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The height of random binary unlabelled trees

Nicolas Broutin and Philippe Flajolet
Algorithms Project, INRIA-Rocquencourt, F-78153 Le Chesnay (France)

This extended abstract is dedicated to the analysis of the height of non-plane unlabelled rooted binary trees. The
height of such a tree chosen uniformly among those of size n is proved to have a limiting theta distribution, both in
a central and local sense. Moderate as well as large deviations estimates are also derived. The proofs rely on the
analysis (in the complex plane) of generating functions associated with trees of bounded height.
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1 Introduction
We consider trees that are binary, non-plane, unlabelled, and rooted; that is, a tree is taken in the graph-
theoretic sense and it has nodes of (out)degree two or zero only; a special node is distinguished, the root,
which has degree two. In this model, the nodes are indistinguishable, while no order is assumed between
the neighbours of a node. Let Y denote the class of such trees, and let Yn be the subset consisting of trees
with n external nodes (i.e., nodes of degree zero).

In this extended abstract, we study the (random) height Hn of a tree sampled uniformly from Yn. The
depth of nodes has been analysed for many “simple varieties” of trees by Meir and Moon [22]. Regarding
height, a few special cases were studied early: Rényi and Szekeres [25] proved that the average height
of labelled non-plane trees of size n is asymptotic to 2

√
πn; De Bruijn, Knuth, and Rice [7] dealt with

plane trees and showed that the average height is equivalent to
√

πn as n → ∞. Finally, Flajolet and
Odlyzko [10] developed an approach that encompasses all simple varieties of trees (see [12] for more
results). These results are relative to trees where one can distinguish the neighbours of a node, either by
their labels (labelled trees), or by the order induced on the progeny (plane trees).

In such models with distinguishable progeny, there are natural random walks associated to the random
trees. Also, trees of a fixed size n may be seen as Galton–Watson processes conditioned on the size of
the total progeny being n; cf [1, 17, 19]. Probabilistic techniques have been applied to the random walk
associated to a tree traversal in order to derive asymptotic results about the trees, in particular regarding
height and width [4, 5]. Yet an other approach is to find the continuous limit of suitably rescaled random
trees of increasing sizes. One can then read off some of the limit parameters directly on the limiting
object. This point of view has been adopted by Aldous [2] in his definition of the continuum random tree.
For a recent account of the probabilistic developments, see the survey by Le Gall [20].

The case of trees with indistinguishable progeny is essentially different, and no direct random walk
approach would seem to be possible, due to the symmetries inherent in unlabelled structures. The anal-
ysis of unlabelled non-plane trees finds its origins in the works of Pólya [24] and Otter [23]. However,
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these authors mostly focused on enumeration—the problem of characterizing typical parameters of these
random trees remains largely untouched. Gittenberger [15] and recently, in an independent study that
predates ours by a couple of weeks, Drmota–Gittenberger [8] have examined the profile of non-plane
unlabelled “general” trees (where all degrees are allowed) and shown that the joint distribution of the
number of nodes at any finite number of levels converges weakly to the finite-dimensional distribution of
Brownian excursion local times. They further extended the result to a convergence of the entire profile
to the Brownian excursion local time. This gives in particular the limit law for the height of these trees.
This suggests that, although there is no clear reduction of unlabelled trees to random walks, such trees
largely behave like simply generated families. In particular, this suggests that the rescaled height Hn/

√
n

should admit a limit distribution of the theta type [10, 18, 25]. We shall prove that such is indeed the case
for binary non-plane trees in Theorems 1 and 2 below. We also provide moderate and large deviations
estimates (Theorems 3 and 4) as well as asymptotic estimates for the moments (Theorem 5); see §6. Some
of the more technical proofs are omitted and we limit ourselves to the global structure of the arguments;
the details may be found in the long version [3].

This note arose from questions of Jean-François Marckert and Grégory Miermont [21]. Their moti-
vation comes from an attempt at extending the probabilistic methods of Aldous to non-plane trees and
developing corresponding continuous models—we are indebted to them for being at the origin of the
present study. We also express our gratitude to Alexis Darrasse and Carine Pivoteau for designing and
programming for us efficient Boltzmann samplers of binary trees and providing detailed statistical data
that guided our first analyses of this problem.

2 Trees and generating functions
Tree enumeration. Our approach is entirely based on generating functions. The class Y of binary (non-
plane unlabelled rooted) trees is defined to include the tree with a single external node. A tree has size n if
it has n external nodes (hence n− 1 internal nodes). The cardinality of the subclass Yn of trees of size n
is denoted by yn and the generating function (GF) of Y is

y(z) :=
∑
n≥1

yzz
n = z + z2 + z3 + 2z4 + 3z5 + 6z6 + 11z7 + 23z8 + · · · ,

the coefficients corresponding to the entry A001190 (Wedderburn–Etherington numbers) of Sloane’s On-
line Encyclopedia of Integer Sequences.

Since a binary tree is either an external node or a root appended to an unordered pair of two (not
necessarily distinct) binary trees, one has the basic functional equation

y(z) = z +
1
2
y(z)2 +

1
2
y(z2), (1)

as follows from fundamental principles of combinatorial enumeration [11, 16, 23, 24]. According to the
general principles of analytic combinatorics, we shall operate in an essential manner with properties of
generating functions in the complex plane. The following lemma is classical:

Lemma 1 Let ρ be the radius of convergence of y(z). Then, one has 1/4 ≤ ρ ≤ 1/2, and ρ is determined
implicitly by 2ρ + y(ρ2) = 1. As z → ρ−, the generating function y(z) satisfies

y(z) = 1− λ
√

1− z/ρ + O (1− z/ρ) , λ =
√

2ρ + 2ρ2y′(ρ2). (2)
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Furthermore, the number yn of trees of size n satisfies asymptotically

yn =
λ

2
√

π
· n−3/2ρ−n(1 + O(1/n)). (3)

Proof: Let Cn−1 = 1
n

(
2n−2
n−1

)
be the number of plane binary trees of size n. One has combinatorially

Cn−12−n ≤ yn ≤ Cn. The Cn, which are the Catalan numbers and they are well-known to grow as
4nn−3/2. The bounds 1/4 ≤ ρ ≤ 1/2 result. It follows that y(z2) is analytic in a disc properly containing
|z| ≤ ρ. Then, from (1), upon solving for y(z), we obtain

y(z) = 1−
√

1− 2z − y(z2), (4)

which becomes singular when the argument of the square root vanishes. The value ρ is then the positive
solution of 2z + y(z2) = 1 and, at this point, we must have y(ρ) = 1. This reasoning also justifies the
singular expansion (2), seen to be valid in a ∆-domain extending beyond the disc of convergence |z| < ρ.

Equation (3) constitutes Otter’s celebrated estimate: it results from translating the square-root singular-
ity of y(z) by means of either Darboux’s method or singularity analysis [11, 16, 23, 24]. 2

Numerically, one finds [9, 11, 23]:

ρ
.= 0.40269 750367, λ

.= 1.13003 37163,
λ

2
√

π

.= 0.31877 66259.

Height. Let yh,n be the number of trees of size n and height at most h. (Height is measured as the
maximum number of edges along branches from the root to external nodes.) Let yh(z) =

∑
n≥1 yh,nzn.

The arguments leading to (1) yield the fundamental recurrence

yh+1(z) = z +
1
2
yh(z)2 +

1
2
yh(z2), and y0(z) = z. (5)

We also set eh(z) ≡
∑

n≥1 eh,nzn := y(z)− yh(z), which is the generating function of trees with height
exceeding h. Then, a trite calculation shows that the eh(z) satisfy the main recurrence

eh+1(z) = y(z)eh(z)
(

1− eh(z)
2y(z)

)
+

1
2
eh(z2), and e0(z) = y(z)− z, (6)

on which our subsequent treatment of height is entirely based.
Analysis. The distribution of height is accessible by

P {Hn > h} =
yn − yh,n

yn
=

eh,n

yn
, (7)

where eh,n = [zn]eh(z). We shall get a handle on its asymptotic properties by means of Cauchy’s
coefficient formula,

eh,n =
1

2iπ

∫
γ

eh(z)
dz

zn+1
, (8)
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Fig. 1. The “tube” and “sandclock” regions on the left, and the Hankel contour used to estimate eh,n on the right.

upon choosing a suitable integration contour γ in (8). This task necessitates first developping suitable
estimates of eh(z), for values of z both inside and outside of the disc of convergence |z| < ρ. Precisely,
we shall need estimates valid in a “tube” around an arc of the circle |z| = ρ,

T (µ, η) := {z : −µ < |z| − ρ < µ, | arg(z)| > η}. (9)

as well as inside a “sandclock” anchored at ρ

S(r0, θ0) := {z : |z − ρ| < r0, π/2− θ0 < | arg(z − ρ)| < π/2 + θ0}. (10)

(See Figure 1 for a rendering).
Plan. Estimates of the sequence of generating functions (eh(z)) within the disc of convergence and a

tube, where z stays away from the singularity ρ form the subject of Section 3. The bulk of the technical
work is relative to the sandclock, in Section 4. We then develop our main approximation in Section 5.
Sections 3–5 closely follow the general strategy of the original paper [10]; however, nontrivial adaptations
are needed, due to the presence of Pólya terms, so that the problem is no longer of a “pure” iteration type,
as in [10]. We finally reap the crop in Section 6, where our main theorems relative to the distribution of
the height are stated and proved (these somewhat parallel the local limit law of [12] in the planar case).

3 Convergence away from the singularity
Our aim in this section(i) is to extend the domain where eh is analytic beyond the disc of convergence
|z| ≤ ρ, when z stays in a “tube” T (µ, η) as defined in (9) and is thus away from ρ. The main result
is summarized by Proposition 1, at the end of this section. Its proof relies on the combination of two
ingredients: first, the fact, expressed by Lemma 2, that eh → 0 (equivalently: yh → y) in the closed disc
of radius ρ; second, a general criterion for convergence of the eh to 0, which is expressed by Lemma 3.
The criterion implies in essence that the convergence domain is an open set, and this fact provides the
basic analytic continuation of the generating functions of interest.

Lemma 2 For all z such that |z| ≤ ρ, and h ≥ 1, one has |eh(z)| ≤ (|z|/ρ)h
/
√

h.

(i) In what follows, we freely omit the arguments of y, eh, . . . , whenever they are taken at z.
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Proof: To have height at least h, a tree needs at least h + 1 nodes, so that |eh(z)| ≤
∑

n>h yn|z|n. We
first note an easy numerical refinement of (3), namely, yn ≤ 1

2ρ−nn−3/2. (See [14] for a detailed proof
strategy in the case of a similar but harder problem.) The claim follows by bounding the sum using an
integral. 2

We now devise a criterion for the convergence of the eh to 0. This criterion, adapted from [10,
Lemma 1], is crucial in obtaining extended convergence regions, both near the circle |z| = ρ (in this
section) and near the singularity ρ (in Section 4).

Lemma 3 (Convergence criterion) Let z ∈ D := {z : |y| < 1} and assume that |z| <
√

ρ. The
sequence {|eh(z)|, h ≥ 0} converges to 0 if and only if there exist an integer m and real numbers α, β ∈
(0, 1), such that the following three conditions are simultaneously met:

|em| < α, |y|+ α/2 < β, αβ +
(
|z|2/ρ

)m
< α. (11)

Furthermore, if (11) holds then, for some C and β0 ∈ (0, 1), one has |eh| ≤ Chβh
0 , for all h ≥ m.

Proof: (i) Since |y| < 1 in D and z <
√

ρ, the convergence eh → 0 clearly implies that (11) holds.
(ii) Conversely, assume the three conditions in (11), for some value m. Then, they also hold for m+1.

Indeed, recalling (6), we see that, for any h ≥ 0,

|eh+1| ≤ |eh|
(
|y|+ |eh|

2

)
+
|eh(z2)|

2
≤ |eh|

(
|y|+ |eh|

2

)
+
(
|z|2

ρ

)h

, (12)

where the Pólya term involving |eh(z2)| has been bounded using Lemma 2. Using the hypotheses of (11)
together with (12) above taken at h = m, yields |em+1| < α. By induction, (11) then holds for all h ≥ m.

(iii) The assertion that |eh| ≤ Chβh
0 follows by expanding (6) and using β0 = max{β, |z|2/ρ}. 2

We can now state the main convergence result of this section:

Proposition 1 (Convergence in “tubes”) For any angle η > 0, there exists a tube T (µ, η) with width
µ > 0, such that |eh(z)| → 0, as h →∞, whenever |z| lies in T (µ, η).

Proof sketch: If we exclude a small sector of opening angle 2η around the positive real axis, then
the quantity, λ0 := sup { |y(z)|; |z| = ρ, | arg(z)| ≥ η } , satisfies λ0 < 1. The continuity of y and
Lemma 3 then imply the convergence of eh(z) to 0 in a small disc around each z ∈ {ρeiθ : |θ| ≥ η}. The
latter set being compact, we can extract a finite covering, which must then contain the desired tube where
the convergence holds. 2

4 Convergence near the singularity
We now focus on the behaviour of eh(z) in a “sandclock” around the singularity. When z approaches
ρ, |y| is no longer bounded away from 1 and the criterion for convergence given by Lemma 3 cannot be
used directly. However, as we prove below, the quantities |eh(z)| first exhibit a decreasing behaviour for
h ≤ N , for some appropriate N = N(z). At that point, |eN (z)| is small enough for the criterion of
Lemma 3 to be satisfied, whence enventually the convergence |eh(z)| → 0 as h →∞ in a sandclock.

The upper bound we use for |eN | is based on the following alternative recurrence.
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Lemma 4 (Alternative recurrence) If ei 6= 0 and ei

[
1− ei(z2)/e2

i

]
6= 2y for i = 0, . . . , h− 1 then the

following recurrence relations hold

yh

eh
=

1
e0

+
1
2y

1− yh

1− y
−

h−1∑
i=0

yi−1ei(z2)
2e2

i

+
h−1∑
i=1

yi−2ei

4

[
1− ei(z2)

e2
i

]2(
1− ei

2y

[
1− ei(z2)

e2
i

])−1

. (13)

Proof: The proof relies on a classical idea in the study of slowly convergent iterations [6, 10]. Starting
with the recurrence relation (6), rewritten as

ei+1

yi+1
=

ei

yi

(
1− ei

2y

[
1− ei(z2)

e2
i

])
,

the trick is to take inverses. This is a classical technique in the study of slowly convergent iterations (near
an indifferent fixed point): see for instance [6, page 152]. Using the identity (1− u)−1 = 1 + u + u2(1−
u)−1 shows that

yi+1

ei+1
− yi

ei
=

yi−1

2

[
1− ei(z2)

e2
i

](
1− ei

2y
+

yi−2

4

[
1− ei(z2)

e2
i

]2 [
1− ei(z2)

e2
i

])−1

.

Summing the terms of this equality for i = 0, . . . , h− 1 yields the claim. 2

An important step of the proof of Proposition 2 consists in controlling the behavior the terms in the
alternative recurrence for all h ≤ N (we will fix N later). In particular, we need good enough upper and
lower bounds for |eh(z)|, h ≤ N , and for z around ρ and ρ2. Obtaining such estimates requires to study
the recurrence relation (6) more carefully and to quantify the effect of the analytic Pólya term eh(z2) for z
in the “sandclock” S(r0, θ0). The following lemma is evocative of the theory of iteration near an attractive
fixed point and gives some estimates on the behaviour of eh in the interior of the disc of convergence.

Lemma 5 There exist constants K1,K2 > 0 and r > 0, such that, for all h ≥ 0, and for |z−ρ2| < r one
has eh(z) = Ch(z) ·y(z)h, where Ch(z) = (C(z)+o(1))y(z)h and C(z) is analytic at ρ2. Furthermore,
K1 < |Ch(z)| < K2 and arg(eh(z)) ≤ c0(h + 1)r.

With Lemma 5 in hand, we can obtain a first set of properties of eh(z) for z ∈ S(r0, θ0) and h not too
large (depending on z). These will be used to derive an upper bound on |eN | and prove that eN satisfies
the criterion of Lemma 3. In the following, we only need to consider z ∈ S(r0, θ0), with =(z) ≥ 0, since
we clearly have eh(z̄) = eh(z), where z̄ denotes the complex conjugate of z.

Lemma 6 (The initial behavior of |eh|) Suppose =(z) ≥ 0. Let N(z) = barccos(1/4)/ arg y(z)c.
There exist constants r0 > 0 and θ0 > 0 such that if z lies in the sandclock S(r0, θ0) then, for
1 ≤ h ≤ N(z):

|y|h+1

2(h + 1)
< |eh(z)| < 1/2 and 0 ≤ arg(eh+1) ≤ (h + 1) arg(y). (14)

Furthermore, one has |eh(z)| < 1/5, for 6 ≤ h ≤ N(z).
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Proof: (i) We first focus on the proof of the upper bound in (14). Consider the recurrence relation (6)
rewritten as

eh+1/y = y · eh/y

(
1− eh/y

2

)
+

eh(z2)
2y

. (15)

The behavior of the first term in (15) is dictated by properties of g : w 7→ w(1 − w/2). A very similar
function appeared in the analysis of Flajolet and Odlyzko [10, Lemma 3]. By a simple modification of the
proof in [10], we have{

|w| ≤ 1
0 ≤ arg w ≤ arccos(1/4) ⇒

{
|g(w)| ≤ |w|

0 ≤ arg g(w) ≤ arg w.
(16)

We use (16) and an induction argument to prove that, for 0 ≤ h ≤ N(z),

|eh| ≤ 1/2 and arg eh ≤ (h + 1) arg y. (17)

Write z = ρ + reit. Then, by Lemma 1, we have e0/y = 1− z/y so that |e0/y| ≤ 1− ρ + O(
√

r) and
0 ≤ arg(e0/y) = O(

√
r). In particular, for r small enough, (17) holds for h = 0.

Suppose now that (17) holds for all integers up to h. To determine whether it also holds for h + 1,
we have to take the second term in the right-hand side of (15) into account. For r0 small enough and
z ∈ S(r0, π/8), Lemma 5 ensures that this second term cannot contribute any increase in the argument of
eh/y. Therefore,

arg(eh+1/y) = arg(eh/y) + arg(y) ≤ (h + 2) arg(y).

Furthermore, since y is analytic in D, we have |ei| = |ei(ρ)|+ O(
√

r) as r → 0, for all fixed i ≥ 0. So
for r0 small enough and z ∈ S(r0, π/8), |eh+1(z)| ≤ 1/2 if h ≤ 5. Now, if h ≥ 5,

|eh+1/y| ≤ |e6(z)/y|+ 1
2
·

h+1∑
i=6

|ei(z2)/y| ≤ |e6(ρ)|+ O(
√

r) +
1
2
·
∞∑

i=6

(ρ + 3r)i,

since ei(z2) ≤ (|z|2/ρ)i by Lemma 2. One can then verify that, for h ≥ 6, |eh+1/y| < 1/5, for r0 small
enough. So, a fortiori, among the conditions in (16), the one on the modulus holds as long as that on the
argument does. The latter one holds for all h ≤ N .

(ii) It remains to prove the lower bound in (14); we start with (15). For h ≤ N(z), the additional
Pólya term eh(z2) only contributes to making |eh+1| larger: for z ∈ S(r0, θ0), by Lemma 5 and the upper
bound we have just proved, the arguments of both terms are such that, for h < N(z),

|eh+1/y| ≥ |y| · |eh/y| ·
(

1− |eh/y|
2

)
.

Since x 7→ x(1 − x/2) is increasing in [0, 1], we have, for all h ≥ 0, |eh/y| ≥ fh, where the sequence
(fh)h≥0 is defined by fh+1 = |y| · fh · (1− fh/2) and f0 = |e0|/|y|. The latter recurrence relation has
been analysed by Flajolet and Odlyzko [10] in the case of simply generated trees; the bound follows. 2

It is then easy to show that, as expected, the Pólya terms are essentially negligible:

Lemma 7 There exist r0 > 0 and θ0 > 0 small enough such that, for z ∈ S(r0, θ0) and for all h ≤ N ,
one has |eh(z2)|/|eh(z)2| ≤ min

{
12 · (2ρ)h+1, 1

2

}
.
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Finally, we prove the main result of this section. The proof follows the lines of the analogous statement
[10, Proposition 4], where the iteration is “pure”, but now needs to control the effect of the Pólya terms,
using Lemma 7.

Proposition 2 (Convergence in a “sandclock” around ρ) There exist constants r0 and θ0 such that the
sequence {eh(z), h ≥ 0} converges to zero for z ∈ S(r0, θ0), where the “sandclock” S(r0, θ0) is defined
by (10).

Proof: We prove that for h = N ≡ N(z) defined in Lemma 6, eN satisfies the convergence criterion of
Lemma 3. For this purpose, we use the alternative recurrence stated in Lemma 4

yh

eh
=

1
2y

1− yh

1− y
+

1
e0
−

h−1∑
i=0

yi−1ei(z2)
2e2

i︸ ︷︷ ︸
Ah

+
h−1∑
i=1

yi−2ei

4

[
1− ei(z2)

e2
i

]2(
1− ei

2y

[
1− ei(z2)

e2
i

])−1

︸ ︷︷ ︸
Bh

(18)
and devise an asymptotic lower bound for the right-hand side. First observe that we can indeed use the
relation, since by Lemmas 6 and 7, for all i = 0, . . . , N , the denominators do not vanish.

Write 1 − y(z) = εeit. Obtaining the claim reduces to proving properties for small ε > 0 and t close
to −π/4. The following expansions are valid uniformly for t ∈ [−π/4− δ,−π/4 + δ] with 0 < δ < π/4
when ε → 0:{

1− |y| = ε cos t + O(ε2),
arg(y) = −ε sin t + O(ε2), and

{
N(z) = −ϕ/(ε sin t) + O(1)

1− |y|N = 1− eϕ·cot t + O(ε), (19)

where ϕ := arccos(1/4). The first term of the right-hand side of (18) brings the main contribution:∣∣∣∣ 1
2y

1− yN

1− y

∣∣∣∣ = 1
2|y|

· |1− yN |
|1− y|

≥ 1
2

1− |y|N

|1− y|
=

1− eϕ·cot t

2ε
+ O(1),

as ε → 0. On the other hand, we have |AN | = O(1) for, by Lemma 7, the summands decrease geo-
metrically. The second error term BN appearing in (18) can be bounded by splitting the sum into two at
h = K. Let ν > 0. By Lemma 7, there is K ≥ 6 large enough that for all i satisfying K ≤ i ≤ N ,
|ei(z2)|/|ei(z)2| ≤ ν. Then, by Lemma 6, and for ε small enough, we have

|BN | ≤
K/2

4
· (3/2)2

1− 1/2
2−2ε · (3/2)

+
1/5
4

· (1 + ν)2

1− 1/5
2−2ε (1 + ν)

1− |y|N

1− |y|
<

K

2
+

3
50

· 1− |y|N

1− |y|
, (20)

upon choosing ν = 1/100. It follows that

|yN |
|eN |

≥ 1− eϕ·cot t

ε

(
1
2
− 3

50 cos t

)
+ O(1) >

2
5
· 1− eϕ·cot t

ε
, (21)

for all z ∈ D such that ε < ε0 and |t− π/4| < δ0, as soon as both ε0 and δ0 are small enough.
We can now focus on the criterion for convergence (Lemma 3) and the conditions in (11) for m = N .

From (19) and (21) we have for ε > 0 small enough,

|y|+ |eN |
2

≤ 1− ε ·
(

cos t− 5
4
· eϕ·cot t

1− eϕ·cot t

)
+ O(ε2).
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A simple verification shows that the coefficient of ε above is at most−1/4 for all t close enough to−π/4.
Thus, for all ε > 0 small enough,

|eN | ≤
5
2
· ε · eϕ cot t

1− eϕ·cot t
=: α and |y|+ |eN |

2
< 1− ε

4
=: β. (22)

Also, by (19), we have (|z|2/ρ)N = o(α(1 − β)). Hence the criterion for convergence of Lemma 3 is
satisfied with the values of α and β specified in (22), as soon as ε is small enough. 2

5 Main approximation
In this section, we estimate eh(z) around the singularity.

Proposition 3 (Main estimate for eh in a sandclock around ρ) There exist r1, θ1 and K, K ′ such that
for all z ∈ S(r1, θ1) and all h ≥ 1,

yh

eh
=

1
2
· 1− yh

1− y
+ Rh(z) where |Rh(z)| ≤ K min

{
log

1
1− |y|

, log(1 + h)
}

.

Furthermore, |Rh −Rh+1| ≤ K ′/h.

The main idea is to obtain a better control on the error term using bounds extending those obtained in
Section 4 for h > N , knowing the a priori information that eh converges. The proof of Proposition 3 also
requires the bounds to be uniform in the distance to the singularity |z − ρ| and in h.

Lemma 8 (Uniform lower bound for |eh|) For any δ ∈ (0, 1), there exist constants r1, θ1 > 0 such that
if z ∈ S(r1, θ1), then for all h ≥ 0, one has |eh(z)| ≥ (1− δ)h+2/(2(h + 1)).

Proof: Let δ ∈ (0, 1). For r small enough, we have |y| > 1− δ/2 provided r := |z − ρ| < r0. Then, by
Lemma 6, the desired lower bound is clear for h ≤ N . So we now assume that h > N . The recurrence
relation (6) implies that

|eh+1| ≥ |y||eh|
(

1− |eh|
2|y|

)
− |eh(z2)|

2
.

By Lemma 3, |eh| is decreasing for h ≥ N , when the criterion is satisfied. So, for z ∈ S(r0, θ0) as in
Proposition 2, we have

|eh+1| ≥ |y|
(

1− |eN |
2|y|

)
· |eh| −

|eh(z2)|
2

.

However, we have set N in such a way that |y| + |eN |/2 < 1, and by Lemma 2, we have |eh+1| ≥
(1 − δ)|eh| − (ρ + r)h. Routine verifications then show, for r small enough, that 1 − δ > ρ + r, the
negative contribution decreases fast enough so that |eh| remains bounded from below as desired. 2

We can now proceed with the proof of a uniform upper bound for |eh| when z ∈ S(r1, θ1).

Lemma 9 (Uniform upper bound for |eh(z)| around ρ) There exist constants c1, r1 and θ1 such that,
for any h ≥ 1, and z ∈ S(r1, θ1), we have |eh(z)| ≤ c1/h.
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Proof: Write 1 − y = εeit for some ε > 0 and t. It suffices to prove that the result holds for all such z
provided ε is small enough and t close enough to −π/4. We use again (18). Then, we have,∣∣∣∣ 1

2y

1− yh

1− y

∣∣∣∣ = 1
2|y|

· |1− yh|
|1− y|

≥ 1− |y|h

2|1− y|
=

1− |y|h

2ε
. (23)

The error terms Ah and Bh are bounded as in the proof of Proposition 2 and we obtain, for all h ≥ 0 and
ε > 0 small enough, |Ah| ≤ K1 and |Bh| ≤ K2 + 1

5 (1 − |y|h)/(1 − |y|)(ii). One then sees that, for all
h ≥ 0, and all t close enough to −π/4,

|yh|
|eh|

≥ 1− |y|h

ε

(
1
2
− 1

5 cos t

)
−K3 >

1− |y|h

5ε
−K3 and |eh| ≤ 10ε

|y|h

1− |y|h
. (24)

For h not too large, |y|h decreases at least linearly in h, and one can show that |y|h ≤ 1− δhε, for some
small δ > 0 and all 0 ≤ h ≤ N as long as |t + π/4| is small enough. Equation (24) then implies that
|eh| ≤ K4/h, for all h ≤ N .

On the other hand, by (19), if h ≥ N then the factor |y|h, ensures the desired decreasing behaviour.
Indeed, for ε small enough and t close enough to−π/4, one has |y| < (1−ε/2) and |eh| ≤ K5ε(1−ε/2)h.
The maximum of the right-hand side above is obtained for ε = 2/(h + 1), which implies that |eh| ≤
2K5/(h + 1) for h ≥ N. This completes the proof. 2

Proof of Proposition 3: The proof consists in using Lemma 9 above to bound the error terms in (18) for
z ∈ S(r2, θ2), with r2 = min{r0, r1} and θ2 = min{θ0, θ1}. For some constants c2 and c3, we have

|Ah|+ |Bh| ≤
11

(1− 2ρ)3
+ c2

(
1 +

h∑
i=1

|yi|
i

)
≤ c3 min

{
log
(

1
1− |y|

)
, 1 + log h

}
.

Also, since Ah and Bh are partial sums, Rh −Rh+1 only contains one summand, which is easily seen to
be O(1/h) uniformly by Lemmas 8 and 9. 2

6 Asymptotic analysis and distribution estimates
The basis of our estimates relative to the distribution of height is Proposition 3 in conjunction with
Cauchy’s coefficient formula (8) where γ is a contour comprised of the arc of an outer circle of radius
larger than ρ (and interior to the cardioid-shaped region, where |y| < 1) and a set of two connecting
segments passing through the singularity ρ (Figure 1). In addition, it proves useful, in order to garantee
well-defined determinations of square roots, to think of the two segments as in fact joined by an infinites-
imal arc of a circle that passes to the left of the singularity ρ. The strategy just described belongs to the
general orbit of singularity analysis methods.

Theorem 1 (Limit law of height) The height Hn of a random tree taken uniformly from Yn admits a
limiting theta distribution: for any fixed x > 0, there holds

lim
n→∞

P(Hn ≥ x
√

n) =
∑
k≥1

(k2λ2x2 − 2)e−k2λ2x2/4, λ :=
√

2ρ + 2ρ2y′(ρ2).

(ii) In what follows, we use generically K, K1, . . . to denote positive absolute constants, not necessarily of the same value at different
occurrences.



Height of random binary unlabelled trees 131

Proof: The integration contour in Cauchy’s formula (8) is γ = γ1 ∪ γ2 ∪ γ3. There, γ1 is the segment
lying in the half-plane =(z) ≥ 0, γ2 is the complex-conjugate image of γ1, and γ3 is the outer circular
arc. For the radius of the latter circle, we adopt rn = ρ(1 + log2 n/n). We assume that γ3 lies in a legal
tube (granted by Proposition 1) and that γ1 and γ2 are in an overlapping sandclock such that Proposition 3
applies. We set, for some θ1 > 0 : γ1 = γ̄2 =

{
ρ
(
1 + xeiπ/2+iθ1

)
: x ∈ [0, δn]

}
, with δn such that the

rectilinear portions γ1 and γ2 connect with the outer circle γ3. So, we have δn ∼ log2 n/(n sin θ1).
Outer circular arc (γ3). By Proposition 1, we have eh(z) → 0 uniformly on γ3 as h → ∞. In

particular, all moduli |eh(z)| are bounded by an absolute constant K. On the other hand the Cauchy
kernel z−n is small on the outer part of the contour, so that∣∣∣∣∫

γ3

eh(z)
dz

zn+1

∣∣∣∣ < K1ρ
−n exp

(
− log2 n

)
. (25)

This contribution is thus exponentially small compared to yn.
Rectilinear parts (γ1, γ2). Our objective is to replace eh by the simpler quantity

êh(z) ≡ êh := 2
1− y

1− yh
yh, (26)

as suggested by Proposition 3. Along γ1, γ2, the singular expansion of y(z) applies, so that 1 − y =
O((log n)/n1/2) and the error term Rh(z) is O(log n). There results that (1 − yh)/(1 − y) is always at
least as large in modulus as K2

√
n/ log n (by a study of the variation of |1 − e−hτ |/|1 − e−τ |), and we

have
yh

eh
=

yh

êh

(
1 + O

(
log2 n√

n

))
. (27)

It proves convenient to define the following approximation for eh,n:

E(h, n) :=
1

2iπ

∫
γ1∪γ2

êh
dz

zn+1
, (28)

and effect the change of variables z = ρ
(
1− t

n

)
. The quantity t then varies from −inδne−iθ1 , loops to

the right of the origin, then moves away to inδneiθ1 . With the singular expansion of y(z) as in (2), we
have on γ1, γ2,

z−n = ρ−net
(
1 + O

(
log4 n/n

))
, y(z) = 1− λ

√
t/n + O (t/n) . (29)

and, with h = x
√

n and |t| ≤ K2 log2 n:

yh = exp(−λx
√

t) ·
(
1 + O

(
log2 n/

√
n
))

. (30)

We also find(iii), for the range of values of t corresponding to γ1, γ2:

1− yh

1− y
=
[√

n · 1− exp(−λx
√

t)
λ
√

t

](
1 + O

(
log? n√

n

))
. (31)

(iii) The expression log? n represents an unspecified positive power of log n.
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The approximations (29), (30), and (31) motivate considering, as an approximation of E(h, n) in (28),
the contour integral

J(X) :=
1

2iπ

∫
L

exp(−X
√

t)
1− exp(−X

√
t)

√
tet dt =

1
2iπ

∑
k≥1

∫
L

exp(−kX
√

t)
√

tet dt, (32)

where L is the image of γ1 ∪γ2 in the change of variable. We can now make J(X) explicit. Each integral
on the right side can be evaluated by the change of variables w = i

√
t, t = −w2. By completing the

square and flattening the image contour L onto the real line, we obtain:

J(X) =
1

4
√

π

∑
k≥1

e−k2X2/4(k2X2 − 2). (33)

Error management. It can be checked that the replacements: eh 7→ êh, y 7→ 1 − λ
√

t/n, and yh 7→
exp(−λx

√
t) only entail error terms of order ρ−nn−2 log? n, which implies, for h = x

√
n, for h = x

√
n:

eh,n = 2λρ−nn−3/2J(λx) + O
(
ρ−n log? n/n2

)
.

The explicit form of J(X) in (33) and the asymptotic form of yn (Lemma 1), yield the statement. 2

Theorem 2 (Local limit law of height) The height Hn of a random tree taken uniformly from Yn admits
a local limiting distribution: for x in a compact set of R>0 and h = x

√
n an integer, there holds

P(Hn = h) ∼ 1
2x
√

n

∑
k≥1

(k4λ4x4 − 6k2λ2x2)e−k2λ2x2/4.

Proof: Proceeding like in the proof of Theorem 1, we can justify approximating the number of trees of
height exactly h by the integral

1
2iπ

∫
γ

(êh − êh+1)
dz

zn+1
, where êh − êh+1 = 2yh (1− y)2

(1− yh)(1− yh+1)
.

The approximations (30) and (31) then motivate consideration of the integral

J1(X) :=
1

2iπ

∫
L

exp(−X
√

t)
(1− exp(−X

√
t))2

tet dt,

and one finds (with the auxiliary estimate Rh −Rh+1 = O((log? n)/
√

n) provided by Proposition 3):

yn,h − yn,h+1 = 2λ2ρ−nn−2J1(λx) + O

(
ρ−n log? n

n5/2

)
.

On the other hand, differentiation under the integral sign yields J1(X) = −J ′(X), which proves the
statement. 2

Revisiting the proof of Theorems 1 and 2 shows that one can allow x to become either small or large,
albeit to a limited extent. Indeed, it can be checked, for instance, that allowing x to get as large as
O(
√

log n) only introduces extra powers of log n in error estimates. However, such extensions are limited
by the fact that the main theta term eventually becomes smaller than the error term. We state (compare
with [12, Th. 1.1]):
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Theorem 3 (Moderate deviations) There exist constants A,B, C > 0 such that for h = x
√

n with
A/
√

log n ≤ x ≤ A
√

log n and n large enough, there holds∣∣∣∣∣∣P(Hn ≥ x
√

n)−
∑
k≥1

(k2λ2x2 − 2)e−k2λ2x2/4

∣∣∣∣∣∣ ≤ C

nB
. (34)

In particular, if x →∞ in such a way that x ≤ A
√

log n, then, uniformly,

P(Hn ≥ x
√

n) ∼ λ2x2e−λ2x2/4.

Similar estimates hold for the local law.

These estimates can be supplemented by (very) large deviation estimates in the style of [12, Th.1.4]: it
suffices to make use of the fact that eh is bounded from above by a large power and optimize on r ∈ (0, ρ)
the saddle-point bound

eh,n ≤
eh(r)
rn

, 0 < r ≤ ρ.

The probability of a linearly height is then exponentially small:

Theorem 4 (Very large deviations) There exists a continuous increasing function I(ξ) satisfying I(ξ) >
0 for 0 < ξ ≤ 1, such that, given any fixed δ > 0, one has for h = ξn, and δ < ξ < 1− δ,

P(Hn ≥ ξn) ≤ Kn3/2e−nI(ξ),

where K depends on δ.

Finally, the approximation of eh by êh in (26) is good enough to grant us access to moments (cf also [10]).
The problem reduces to estimating generating functions of the form

Mr(z) = 2(1− y)2
∑
h≥1

hr yh

(1− yh)2
,

which are accessible to the Mellin transform technology [13], upon setting y = e−τ .

Theorem 5 (Moments of height) Let r ≥ 1. The rth moment of the height Hn satisfies

E [Hn] ∼ 2
λ

√
πn and E[Hr

n] ∼ r(r − 1)ζ(r)Γ(r/2)
(

2
λ

)r

nr/2, r ≥ 2.
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