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We consider Markovian models on graphs with local dynamidgs show that, under suitable conditions, such Markov

chains exhibit both rapid convergence to equilibrium amdrg concentration of measure in the stationary distribu-

tion. We illustrate our results with applications to somewn chains from computer science and statistical mechan-
ics.
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1 Introduction

Recent years have witnessed a surge of activity in the mattiesrof real-world networks, especially the
study of combinatorial and stochastic models. Such netsvorélude, for instance, the Internet, social
networks, and biological networks. The techniques used#dyae them draw from a range of math-
ematical disciplines, such as graph theory, probabiliatistical physics, analysis. Strikingly, random
processes with rather similar characteristics can occoraels of very different real-world settings.

Random networks can often be regarded as interacting systendividuals or particles. Under certain
conditions, there is a law of large numbers, that is, a laygtes is close to a deterministic process solving
a differential equation derived from the average ‘driftitwmuch simpler dynamics. Further, one may
frequently observehaoticity, i.e. asymptotic approximate independence of particlegokiunately, it is
often difficult to prove the validity of such approximatigrespecially when the random process has an
unbounded number of components in the limit (e.g. the nurabeertices or components of sizein a
graph of sizen, fork = 1,2, ..., asn — o).

In other instances, it may be difficult to establish goodsateconvergence for mean-field approxima-
tions, or determine whether the long-term and equilibriswhdviour of the random process also follows
that of the deterministic system. Furthermore, some rea@mpts at a more accurate representation of
real networks still await any kind of mathematically rigosoanalysis. We would hope that over the com-
ing years, the intense interest will produce a coherent daddlyapplicable theory. However, at present,
it often appears that each new problem defies the existirayyttie an interesting way.

In many complex systems, laws of large numbers and high ctrat®n of measure in equilibrium
have been found to co-exist with so-callegid mixing[2; 12; 31], that is mixing in timeD(n logn),
wheren is a measure of the system size. (Traditionally, such asystas considered to be rapidly mixing
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if it converged to equilibrium in a time polynomial i, but currently the term is more and more restricted
to the ‘optimal’ mixing timeO(n log n), see for example [31; 7].) There are some very notable exe@snpl
of such behaviour, for instance, the subcritical Ising moskee [4; 15] and references therein, as well as
the discussion in Section 3.1 of this paper.

The purpose of this article is to propose a new method to kstiadmncentration of measure in complex
systems modelled by Markov chains. We illustrate the tepmiwith an application to a balls-and-bins
model analysed in some earlier works by this author and Mchl@ thesupermarket modglL8; 19].
Strong concentration of measure for this model, over lomgtintervals starting from a given state, as
well as in equilibrium, was established in [18; 19] usingtinelerlying structure of the model that enabled
certain functions to be considered as functions of indepehdandom variables so that the bounded
differences method could be used.

In Section 4 of the present article we show that such conaoitrof measure inequalities hold more
generally, with fewer assumptions on the structure of thed#haprocess involved. Our result is somewhat
related, in spirit, to results (and arguments) in [16], whéstablishes transportation cost inequalities for
the measure at timeand the stationary measure of a contracting Markov chasuymg transportation
cost inequalities for the kernel. However, the technicarapch adopted here is rather different from [16]
—discrete and coupling-based rather than functional #inand, we think, more ‘hands on’ and easier to
use in practice (though our setting is less general thar6).[ 1t is striking that our approach, considerably
more general than the one taken in [18], enables us to impyoule concentration of measure results
proved in [18]. (Accordingly, we could also prove improvestsions of results in [19], but we choose not
to pursue this here.) The results in Section 4 also significaxtend Lemma 2.6 in [15], which bounds
the variance of a real-valued, discrete-time, contradtiiagkov chain at time and in equilibrium. We
hope many more applications for the ideas presented hdrbaribund in the future.

2 Notation and definitions

Let X = (X;);cz+ be a discrete-time Markov chain with a discrete state syaard transition proba-
bilities P(x,y) for z,y € S, where}_ s P(z,y) = 1 for eachz € S. We assume that, for every pair
of statesr,y € S, P(x,y) > 0if and only if P(y,z) > 0. Then we can form an undirected graph with
vertex setS where{x, y} is an edge if and only iP(z,y) > 0 andz # y. In general, our chains may be
lazy, that is we can havB(z, z) > 0 for somex € S. We assume that the graph is locally finite, that is,
each vertex is adjacent to only finitely many other vertié®s.now endows with a graph metriel given
by d(z,y) = 1if P(z,y) > 0 andx # y, and for all otherr, y d(x,y) the length of the shortest path
betweenr andy in the graph, which is assumed to be connected.

This kind of setting is natural and many models in appliecbptility and combinatorics fit into this
framework, including those discussed in Section 3.

For each € Z*, X; may be viewed as a random variable on a measurable $Qage), where

Q={w=(wy,w1,...):w; €S Vi},

andF = o(U2,Fy), with 7, = o(X; : ¢ < t). Then eachX; is thei-co-ordinate projection, that is
X;(w) = w; fori € ZT. Then thes-fields F; form the natural filtration for the process.

Let P(S) be the power set of. The law of the Markov chain is a probability meas®en (2, F),
and is determined uniquely by the transition maffixogether with a probability measugeon (S, P(S))
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that gives the law of the initial stat&, according to
1—1
P({w:w; =y : j <i}) = p({wo}) [ [ Plass 2j11),
7=0

for eachzy, ..., z; € S, for eachi € Z*. This gives the law of X;) conditional onL(X,) = p, and
will be denoted byP,, in what follows. LetP!(z,y) be thet-step transition probability from to y, given

inductively by
= Z Pz, 2)P(2,y).
z€S

ThenP, (X, € A) = (uP*)(A) for A C S.
Let E,, denote the expectation operator correspondirgtoFort € Z* andf : S — R, define the

function Pt f by
=Y Plx,y)f(y), €S

In other words( P! f)(z) = Es, [f(X:)] = (6. P")(f), the expected value ¢f( X,) at timet conditional
on the Markov process startingati.e. the expectation of the functighwith respect to measurg P?.
In general, we writ&€,, [ f(X:)] = (uP")(f).

A real-valued functiory on S is said to be Lipschitz (or 1-Lipschtitz) if

| f llup=sup <L
T#Y

Here, equivalently, we only need to consider vertices aladie 1, sof is Lipschitz if and only if

SUPz y:d(a,y)=1 |f(17) - f(y)| <L

Given a probability measuneon (S, P(S)) and anS-valued random variabl& with law £(X) = u,
we say thaj: or X hasnormal concentratioiif there exist constants, ¢ > 0 such that, for every, > 0,
uniformly over 1-Lipschitz functiong : S — R,

u(F(X) = u(f)] = u) < Cem (2.1)

We say thai: or X hasexponential concentratioifi there exist constant§’, ¢ > 0 such that, for every
u > 0, uniformly over 1-Lipschitz functiong : S — R,

u(IFC0) = ()] = u) < Ce™. 2.2)

These definitions are closely related to the notions useceolpux [14].

In Section 4 we shall give conditions under which a disctete Markov chain(X;) exhibits normal
concentration of measure over long time intervals and inliegium.

For probability measures, , u2 on (S, P(S)), thetotal variation distancdetweeru; andu is given

by

drv (i1, o) Zlul 7)| = sup 1 (4) — ()]
IES
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It is well known that the total variation distance satisfies
drv (p1, pro) = ing(X #Y),

where the infimum is over all couplings= £(X,Y") of S-valued random variable¥, Y such that the
marginals areC(X) = py andL(Y) = po.
TheWasserstein distandeetween probability measurgs andy. is defined as

/fdul —/fduz

where the supremum is over all measurable 1-Lipschitz fanstf : S — R. By the Kantorovich —
Rubinstein theorem (see [5], Section 11.8),

dwy (1, p2) = sup =St}p|u1(f) = p2()l,

dw = inf {(xld(X,Y)] - £(X) =, £(Y) = o},

where the infimum is taken over all couplingson S x S with marginalsu; and ps, and we write
7[d(X,Y)] for the expectation of (X, Y') under the coupling-. Itis well known that the Wasserstein dis-
tance metrises weak convergence in spaces of bounded diamisb, since the discrete spae P(S))

is necessarily complete and separable, so is the spaceludlplity measures o6S, P(.S)) metrised by
the Wasserstein distance. See [28] for detailed discussibvarious metrics on probability measures and
relationships between them.

3 Examples of rapid mixing and concentration

In this section we give some examples of known Markov chathibiing both concentration of measure
in equilibrium and rapid mixing.

3.1 Mean-field Ising model

LetG = (V, &) be afinite graph. Elements of the state spsice: {—1, 1}" will be calledconfigurations
and foro € S, the values(v) will be called thespinat v. The nearest-neighbour energff (o) of a
configurationr € {—1,1}V is defined by

H(o) :=— Z J(v,w)o(v)o(w), (3.1)
v,wWEV,
wherew ~ v means thafw, v} € £. The parameterg(v, w) measure the interaction strength between
vertices; we will always takd (v, w) = J, whereJ is a positive constant.
For 8 > 0, thelsing modelon the graphG with parametefs is the probability measure on S given
by
O (3.2)
(o) = , .
Z(B)

whereZ(3) = 3 .o e #H(?) is a normalising constant.
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The paramete$ is interpreted physically as the inverse of temperatureé,ra@asures the influence of
the energy functiorfl on the probability distribution. Ainfinite temperaturecorresponding t@ = 0,
the measure is uniform overS and the random variabld€s (v) } ,cy are independent.

The (single-sitelGlauber dynamicsor = is the Markov chain( X;) on S with transitions as follows.
When ato, a vertexv is chosen uniformly at random froiri, and a new configuration is generated from
7 conditioned on the set

{neQ:nw)=ow), w# v}
In other words, if vertex is selected, the new configuration will agree witkeverywhere except possibly
atv, and at the spin is+1 with probability
eBM? (o)
plosv) = eBM?Y (o) 4 g—BM?(0)’

(3.3)

whereM" (o) := J Y., .. o(w). Evidently, the distribution of the new spin adepends only on the
current spins at the neighbourswoflt is easily seen thatX;) is reversible with respect to the measure
in (3.2), which is thus its stationary measure.

Given a sequend@,, = (V,,, E,,) of graphs, writer,, for the Ising measure ar(d(t(”)) for the Glauber
dynamics orG,,. For a given configuratioa € S,,, Ietﬁ(Xt("), o) denote the law oKt(") starting from
o. The worst-case distance to stationarity of the Glaubeahjos chain after steps is

dn (t) := max dpy (L(X™, 0), 70). (3.4)

g€eSy
Themixing timet,ix(n) is defined as
tmix(n) := min{t : d,(t) < 1/4}. (3.5

Note that,,ix(n) is finite for each fixech since, by the convergence theorem for ergodic Markov chains
d,(t) — 0 ast — oo. Nevertheless,,ix(n) will in general tend to infinity withn. It is natural to ask
about the growth rate of the sequengg:(n).

Definition 1 The Glauber dynamics is said to exhibitat-off at {¢,,} with window size{w,} if w,, =
o(t,) and

lim liminfd,(t, —yw,) = 1,

Y—00 NM—00
lim limsupd,,(t, + yw,) = 0.
YT—X n—oco
Informally, a cut-off is a sharp threshold for mixing. Fordiground on mixing times and cut-off, see
[21].
Here we consider the mean-field case, takihgto be K,,, the complete graph om vertices. That is,
the vertex seti§/, = {1,2,...,n}, and the edge sé&, contains all(g) pairs{i,j} for1 <i < j <n.
We take the interaction parametéto bel/n; in this case, the Ising measuren {—1,1}" is given by

——— exp g Z o(i)o(j) | - (3.6)
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Inthe physics literature, this is usually referred to as@hee-Weissnodel. To put this into the framework
introduced in Section 2, the state spateonsists of alln-vectors with components taking values in
{—1,1}, and two vectors are adjacent if they differ in exactly onecdinate.

It is a consequence of the Dobrushin-Shlosman uniquenigsgam thatt,,ix(n) = O(nlogn) when
8 < 1; see [1]. (See also [2; 31]). We shall see in Section 4 thathénsame regime, the stationary
measurer (the Gibbs measure) exhibits normal concentration of nreasw Lipschitz functions in the
following sense. LefX (") be a stationary version o‘ft("). Then, for some constantgsC > 0, for all
u>0

Pr(lf(X™) = B (F(X™)) > u) < Cem/em, (3.7)

uniformly over all 1-Lipschitz functions of and over alln. Thinking about (3.7) simply as a statement
about the measure without any mention of the procegét("), we can also rewrite it in the form

w({o: |f(0) = 7(f)] = u}) < Cem/en,

Inequality (3.7) will follow from Theorem 4.1 (i), and is amprovement on Proposition 2.7 in [15].
More precise results about the speed of mixingdot 1 can be found in [15], where the occurrence
of a cut-off is established. The following is Theorem 1 frats]:

Theorem 3.1 Suppose tha# < 1. The Glauber dynamics for the Ising model &7 has a cut-off at
tn = [2(1 — B)]"tnlogn with window sizex.

It is also easy to show, using the concentration of the Gibbasure and the method used to prove
Theorem 1.4 in [19], that asymptotically the spin values ihcainded set of vertices become almost
independent. (In the language of [31] — see also referemegsih — this corresponds to the decay of
correlations or spatial mixing.)

On the other hand, in the cage> 1, there is no rapid mixing, and no cut-off (see [15; 4] andmefiees
therein): t,,ix(n) is of the ordem3/? when = 1 and is exponential im when > 1. For the same
range ofs3, the Gibbs measure fails to exhibit normal concentration.

In particular, consider the function : S — R given bym(o) = 3" | (i), themagnetisationit is
easy to see thajm is 1-Lipschitz, and (m(X)) = n(m) = 0. However, wher3 > 1, then there is a
constant > 0 such that

7({o:m(c) >en}) =7({o:m(c) < —cn}) > 1/4,

i.e. m(X) is bi-modal forg > 1. While there is no bi-modality in the cage= 1, it is easy to calculate
directly thatm(X) is not concentrated in the sense of (3.7). Furthergfor 1, the spins of vertices are
no longer approximately independent for large

3.2 Supermarket model

Consider the following well-known queueing model withseparate queues, each with a single server.
Customers arrive into the system in a Poisson process akmate@here() < A < 1 is a constant. Upon
arrival each customer chooségueues uniformly at random with replacement, and joins atsbioqueue
amongst those chosen (where she breaks ties by choosingstief the shortest queues in the listd)f
Hered is a fixed positive integer. Customers are served accordittgetfirst-come first-served discipline.
Service times are independent exponentially distribuaedom variables with mean 1.
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A number of authors have studied this model, as well as isnsibn to a Jackson network setting [10;
11;18; 19; 20; 22; 23; 25; 30].

For instance, it is shown by Graham in [10] that the systechaotic provided that it starts close to
a suitable deterministic initial state, or is in equilibriu This means that the paths of members of any
fixed finite subset of queues are asymptotically indepenafeme another, uniformly on bounded time
intervals. This result implies a law of large numbers fortihee evolution of the proportion of queues of
differentlengths, that is, for the empirical measure o gatce [10]. In particular, for each fixed positive
integerky, asn tends to infinity the proportion of queues with length at tdasconverges weakly (when
the infinite-dimensional state space is endowed with thelymbtopology) to a functiom, (ko ), where
v¢(0) = 1forall t > 0 and(v.(k) : k € N) is the unique solution to the system of differential equatio

d’Ut (k)

o = Ak = 1) = v (k)*) = (ve(k) — vk + 1)) (3.8)

for k € N. Here one needs to assume appropriate initial condifi@j{&) : ¥ € N) such thatl > vo(1) >
vo(2) > --- > 0. Further, again for a fixed positive integey, asn tends to infinity, in the equilibrium
distribution this proportion converges in probability x6+4++4"°"" and thus the probability that a
given queue has length at leagtalso converges tal+d+-+d* "

Although the above results refer only to fixed queue lerigthnd bounded time intervals, they suggest
that whend > 2, in equilibrium the maximum queue length may usually®gog logn). Indeed, one of
the contributions of [18] is to show that this is indeed thes;and to give precise results on the behaviour
of the maximum queue length. In particular, it turns out tvdend > 2, with probability tending
to 1 asn — oo, in the equilibrium distribution the maximum queue lengikds at most two values;
and these values ateglogn/logd + O(1). Along the way, it is also shown in [18] that the system is
rapidly mixing, that is the distribution settles down quicto the equilibrium distribution. In this context,
‘quickly’ will mean ‘in time O(log n), as this is a continuous time process with events happehmatge,
and soO(log n) corresponds t®(n log n) steps of the discrete-time jump chain. It is further estigd
in [18] that the equilibrium measure is strongly concemrtrat

Another natural question concerns fluctuations when in thilierium distribution: how long does it
take to see large deviations of the maximum queue length itiostationary median? An answer is pro-
vided in [18] by establishing strong concentration estasdfor Lipschitz functions of the queue lengths
vector) over time intervals of length polynomialin The techniques in [18] are partly combinatorial,
and are used also in [17] and [19]. In particular, in [19], tomcentration estimates obtained in [18]
are used to establish quantitative results on the conveegefithe distribution of a queue length and on
‘propagation of chaos’.

Let us start by discussing the rapid mixing results knowrtliersupermarket model. In [18] two rapid
mixing results are established, one in terms of the Wasserdistance and one in terms of the total
variation distance. Unlike for the Ising model in Sectioh,3t turns out to be inappropriate to be looking
at the worst-case mixing time, that is the supremum of thengiimes over all possible starting states.
In the present case, this quantity is unbounded: the stateesp unbounded, and the time to equilibrium
from statese with the total number of customejisz ||1= &k > n is of the order at least. Then the best
one can do is to obtain good upper bounds on the mixing timedpres of the Markov chain starting
from nice states — that is, states where the queues are nmv@eloaded’. This is made more precise
below.
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Let X™ or X, be the queue-lengths vectok (™ (1),..., X™ (n)) in the supermarket model with
n servers. For a positive integer (Xt(")) is an ergodic continuous-time Markov chain, with a unique
distribution7 (") or .

For any given state write L‘(Xt("), x) to denote the law oKt(") givenXé") = x. Also, fore > 0, the
mixing time (™ (¢, z) starting fromz us defined by

(™ (e,2) =inf{t > 0: dTv(E(Xt(n), x), w(")) < e}

The result below, Theorem 1.1 in [18], shows that startiogifan initial state in which the queues are
not too long, the mixing time is small. In particulareit> 0 is fixed and0 denotes the all-zeron-vector,
thent (™) (¢,0) is O(log n).

Theorem 3.2 Let0 < A < 1 and letd be a fixed positive integer. For each constant 0 there exists a
constant) > 0 such that the following holds for each positive integeiConsider any distribution of the

initial queue-lengths vectoKé”), and for each time > 0 let
Ons =P(X5"| > en) + (M > nt).

Then
dTv(E(Xt(n)), M) <ne M 4 271 45, 4.

TheO(log n) upper bound on the mixing timeis of the right order. Indeed, it is also proven in [18]
that, for a suitable constaét> 0, if t < 6logn then

dry (LX), 7(M) =1 — ¢~ o™ ), (3.9)

Thust(™ (¢, 0) is ©(logn) as long as bota~! and(1 — ¢)~* are bounded polynomially in.

It would be interesting to consider the mixing times morecigely, to establish whether the supermar-
ket model exhibits a cut-off. Again, here we should not bestaering the worst-case mixing time, but
rather the worst case over a subset of ‘good’ initial statdsch are states where the total number of
customers is not too large and the maximum queue not too latp, to bring the supermarket model
into the discrete framework of Section 2, let us considerjtingp chain of the supermarket model. We
shall denote the jump chain b&it(”) or X, in what follows, and its stationary measuredy9) or #.

The transition probabilities of the jump chain are as foBovGiven the state at timeis x, the next
event is an arrival with probability/(A 4+ 1) and is apotentialdeparture with probability /(A + 1).
Here ‘potential’ means that it may be a departure or no chafhgéate at all. Given that the next event
is an arrival, the queue to which the new customer is sentteyiidned by selecting a uniformly random
d-tuple of queues and directing the customer to a shortestegamong those chosen, in the same way as
for the continuous-time process. Given that the next exeeatiotential departure, the departure queue is
chosen uniformly at random from among alfjueues. Then a customer will depart if the selected queue
is non-empty; otherwise, nothing happens. It is easy totatapproofs in [18] (where the arguments are,
in fact, based on analysing the jump chain) to show that Térad.2 implies mixing in time of the order
O(nlogn) from initial statesr such that| « ||1= O(n) and|| z ||cc= O(logn).

Accordingly, we make the following conjecture:
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Conjecture 3.3 Letc be a positive constant, and Ié‘é”) be the set of all queue lengths vectors the
n server supermarket model such thiat ||;< cn and|| z ||o< clogn. Lete > 0, and let

dn(e,t) = sup dTV(E(Xt("),x),fr(")).
mGSén)

Thend,, (e, t) has a cut-off in the sense of Definition 1, with window size

Our conjecture appears supported by some simulation seséitso it is supported by Conjecture 1
from [15], which states that the Glauber dynamics for thagsinodel on transitive graphs,, has a
cutoff if the mixing time isO(nlogn). The jump chain of the supermarket process is of a similae typ
to Glauber dynamics in that it makes only local transitiars] has mixing time of the ordék(nlogn),
starting from good initial states. Also, it has a lot of symime- its stationary distribution is exchangeable.
Thus the supermarket chain appears a good candidate foffcttiough proving it may not be easy.

More generally, perhaps cut-off can be proven to be a phenoméhat also co-occurs with rapid
mixing and concentration of measure in equilibrium much ensidely, in the context of Markov chains
whose jumps are suitably local.

In [18], the authors upper bound mixing in terms of the totaiation distance by first upper bounding
the Wasserstein distance between the distribution of thegsis at time and the stationary distribution.
The following result is Lemma 2.1 in [18].

Theorem 3.4 Let0 < A\ < 1 and letd be a fixed positive integer. For each constant ﬁ there exists
a constant; > 0 such that the following holds for each positive integerLet M denote the stationary
maximum queue length. Consider any distribution of théainifueue-lengths vectaX, such that| Xj|
has finite mean. For each time> 0 let

On,t = 2E[| Xo|1|x,|>en] + 2en P(Moy > nt).

Then
dw(L(Xy),7) <ne ™ +2enPr (M > nt) 4+ 2" + 6,4

The upper bounds on the Wasserstein and total variatioardist and thus on the mixing time, are
proven in [18] by means of a monotone coupling. The couplikg$ two copies of the queueing process
starting in adjacent states (that is, states differing ia customer in one queue) and couples their paths
together in such a way that the-distance between them is non-increasing (and so always stgual
to 1 until the processes coalesce). Furthermore, the cauisuch that with high probability thg -
distance rapidly becomes 0. The coupling is then extendall pairs of starting states with not too many
customers in queues using the fact that the Wassersteandesis a metric on the space of probability
measures, or path-couplingargument [2].

The property that thé, -distance is non-increasing in the coupling in [18] is vergisg and not com-
monly encountered in path-coupling scenarios. This ptgpgexploited in [18] to prove strong concen-
tration of measure for the supermarket process, startorg & fixed (or highly concentrated state) for a
long time interval. The following is Lemma 4.3 in [18].

Lemma 3.5 There is a constant > 0 such that the following holds. Let > 2 be an integer and let
f be a 1-Lipschitz function on the state space (set of all qlengths vectorsp. Let alsoz, € S and
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assume that the queue-lengths process) satisfiesX, = z¢ a.s. Letu; = Es,, [f(X¢)]. Then for all
timest > 0 and allu > 0,

Cu2
Ps,, ([ f(Xe) = pe| > u) < ne” e (3.10)

Lemma 4.3 in [18] is proven by observing that the supermapketess can be ‘simulated’ by two
independent Poisson processes, the arrivals processréiéthn) and the (potential) departure process
(with raten), together with corresponding independent choices of gsi¢lindependent uniformly ran-
dom choices for each event in the arrivals process, and oif@nnty random choice in the departures
process). One then conditions on the number of events imtkeval [0, t], and then the state at tinte
is conditionally determined by a finite family of indepenteandom variables. In other words, the argu-
ment is, just like most of the other arguments in [18], basedtadying the jump chaihf(t), although
this is not made explicit therein.

The non-increasing distance coupling property is used ¢vghat a Lipschitz function of the queue
lengths vector must satisfy a bounded differences comjiso that the discrete bounded differences
inequality can be applied to show concentration of measaré. ipschitz functions in the conditional
space. The proof is then completed by deconditioning.

The rapid mixing result can be combined with the long-termasmtration of measure result to prove
concentration of measure in equilibrium for Lipschitz ftinns of the queue-lengths vector. The following
is Lemma4.1in[18].

Lemma 3.6 There is a constant > 0 such that the following holds. Let > 2 be an integer and
consider then-queue system. Let the queue-lengths vectbiave the equilibrium distribution. Let be
a 1-Lipschitz function o%. Then for eachs > 0

P (If(Y) = Ex[F(V)]] > u) < ne—cw/n* (3.11)

Lemmas 3.5 and 3.6 prove strong concentration of measuremah@oncentration for small devia-
tions and exponential concentration for larger deviationthe case of starting from a fixed state, and
exponential concentration in equilibrium. The factan the bound on the right-hand sides of both (3.10)
and (3.11) is a limitation of the technique and not the rigtsveer. It is natural to expect the truth to be a
lot better — that it can be replaced by a constant. In Sectiwe develop concentration inequalities that
achieve that. Although we work with the discrete-time jurhgio, it is easy to see that our results apply
also to the continuous time chain. One further advantagaiofrequalities is that they apply to other
settings — for instance where rapid mixing is established logpupling, but the coupling does not have
additional useful properties such as the non-increasirgs@/atein distance.

Even so Lemmas 3.5 and 3.6 are quite powerful. We now explwiefly, some results concerning
the queue lengths in the supermarket model in equilibriuath ¢an be obtained using Lemma 3.6. The
following is Lemma 4.2 in [18]. (We drop the subscripto lighten up the notation.)

Lemma 3.7 Consider then-queue system, and let the queue-lengths véctbave the equilibrium dis-
tribution. For each non-negative integér let (&, y) denote the number of queues of length at Iéast
statey. Also, for each non-negative integerlet ¢(k) = E[¢(k,Y)]. Then for any constarnt> 0,

]P)(Sup |‘€(k, Y) — f(k” > cn% 10g2 n) — e*ﬂ(log2 n)
k
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Also, there exists a constant> 0 such that

sup P(L(k, Y) — (k)| > cn? logn) = o(1).

Furthermore, for each integer > 2

sup |E[£(k,Y)"] — £(k)"| = O(n" " log®n).

Lemma 5.1 in [18], stated below, yields further precise infation about the equilibrium behaviour,
over long time intervals.

Lemma 3.8 Let K > 0 be an arbitrary constant and let= n. Let(Y;) be in equilibrium and let > 0
be a constant. LeB, be the event that for all timaswith0 <t < 7

sup |£(4,Y;) — n/\1+d+"'+di7]| < en'/?log? n.
i

ThenP(B,) < e~ %os® ),

In [18], Lemma 5.1 is used to prove two-point concentratimrtfie stationary maximum queue length
and its concentration on only a constant number of valueslong time intervals. This is Theorem 1.3
in [18]:

Theorem 3.9 Let0 < A < 1 and letd > 2 be an integer. Then there exists an integer-valued function
mg = mg(n) = loglogn/logd + O(1) such that the following holds. For each positive integer
suppose that the queue-lengths ved@?) is in the stationary distribution (and thus so is the maximum
queue IengtH\/[t(”)). Then for each time > 0, Mt(") is mg(n) or mg(n) — 1 with probability tending
to 1 asn — oo; and further, for any constank” > 0 there exists = ¢(K) such that, with probability
tending to 1 a1 — oo,

max |Mt(") —loglogn/logd| < c. (3.12)

0<t<nk
The functionsnz (n), m3(n), ... may be defined as follows. Fér= 2, 3, . .. letiy(n) be the least integer
i such that\ =1 < n—% log? n. Then we letmy(n) = ip(n) + 1, and ford > 3 let mgy(n) = iq(n). (As
we have seen, with high probability the proportion of queafdength at least is close to\ T )
Also, equation (37) in [18] shows that, for= O(log n),
P(M > mg(n) + 1) < e closn (3.13)

for a constant > 0.

In [19], strong concentration of measure results from [1&] ased to show that in equilibrium the
distribution of a typical queue length converges to an explimiting distribution and provide explicit
convergence rates. L&t(") (1) denote the equilibrium length of of queue 1. (Note that theildmium
distribution is exchangeable.) The following is Theorethih.[19]. Let £, ; denote the law of a random

variableY” such thafP(Y > k) = A(¢"~D/(@=1) for eachk = 0, 1, .. ..
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Theorem 3.10 For each positive integen let Y () be a queue-lengths-vector in equilibrium, and
consider the length’ (™) (1) of queue 1. Then

drv (L(Y ™ (1)), Lx.a)
is of ordern—" up to logarithmic factors.

In fact, it is proven in [19] that the above total variatiostaince is»(n ! log® n) and isQ(n~"). Also,
the following holds (Corollary 1.2 in [19]).

Corollary 3.11 For each positive integek, the difference between tth¢h momeni[Y () (1)*] and the
kth moment oL, 4 is of ordern—! up to logarithmic factors.

The above results concern the distribution of a single quewngth. One may also consider collec-
tions of queues and chaoticity. The terms ‘chaoticity’ aptbpagation of chaos’ come from statistical
physics [13], and the original motivation was the evolutodrparticles in physical systems. The subject
has since then received considerable attention, espefadtbwing the ground-breaking work of Sznit-
man [29].

The result below (Theorem 1.4 in [19]) establishes chagtior the supermarket model in equilibrium.
We see that for fixed the total variation distance between the joint law glueue lengths and the product
law is at mosO(n 1), up to logarithmic factors. More precisely and more gertgraé have:

Theorem 3.12 For each positive integen, let Y (™) be a queue-lengths-vector in equilibrium. Then,

uniformly over all positive integers < n, the total variation distance between the joint law@f) (1),...,Y ™ (r)

and the product lawC (Y (™) (1)) is at mostO(n " log? n(2loglogn)"); and the total variation dis-

tance between the joint law &™) (1), ..., V() (r) and the limiting productlaw£§", is at mosO(n ! log” n(2 loglog n)™+1).
Analogous time-dependent results (away from equilibriarg also given in [19] — proven using

Lemma 3.5 above (Lemma 4.3 in [18]) but we omit them here ferghke of brevity. Let us mention

that the arguments used in [19] to prove Theorems 1.1 andrh&bfems 3.10 and 3.12 above) are quite

generic and would apply in many other settings. The maingntymeeded is concentration of measure

for Lipschitz functions of the state vector, the polynoni@im of the generator of the Markov process,

and, in the case of Theorem 1.1, also the exchangeabilityeotationary distribution. The chaoticity

result Theorem 3.12 above is a quantitative version of sditieeaesults in [29].

To conclude this section, we mention that analogues oftesU]18; 19] are proved in [17] for a related
balls-and-bins model, where, instead of queueing up taveservice on a first-come first-served basis,
customers (balls) have independent exponentially digkih ‘lifetimes’ and each departs its queue (bin)
as soon as its lifetime has expired.

Current work in progress [9] includes extensions of theltesn [18; 19] to the supermarket model
where the number of choices= d(n) and the arrival rate. = \(n) aren-dependent, including the
interesting case where— oo and\ — 1 with various functional dependencies betweesndd.

4 Coupling and bounded differences method generalised

This section contains our main results and applicationsu¥éethe notation introduced in Section 2.

Let us state our first theorem, which gives concentrationedsare for Lipschitz functions of a discrete-
time Markov chain on state spaétand with transition matrixP at timet¢, under assumptions on the
Wasserstein distance betweeniitgep transition measures foxK ¢.
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Theorem 4.1 Let P be the transition matrix of a discrete-time Markov chainhndliscrete state space
S.
() Let(a; : ¢ € N) be a sequence of positive constants such that, far all

sup dw (6. P, 5yPi) < . (4.1)
z,yeS:d(z,y)=1

Let f be a 1-Lipschitz function. Then for all> 0, zy € S, andt > 0,

Ps,, (|f(X1) = Ea,, [f(X)]| > u) < 267 /2(ier D), (4.2)

x0

(i) More generally, letS, be a non-empty subset 6f and let(«; : i € N) be a sequence of positive
constants such that, for all

supdw(6:P',0,P") < . (4.3)
w,yGSO:d(m,y):l
Let
58 ={x € Sy :y € Spwheneverl(z,y) = 1}.

Let f be a 1-Lipschitz function. Then for al) € S, v > 0 andt > 0,

t a2

Ps,, ({1£(X0) = Ea, [F(X0] 2 u} N {X, € 87 0< s <1}) <20 72%meD (44

If the Markov chain becomes contractive after a finite numifesteps, then one can deduce from
Theorem 4.1 concentration results for the stationary nreasithe Markov chain, as in the following
corollary.

Corollary 4.2 (i) Suppose that there existse S and a sequence; : S — R of functions such that,
forally € S, . .
dw(&wpz, 5UPZ) S ai(y), (45)

whereq;(y) — 0 asi — oo for eachy, and

sup Es, [vi(X3)] = sup(P*oy) () — 0 asi — oo. (4.6)
k k
Then(X}) has a unique stationary measureandd, P* — 7 ast — oo for eachy.
(i) Suppose that (4.1) holds, and the constantis Theorem 4.1 satisfy", o? < co. Suppose further
there exists: € S such that
sup(P*g)(z) < oo,
k

whereg(y) = d(z,y). Then(X;) has a unique stationary measured,, Pt — w ast — oo for eachz.
Furthermore, letX be a stationary copy oX;. Then, for allu > 0, and uniformly over all 1-Lipschitz
functionsf,
P (|f(X) = Ex[f(X)]| > 2u) < 2e™/2(5E00D), (4.7)
(iii) Suppose thatX;) has a unique stationary measureand condition (4.3) holds, whefg , af <
. Letz € S§, and supposé > 0 andt, > 0 are such thatly (6, P, 7) < ¢ and

Ps, (X; € SYfort <tg) >1—06.
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Let X be a stationary copy oK. Then, for allu > §, uniformly over all 1-Lipschitz functions,

to 2

P (|f(X) — Ex[f(X)]] > 2u) < 2e~%/2(Zi210D) 4 96, (4.8)

Proof:
(i) Consider the sequenc® of measures oriS, P(S)) given by P, = 6, P%; we have, using the
coupling characterisation of the Wasserstein distance,

dw(P;, Piyy) = dw(6.P' (8, P*)P') < (6. P*)(y)dw (5. P, 6, P°)
yeS

> (0:.P*)(y)uly) < sup Es, o (X)) — 0
yes

IN

asi — oo, by assumption. Thus the sequer{é&) is a Cauchy sequence and so, since the space of
probability measures off, P(S)) is complete with respect to the Wasserstein distance, it curverge
to a probability measure on (S, P(S)). It is obvious that this measure must be stationaryHor

Now, takey € S, and letQ; = &, P%. Then

dw (P, Q;) = dw(6,P",6,P") < a;(y) = 0 asi — cc.

It follows thatQ; — 7 asi — oo, and sor must be the unique stationary measure.

(i) The assumption thaf_, a? < oo implies thato; — 0 asi — oo. Thenit is easily seen (using the
fact that the distancé(y, z) between each pajy, z of states in finite) that conditions (4.5) and (4.6) of
part (i) hold forz, with «;(y) < a;d(x,y), and so, as in (i) one can prove that there exists a (neckyssari
unique) stationary measure and thats, P* — 7 ast — oo for eachr € S.

Let us now prove the concentration of measure result, inég@é.7). Take some: € S. Givene > 0,
for ¢ large enough the Wasserstein distance, and hence theddttion distance, between P! andr is
at moste. Then, foru > € and all such, by Theorem 4.1 part (i),

Pr(1f(X) = Ex[f(X)]| 2 2u) < Ps,(|f(Xe) — Es, [f(X)]| > u) +e

< 28*“2/2(2«?;1 af) + €.

Here we have used the fact that
| Ex[f(X)] — Es, [f(Xe)]| S e <u.
Sincee is arbitrary, the result follows.
(iii) Let
Ato = {w : Xt(w) € Sy Vt € [O,to]}.
Arguing as in (ii), and using Theorem 4.1 part (ii), we cantejrforu > ¢,
Pr(|f(X) —EL[f(X)]| = 2u) < Ps,(|f(Xey) — Es, [f(Xe)]] = u) +6
< P, ({I£(X1) = Bs, [F(Xa))l = u} N1 4 )
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+ 2
< 2 2122 z)_|_25

as required.
O

To prove Theorem 4.1, we shall make use of a concentratiaquidity from [26]. Let(Q, F, ]F’) be
a probability space, witl§) finite. Letg C F be ac-field. Given a bounded random varialsfeon
(Q F,P), thesupremunof Z in G is theG-measurable function given by

sup(Z|G)(w) = Aerg-ineA max Z(W'"). (4.9)

Thussup(Z) takes the value ab equal to the maximum value ¢f over the ‘smallest’ event ig con-
tainingw. Sincef? is finite, we are assured that the smallest event containidges exist; the arguments
used here would work also in many cases wheig countably infinite.

Theconditional rangeof Z in G, denoted byan(Z), is theG-measurable function

ran(Z | G) = sup(Z|G) + sup(—Z|G). (4.10)

Let {0,Q} = F, C F1 C ... be afiltration inF, and letZ,, ..., be the martingale obtained by
settingZ; = (Z|]-"t) for eacht For eacht letran, denoteran(Zt|]-'t 1) by definition,ran; is anF,_i-
measurable function. For eachlet thesum of squared conditional rangé& be the random variable
Zt ,ran?, and let themaximum sum of squared conditional ranggse the supremum of the random
varlabIeRf, that is

= sup RZ(©).
weN

The following result is Theorem 3.14 in [26].

Lemma 4.3 Let Z be a bounded random variable on a probability spé@e 7, P) with E(Z) = m. Let
{0,Q} = Fo C F1 C ... C F; be afiltration inF. Then for anyu > 0,

B(|Z — m| > u) < 207217
More generally, for any: > 0 and any value-?,
P({]Z —m| > u} N {R} <r}}) < 2e72/70

Proof of Theorem 4.1 Let f : S — R be 1-Lipschitz. Fix atime € N, zo € S and consider the
evolution of X; conditional onX, = =z, for ¢ steps, that is until time¢. Since we have assumed that
there are only a finite number of possible transitions fromginenz € S, we can build this conditional
process until time on a finite probability spac&?, F, Ps, ,): we can take) to be the finite set of all
possible paths of the process starting at time 0 in SI@.I!E’IIH time ¢, and.F to be the power set d?.

In the conditional space, for each tinjie= 0,...,t, let fj = o(Xo,...,X;), theo-field generated
by Xo, ..., X;; soF, = {0,Q} andF, = F. We write E instead ofE in what follows to lighten the
notation.
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Consider the random variable = f(X;) : Q — R. Also, forj =0,...,tlet Z; be given by

Z; = E[f(X4)|F;] = Es, [f(X0)| Xo, ..., Xj] = (P F)(X;),

z0

where we have used the Markov property in the last equality.
Fix 1 < j < t; we want to upper bounthn; = ran(Z; | F;_1). Fix alsoz,...,z;—1 € S, and for
x € S consider

E[f(X0)|X; = a] = B[f(X,-)|Xo = a
(P2 f)(@).
Note thatZ; (@) € {g(z) : d(z,z,;-1) < 1} for & such thatX;_; (©) = z;_1. It follows that, for sucho,

g()

ran; (@) = sup lg(z) — g(y)I.
z,y:d(z,x;-1)<1,d(y,z;—1)<1

Let us prove part (i) of the theorem. Asis 1-Lipschitz,

sup  [g(z) —g(y)| = sup  |(P* f)(x) — (P*7 f)(y)]

z,y:d(z,y) <2 z,y:d(z,y) <2

= sup |Es, pt—i (f) — Es, pt—i (Nl

z,y:d(z,y) <2

2 sup  |Es, pe-i(f) = Es,pr-i (f)]

z,y:d(z,y)<1

2 sup dw(0,P"I,6,P)
z,y:d(z,y)<1

S 205157]‘ )

IN

IN

by assumption. We deduce thai; (@) < 2a,_; forall @ € Q. It follows that

t—1

@) <4y af,,

r=0

uniformly overe € . Part (i) of Theorem 4.1 now follows from Lemma 4.3.
To prove (ii), observe that the bound
ran;(w) = ran(Z; | Fj-1)(w) < 20,5

still holds on the eventl; = {w : X;(w) € SQforj =0,...,t}. |

The following special case of model satisfying the hypotisesf Theorem 4.1 is of particular interest
and has received considerable attention in computer si@ecature; see for instance [2; 8; 12]. Sup-
pose (4.1) is satisfied wiil; = o, whered < o < 1is a constant. In the language of [2] this corresponds
to the following situation. Consider different copigk; ), (X;) of the process with initial states «’ re-
spectively, that isX, = = and X, = =’ almost surely. Suppose that we can couptg), (X;) so that,
uniformly over all pairs of states, 2’ € S with d(z,z') =1,

E[d(X1, X])|Xo =2, X, =2"] <,



Concentration of measure and mixing for Markov chains 111

for a constan® < « < 1. Thus, under the couplingX; ), (X;) will be getting closer and closer together
on average asgets larger, which implies strong mixing properties [2;.IPjen, uniformly over, 2’ € S
with d(x,2') = 1, dw (. P, §,» P) < . By ‘path coupling’ [2; 12]

Eld(X1, X1)|Xo =z, X = 2] < ad(x,2"),
and hencéw (6, P, 6, P) < adw (0., d,) for all pairsz, z’ € S. By induction ort,
dw (0P, 6, P") < ald(z, )

forall z, 2’ € S and allt € N. Then, in the same notation as earlier, we can upper bound

t
P2 < 4Za2r < 4a2(1 — az)_l,

r=1
for all £. Hence we obtain the following corollary.
Corollary 4.4 Suppose that there is a constéint. o < 1 such that

dw (6, P, 6, P) < a (4.11)
forall z,2’ € S such thatd(x,2’) = 1. Then for allt > 0

Ps, (|f(Xe) — Es, [f(X)]| = u) < 2¢7 (1-a)/207 (4.12)

x0

forall u > 0, all zp € S, and for every 1-Lipschitz function ¢h
Hence, ifX has the equilibrium distributiom then, for allu > 0 and every 1-Lipschitz functiofy

Pr(|f(X) = Ex[f(X)]] > u) < 2e7v (170%)/207 (4.13)

The particular choice ok = 1 — ¢; /n for a constant; > 0 corresponds to the ‘optimal’ mixing time
O(nlogn) for a Markov chain in a system with size measureand gives concentration of measure in
equilibrium of the form

Pr(|f(Xy) — Ex[f(X0)]| = u) < 274 /c2n, (4.14)

wherecs > 0 is a constant. This is the case, for example, for the subali{d < 1) mean-field Ising
model discussed in Section 3 — see for example [21] or [15h fdescription of the coupling that implies
fast decay of the Wasserstein distance. The same also spplige Glauber dynamics for colourings on
bounded-degree graphs analysed in [7] (see also [8] anjl [ZFip application is straightforward when
the number of colourk is greater thag D, whereD is the maximum degree of the graph. Itis only a little
more involved in the cas@ —n)D < k < 2D, where the proofin [7] relies otlelayed path-coupling],
whereby a new Markov chain is used with one step correspgrdin. steps of the original one, being
the size of the graph to colour.

On the other hand = 1 —6/(n® — n) for the Glauber dynamics on linear extensions of a partidéor
of sizen [2; 12] gives an upper bound(n? log n) on mixing. The corresponding bound on deviations of
a 1-Lipschitz function from its mean of sizeis of the form2e—4"/"* which is useless. However, one
cannot do much better in general. To see this, consider tti@lparder onn points consisting of a chain
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of lengthn — 1 and a single incomparable element. It is not hard to chedkiththis case the mixing
time is of the orden? — see [2] for details. It is also easy to see that there is nmabconcentration of
measure in the sense of (4.14).

We shall now apply Theorem 4.1 and Corollary 4.2 to the supekat process described in Section 3.2,
or rather to the corresponding discrete-time jump ch&inRecall that, when in state the next event is
an arrival with probability\/(1 + X), and is a potential departure with probability(1 + \). Given that
the next event is an arrival, the queue to which the arrivllgui is determined by selecting a uniformly
randomd-tuple of queues and sending the customer to a shortest omeggiimose chosen, ties being split
by always going to the first best queue in the list. Given thatriext event is a potential departure, the
departure queue is chosen uniformly at random among thessible queues, and departures from empty
queues are ignored. In the Markov chain graph, two statescameected by an edge if and only if they
differ exactly in one customer in one queue. Then a funcfi@l-Lipschitz if and only if it is 1-Lipschitz
with respect to thé; distance on the state spage

We focus on the casé > 2. Ford = 1, in equilibrium the queue lengths are independent geomet-
ric random variables, so normal concentration of measunebeaobtained using the standard bounded
differences inequality [26].

By Lemma 2.3 in [18], for alk;, y € S such that(z,y) = 1, and allt > 0,

dw (8, P, 8,P") < 1.
Let ¢ be a positive constant, and I&¢ be given by
So={z eS| z|1<en, | x| clogn}.

It is very easy to modify the proof of Lemma 2.6 in [18] to shdwat, if z,y € Sy andd(z,y) = 1, then
for some constants, 5 > 0,
dw (6, P, 6, P') < e Bt/m 4 2¢=Fn (4.15)

fort > anlogn.
Take a constankl > 2 and letr = n®. Then we can puty; = 1 fort < anlogn, anda; =
e Pt/m 4 2¢=Pm for anlogn < t < 7. Then fort < 7, we can upper bound

t
Z o? < min{t, anlogn + n'=P/*F=1 4 2¢7F"/2} < min{t, 2anlogn}.
i=1

Consider the all-empty state,c S{. Then by choosing the constarih the definition ofS, sufficiently
large, we can ensure that, fér> 2,

Po(X; € SOVt < 7)) >1— e o8m?/e,

This follows from Lemma 2.3 (monotone coupling for giverandd), Lemma 2.4 (a) and the monotone
coupling for givenn and differentd, d’ (see the proof of Lemma 2.4 in [18]) and equation (37) in [18].
(See also the statements of these results in Section 3.2.)

By Theorem 4.1 (i), we can choosesufficiently large so that, for all > 0, all w > 0, and every
Lipschitz functionf,

Pso (|/(Xe) — Eso [f(X0)]] = u) < 270/, (4.16)
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By Theorem 4.1 (ii), forxnlogn < t < 7, and allu > 0,
Poo (|£(X2) = Eso [f(X0)]] 2 w) < 2e7/omlosn 4 g=(osm)?/e, (4.17)
In particular, foranlogn <t < 7, andu < cy/nlogn,
P (1 (K1) = Esp [f(X0)]] 2 w) < 267/ en ez, (4.18)

provided that is large enough. Inequalities (4.16) — (4.18) improve ontwin could obtain for the jump
chain from Lemma 3.5 above, for an interesting range ehd¢ — and it is easy to use them to derive
improved concentration of measure inequalities for theinapnus chain also. (It is possible to optimise
inequality (4.17) by playing with the definition ¢f, to obtain normal concentration for larger)

We now want to relate this to concentration of measure inlixiuim, via Corollary 4.2. It is easy
to see from earlier work (see [18] and references thereat)ttie supermarket jump chain has a unique
stationary measure. (This could also be proven showingttiehypotheses of Corollary 4.2 (i) are
satisfied, via (4.15) above.)

By Lemma 2.1 in [18] and straightforward calculations foe tRoisson process, there is a constant
1 > 0 such that

dw (L(Xy,0),7) < ne "™ 4 2en P (M > nt/n) + 2™, (4.19)

where M denotes the maximum queue length in equilibrium, and we rakg ¢ the same as in the
definition of Sy, assuming that is sufficiently large. Thus, by (4.19),

dw (L(X;,0),7) < (n 4+ 2cn+ 2)e™™.

LetY denote the queue lengths vector in equilibrium. It therofedl by Corollary 4.2 (iii), uniformly for
all 1-Lipschitz functionsf, for u > 1 andn sufficiently large

Pa(|f(V) — Ex[f(Y)]] > 2u) < 2e~ % /enlogn 4 gp—(ogn)?/c. (4.20)
So, choosing to be sufficiently large, for al. > 0 andn sufficiently large,

Pa(|f(V) — Ex[f(V)]| > 2u) < ce v /enloan 4 ce=(logn)*/e, (4.21)

This improves on Lemma 3.6 above, and gives normal cond@nifar u = O(n'/?(logn)*/?) (again,
it is possible to obtain normal concentration for larggr but is not the optimal result we are after. In
particular, we still cannot show that deviations of sizé?w(n) have probability tending to 0 fap(n)
tending to infinity arbitrarily slowly. We will now derive arther inequality that will enable us to achieve
our aim.

Theorem 4.5 Assume that there exists a $gtand numbersy; (z, y) (z,y € So, i € N) such that, for all
i,and allz,y € So withd(z,y) =1,

dw(5zPi,5yPi) < oz, y). (4.22)

Let
Sy = {z € Sy : y € So whenevet(z, y) = 1}.
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Forz € S, letg.(y) = dw(d,P* 6, P")?. Assume that, for some sequerfog : i € N) of positive
constants,

sup (Pga,)(z0) < of. (4.23)
z0€SY
Lett > 0, letv = >_i_, o2, and let
a = sup sup a;(z,y). (4.24)

1<j<t z,y€So:d(z,y)<2

Letalsod; = {w € Q: X, (w) € S§V0 < s <t}
Then, for allu > 0, and uniformly over all 1-Lipschitz functiorfs

Ps,, (|f(Xt) —Es, [f(Xe)]| > un At) < 2¢~ "/ (v(1H(du/6v)) (4.25)

zQ
To prove Theorem 4.5, we use another result from [26]. Wittation as before, fof =1, ..., ¢, let
var = var(Z; | Fj-1) = E ((Z; —B(Z; | F5-2))* | Fa )
let V.= Y var;. Also, forj = 1,....t, letdev; = sup(|Z; — Z;_1| | F;_1), and letdev =
sup; dev;. The following result is essentially Theorem 3.15 in [26].

Lemma 4.6 Let Z be a random variable on a probability spa@@, 7, P) with E(Z) = m. Let{,Q} =
Fo € F1 C ... C F be afiltration inF. Leth = maxdev, the maximum conditional deviation (and
assume that is finite). Then for any. > 0,

P(|Z —m| > u) < 2e—u2/(2f)(1+(5u/3'&))’

whered is the maximum sum of conditional variances (which is assumeée finite).
More generally, for any, > 0 and any values, v > 0,

P({|Z —m| > u} N {V < v} N {maxdev < b}) < 2~/ (2v(1+(bu/30))

Proof of Theorem 4.5 The proof is similar to the proof of Theorem 4.1. Lt S — R be 1-Lipschitz.
Fix atimet € N, anxg € S and consider the evolution df, conditional onX, = x for ¢ steps, that is
until time ¢. Again this conditional process can be supported by a fimgbability space(, 7, P, ).

As before, in the conditional space, for each tighe= 0,...,¢ let ]:"j = o(Xo,...,X}), theo-
field generated by, ..., X;; soFy = {(Z),Q} andF, = F. Again, we consider the random variable
Z = f(X;): Q — R.And, forj =0,...,t, Z; is given by

Z; = B[f(X0)|Fj] = Bs, [f (X0)| Xo, ..., X;] = (P77 [)(X;).

Suppose first for simplicity that, = S. We want to apply Lemma 4.6 and for this we need to calculate
the conditional variancesr;. To do this, we use the fact that the variance of a randombiariais equal
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to I E(Y — Y)2, whereY is another random variable with the same distributiol @nd independent of
Y

Fix j andzy,...,z;_1 € S, and forz € S consider
9(z) = E[f(X)|X; = 2] = E[f(Xi—;)|Xo = 2]
(P f)(x).
Then, forw such thatX; 1 (©) = z;_1, Z;(@) € {g(z) : d(z,z;-1) < 1}, so that
N 1
varj(@) = 3 > Pxj1,2)P(zi-1,9)(9(z) — g(y))?
z,y
1 ) )
< 3 Z P(xj—law)P(xj—lay)dW(émPt_Ja6yPt_J)2

z,y:d(z;—1,2)<1,d(xj—1,y)<1
2 Z P(zj_1,2)dw (6, P77, 6,, ,P'7)?

z:d(zj—1,2)<1

< 2 Z P(,Tj_l N ,T)at_j (.”L'j_l N $)2

IN

< 2a?7j,

by assumption (4.23).
Then we can upper bound the sum

t
<2y ol
j=1

It remains to boundev = sup; dev;. We have, fot such thatX; (@) = z;_1,

dev;(@) < sup[g(x) — (P77 ) (w-1)]
z:d(z,xj-1)<1

= sup (P f) (@) — (P f) (@)

z:d(z,xj-1)<1

< sup |dW(6mPt_j761j71Pt_j+l)'
z:d(z,xj-1)<1

It follows that, foreachy = 1, ... ,t,
dev;, < sup  dw (3, Pt 6, PTY)
z,y:d(z,y)<1
< sup  dw((6,P)P"7,6,P")
z,y:d(z,y)<2
< 4

by (4.24) and using the coupling characterisation of theséfstein distance. Theorem 4.5 now follows
from the first statement in Lemma 4.6 in the case wifgre= S. In general, the above bounds dmand
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dev hold on the eventl; = {w : X;(w) € S forj =0,...,t}, and so Theorem 4.5 also follows from
the second statement of Lemma 4.6. |

Let us now apply Theorem 4.5 to the supermarket model frorhdisg8ussed above. Again, we focus
on the casd > 2.
Let ¢ be a positive constant, and I&¢ be given by

ze S lk,x)= 1ymsk <ne ®efork=1,...}.
(r)=>

r=1

Consider the all-empty stat®,c S§. Let K > 2 be a constant. We claim that we can choosefficiently
large that, ifr = n’¢, then

Po(X, €80 :t<7)>1—¢ (osm’/e
This follows easily from Lemma 3.8 in the present paper, tiogiewith equation (3.13).

We now want to calculate the quantity in (4.23). For a statec S and a stater chosen with
probability P(zg, z), these states will only differ in a queue of length greatanth if P(zy,x) is a
probability of an event involving a queue of length at |gasta departure from a queue of length at least
k or an arrival into a queue of length at leastForz, € S{ such a transition happens with probability at
mostce —*/¢ (choosing: large enough again).

The proof of Lemma 2.6 in [18] shows thataify € S, are adjacent and differ in a queue of length
then for some constants 5 > 0 we can upper bound

dw (6, P, 6, P') < e Bt/m 4 2¢=Fn
fort > akn. Also, by Lemma 2.3 in [18],
dw (6, Pt,5,Pt) <1

for all t and hence fot < akn.
Combining the above observations and choosing 1 large enough, we find that fer> o2n

sup Eézo dW(5X1 Pta 6I0Pt)2 < eft/om + efn/a.
Ioesg

Hence, by choosinglarge enough, we can upper bound

r
g ozf < cn.
i=1

Further, once again using Lemma 2.3 in [18], we can upperthéuq 2.
By Theorem 4.5, there is a constant 0 such that, uniformly for all 1-Lipschitz functions allt < 7,
and allu > 0,
Poo (|£(X2) = Es [f(X0)]] 2 ) < 267 /4elmin) 4 g=(osm)?/e, (4.26)

In particular, we can choosdarge enough so that, far < ¢o/nlogn,

Pso (| /(Xe) — Eso [f(X0)]] = u) < 3e~v/em, (4.27)
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Now, as before, by (4.19),
dw (6o P7,7) < (n+2cn +2)e™ ™

providedc is large enough. It follows that fot large enough, uniformly for all 1-Lipschitz functiorfs
and allu > 1,

Pi(If(V) —E:[f (V)] 2 20) < Poso(If(Xr) = Eso[f(X,)]] = w)
+ (n4+2en+2)e ™
< 287u2/4c(n+u) + 267(log n)?/c (428)
It follows that, for0 < u < ¢on'/?log n, we obtain
Pr(|f(V) = Ea[f(D)]| > 2u) < cem/en, (4.29)

provided that the constants chosen sufficiently large. Choosiag= \/nw(n), wherew(n) is a function
tending to infinity withn arbitrarily slowly, we obtain

Px(If(Y) — Ex[f(V)]] = u) = o(1)

asn — o0.
Inequalities (4.26) and (4.28) could be optimised (by ofging the choice of sef;) to obtain normal
concentration for largeu.

For a positive integek, let /(k, Y) be the number of queues of length at Igagt the stationary jump
chain, and let(k) be its expectation. Then for any positive integeand anyu > 0, we can write

E(l6(k,Y) = £(k)[*] < u® + Yy Pa(l(k,Y) = £(k)| > p).

y>u

Note that the maximum value thd(k, Y) — /(k)|* can take is:*. Then, taking: = n'/2, and applying
inequality (4.28), we obtain

Ex[|0(k,Y) — i(k)|*] < en®/2.

assuming the constantis chosen big enough. Hence, arguing as in Section 4 of [iLB]gasy to show
that
sup | E[e(k, V) — i(k)"| = O(n" %)
k

And hence, arguing as in Section 5 of [18], we obtain thatséone constant,

_ )\1+d+...+di’1| < con” L, (4.30)

sup In=0(:)
which improves on equation (27) in [18], implying that

sup |n (i) — )\1+d+"'+di71| < con”*(logn)?.
i
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5 Conclusions

We have derived concentration inequalities for Lipschilzdtions of a Markov chain long-term and in
equilibrium, depending on contractivity properties of tfein in question. Our results apply to many
natural Markov chains in computer science and statistieatranics.

One open problem is to show that, in a discrete-time Markairchvith ‘local’ transitions, under
suitable conditions, rapid mixing occurs essentially dlanly if there is normal concentration of measure
long-term and in equilibrium (with non-trivial bounds). Ather open question is to explore how these
properties relate to the cut-off phenomenon. Is it the daag &gain under suitable assumptions, they are
necessary and sufficient conditions for a cut-off to occur?
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