4.19)

whereM denotes the maximum queue length in equilibrium, and we may take c the same as in the
definition ofS0, assuming thatc is sufficiently large. Thus, by (4.19),

dW(L(X̂τ ,0), π̂) ≤ (n + 2cn + 2)e−ηn.

Let Ŷ denote the queue lengths vector in equilibrium. It then follows by Corollary 4.2 (iii), uniformly for
all 1-Lipschitz functionsf , for u ≥ 1 andn sufficiently large

Pπ̂(|f(Ŷ ) − Eπ̂[f(Ŷ )]| ≥ 2u) ≤ 2e−u2/cn log n + 2e−(log n)2/c. (4.20)

So, choosingc to be sufficiently large, for allu > 0 andn sufficiently large,

Pπ̂(|f(Ŷ ) − Eπ̂[f(Ŷ )]| ≥ 2u) ≤ ce−u2/cn log n + ce−(log n)2/c. (4.21)

This improves on Lemma 3.6 above, and gives normal concentration foru = O(n1/2(log n)3/2) (again,
it is possible to obtain normal concentration for largeru), but is not the optimal result we are after. In
particular, we still cannot show that deviations of sizen1/2ω(n) have probability tending to 0 forω(n)
tending to infinity arbitrarily slowly. We will now derive another inequality that will enable us to achieve
our aim.

Theorem 4.5 Assume that there exists a setS0 and numbersαi(x, y) (x, y ∈ S0, i ∈ N) such that, for all
i, and allx, y ∈ S0 with d(x, y) = 1,

dW(δxP i, δyP i) ≤ αi(x, y). (4.22)

Let
S0

0 = {x ∈ S0 : y ∈ S0 wheneverd(x, y) = 1}.
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For x ∈ S, let gx(y) = dW(δyP i, δxP i)2. Assume that, for some sequence(αi : i ∈ N) of positive
constants,

sup
x0∈S0

0

(Pgx0)(x0) ≤ α2
i . (4.23)

Let t > 0, let v =
∑t

i=1 α2
i , and let

α̂ = sup
1≤j≤t

sup
x,y∈S0:d(x,y)≤2

αj(x, y). (4.24)

Let alsoAt = {ω ∈ Ω : Xs(ω) ∈ S0
0 ∀0 ≤ s ≤ t}

Then, for allu > 0, and uniformly over all 1-Lipschitz functionsf ,

Pδx0

(

|f(Xt) − Eδx0
[f(Xt)]| ≥ u ∩ At

)

≤ 2e−u2/(4v(1+(α̂u/6v)). (4.25)

To prove Theorem 4.5, we use another result from [26]. With notation as before, forj = 1, . . . , t, let

varj = var(Zj | F̃j−1) = E

(

(Zj − E(Zj | F̃j−1))
2 | F̃j−1

)

;

let V =
∑t

j=1 varj . Also, for j = 1, . . . , t , let devj = sup(|Zj − Zj−1| | F̃j−1), and letdev =
supj devj . The following result is essentially Theorem 3.15 in [26].

Lemma 4.6 LetZ be a random variable on a probability space(Ω̃, F̃ , P̃) with E(Z) = m. Let{∅, Ω̃} =

F̃0 ⊆ F̃1 ⊆ . . . ⊆ F̃t be a filtration inF̃ . Let b̂ = maxdev, the maximum conditional deviation (and
assume that̂b is finite). Then for anyu ≥ 0,

P(|Z − m| ≥ u) ≤ 2e−u2/(2v̂(1+(b̂u/3v̂)),

wherev̂ is the maximum sum of conditional variances (which is assumed to be finite).
More generally, for anyu ≥ 0 and any valuesb, v ≥ 0,

P({|Z − m| ≥ u} ∩ {V ≤ v} ∩ {maxdev ≤ b}) ≤ 2e−u2/(2v(1+(bu/3v)).

Proof of Theorem 4.5. The proof is similar to the proof of Theorem 4.1. Letf : S → R be 1-Lipschitz.
Fix a timet ∈ N, anx0 ∈ S and consider the evolution ofXt conditional onX0 = x0 for t steps, that is
until time t. Again this conditional process can be supported by a finite probability space(Ω̃, F̃ , P̃δx0

).

As before, in the conditional space, for each timej = 0, . . . , t let F̃j = σ(X0, . . . , Xj), the σ-
field generated byX0, . . . , Xj ; so F̃0 = {∅, Ω̃} andF̃t = F̃ . Again, we consider the random variable
Z = f(Xt) : Ω̃ → R. And, forj = 0, . . . , t, Zj is given by

Zj = E[f(Xt)|F̃j ] = Eδx0
[f(Xt)|X0, . . . , Xj] = (P t−jf)(Xj).

Suppose first for simplicity thatS0 = S. We want to apply Lemma 4.6 and for this we need to calculate
the conditional variancesvarj . To do this, we use the fact that the variance of a random variableY is equal
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to 1
2 E(Y − Ỹ )2, whereỸ is another random variable with the same distribution asY and independent of

Y .
Fix j andx1, . . . , xj−1 ∈ S, and forx ∈ S consider

g(x) = E[f(Xt)|Xj = x] = E[f(Xt−j)|X0 = x]

= (P t−jf)(x).

Then, forω̃ such thatXj−1(ω̃) = xj−1, Zj(ω̃) ∈ {g(x) : d(x, xj−1) ≤ 1}, so that

varj(ω̃) =
1

2

∑

x,y

P (xj−1, x)P (xj−1, y)(g(x) − g(y))2

≤ 1

2

∑

x,y:d(xj−1,x)≤1,d(xj−1,y)≤1

P (xj−1, x)P (xj−1 , y)dW(δxP t−j, δyP t−j)2

≤ 2
∑

x:d(xj−1,x)≤1

P (xj−1, x)dW(δxP t−j , δxj−1P
t−j)2

≤ 2
∑

x

P (xj−1, x)αt−j(xj−1, x)2

≤ 2α2
t−j,

by assumption (4.23).
Then we can upper bound the sum

v̂ ≤ 2

t
∑

j=1

α2
j .

It remains to bounddev = supj devj . We have, for̃ω such thatXj−1(ω̃) = xj−1,

devj(ω̃) ≤ sup
x:d(x,xj−1)≤1

|g(x) − (P t−j+1f)(xj−1)|

= sup
x:d(x,xj−1)≤1

|(P t−jf)(x) − (P t−j+1f)(xj−1)|

≤ sup
x:d(x,xj−1)≤1

|dW(δxP t−j , δxj−1P
t−j+1).

It follows that, for eachj = 1, . . . , t,

devj ≤ sup
x,y:d(x,y)≤1

dW(δxP t−j+1, δyP t−j)

≤ sup
x,y:d(x,y)≤2

dW((δxP )P t−j , δyP t−j)

≤ α̂,

by (4.24) and using the coupling characterisation of the Wasserstein distance. Theorem 4.5 now follows
from the first statement in Lemma 4.6 in the case whereS0 = S. In general, the above bounds onv̂ and
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dev hold on the eventAt = {ω : Xj(ω) ∈ S0
0 for j = 0, . . . , t}, and so Theorem 4.5 also follows from

the second statement of Lemma 4.6.

Let us now apply Theorem 4.5 to the supermarket model from [18] discussed above. Again, we focus
on the cased ≥ 2.

Let c be a positive constant, and letS0 be given by

{x ∈ S : ℓ(k, x) =

n
∑

r=1

1x(r)≥k ≤ ne−k/c for k = 1, . . .}.

Consider the all-empty state,0 ∈ S0
0 . LetK > 2 be a constant. We claim that we can choosec sufficiently

large that, ifτ = nK , then
P0(X̂t ∈ S0

0 : t ≤ τ) ≥ 1 − e−(log n)2/c.

This follows easily from Lemma 3.8 in the present paper, together with equation (3.13).
We now want to calculate the quantity in (4.23). For a statex0 ∈ S0

0 and a statex chosen with
probability P (x0, x), these states will only differ in a queue of length greater than k if P (x0, x) is a
probability of an event involving a queue of length at leastk – a departure from a queue of length at least
k or an arrival into a queue of length at leastk. Forx0 ∈ S0

0 such a transition happens with probability at
mostce−k/c (choosingc large enough again).

The proof of Lemma 2.6 in [18] shows that, ifx, y ∈ S0 are adjacent and differ in a queue of lengthk,
then for some constantsα, β > 0 we can upper bound

dW(δxP t, δyP
t) ≤ e−βt/n + 2e−βn

for t ≥ αkn. Also, by Lemma 2.3 in [18],

dW(δxP t, δyP t) ≤ 1

for all t and hence fort < αkn.
Combining the above observations and choosingα > 1 large enough, we find that fort ≥ α2n

sup
x0∈S0

0

Eδx0
dW(δX1P

t, δx0P
t)2 ≤ e−t/αn + e−n/α.

Hence, by choosingc large enough, we can upper bound

τ
∑

i=1

α2
i ≤ cn.

Further, once again using Lemma 2.3 in [18], we can upper bound α̂ ≤ 2.
By Theorem 4.5, there is a constantc > 0 such that, uniformly for all 1-Lipschitz functionsf , all t ≤ τ ,

and allu > 0,
Pδ0(|f(X̂t) − Eδ0 [f(X̂t)]| ≥ u) ≤ 2e−u2/4c(n+u) + e−(log n)2/c. (4.26)

In particular, we can choosec large enough so that, foru ≤ c0
√

n log n,

Pδ0(|f(X̂t) − Eδ0 [f(X̂t)]| ≥ u) ≤ 3e−u2/cn. (4.27)
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Now, as before, by (4.19),
dW(δ0P τ , π̂) ≤ (n + 2cn + 2)e−ηn

providedc is large enough. It follows that forn large enough, uniformly for all 1-Lipschitz functionsf ,
and allu ≥ 1,

Pπ̂(|f(Ŷ ) − Eπ̂[f(Ŷ )]| ≥ 2u) ≤ Pδ0(|f(X̂τ ) − Eδ0 [f(X̂τ )]| ≥ u)

+ (n + 2cn + 2)e−ηn

≤ 2e−u2/4c(n+u) + 2e−(log n)2/c (4.28)

It follows that, for0 < u ≤ c0n
1/2 log n, we obtain

Pπ̂(|f(Ŷ ) − Eπ̂[f(Ŷ )]| ≥ 2u) ≤ ce−u2/cn, (4.29)

provided that the constantc is chosen sufficiently large. Choosingu =
√

nω(n), whereω(n) is a function
tending to infinity withn arbitrarily slowly, we obtain

Pπ̂(|f(Ŷ ) − Eπ̂[f(Ŷ )]| ≥ u) = o(1)

asn → ∞.
Inequalities (4.26) and (4.28) could be optimised (by optimising the choice of setS0) to obtain normal

concentration for largeru.

For a positive integerk, let ℓ(k, Ŷ ) be the number of queues of length at leastk in the stationary jump
chain, and let̂ℓ(k) be its expectation. Then for any positive integers, and anyu > 0, we can write

Eπ̂[|ℓ(k, Ŷ ) − ℓ̂(k)|s] ≤ us +
∑

y≥u

ys−1
Pπ̂(|ℓ(k, Ŷ ) − ℓ̂(k)| > y).

Note that the maximum value that|ℓ(k, Ŷ ) − ℓ̂(k)|s can take isns. Then, takingu = n1/2, and applying
inequality (4.28), we obtain

Eπ̂[|ℓ(k, Ŷ ) − ℓ̂(k)|s] ≤ cns/2.

assuming the constantc is chosen big enough. Hence, arguing as in Section 4 of [18], it is easy to show
that

sup
k

|E[ℓ(k, Ŷ )r − ℓ̂(k)r | = O(nr−1).

And hence, arguing as in Section 5 of [18], we obtain that, forsome constantc0,

sup
i

|n−1ℓ̂(i) − λ1+d+...+di−1| ≤ c0n
−1, (4.30)

which improves on equation (27) in [18], implying that

sup
i

|n−1ℓ̂(i) − λ1+d+...+di−1| ≤ c0n
−1(log n)2.
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5 Conclusions
We have derived concentration inequalities for Lipschitz functions of a Markov chain long-term and in
equilibrium, depending on contractivity properties of thechain in question. Our results apply to many
natural Markov chains in computer science and statistical mechanics.

One open problem is to show that, in a discrete-time Markov chain with ‘local’ transitions, under
suitable conditions, rapid mixing occurs essentially if and only if there is normal concentration of measure
long-term and in equilibrium (with non-trivial bounds). Another open question is to explore how these
properties relate to the cut-off phenomenon. Is it the case that, again under suitable assumptions, they are
necessary and sufficient conditions for a cut-off to occur?
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