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On square permutations
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Severini and Mansour introducagduare polygonsas graphical representationssgfuare permutationghat is, per-
mutations such that all entries are records (left or rightiimmum or maximum), and they obtained a nice formula
for their number. In this paper we give a recursive consioador this class of permutations, that allows to simplify
the derivation of their formula and to enumerate the subatdsquare permutations with a simple record polygon.
We also show that the generating function of these pernauimitvith respect to the number of records of each type is
algebraic, answering a question of Wilf in a particular case

1 Introduction

A permutationr = ;... 7, of sizen can be naturally represented @A by the setG, of points at
coordinategi, 7;). In order to construct a grid polygon ¢k, we classify its elements as follows: a point
(1,7) € G is respectively said to be

aleft-right minimum(Irmin) if, for any (i', 5') € G, <i = j' > j;

aright-left minimum(rimin) if, for any (i', ) € G, >i = j' > j;

aleft-right maximun(irmax) if, for any (i, j') € G, i’ <i = j' < j;

aright-left maximur(rimax) if, forany (¢/, j') € G, i > i = j' < j;
e aninterior pointotherwise.

Observe that these definitions agree with usual definitibfrenin, rimin, Irmax, rimax on permutations.
The sequences of Irmin, rimin, Irmax and rimax are respelticalledleft lower path right lower
path, left upper pathandright upper pathof G.. Therecord polygorof = is the grid polygon with the

concatenation of its left lower path, right lower path, tigbper path and left upper path as contour.

A square permutatiois a permutation without interior point, andsguare polygoiis the record poly-
gon of such a permutation. Square polygons were defined iiglatlgl different but equivalent way by
Severini and Mansour [6]. They are also related to the pesmintoes considered by Boldt al. [2] and
Rinaldiet al. [4].

An extremal poinis a point on the border of the bounding box of the polygordescending double
pointis a non extremal point that is simultaneously Irmin and ®im&n ascending double poirg a non
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extremal point that is simultaneously Irmax and rimin. Tehpsints are respectively the common points
between the left lower and right upper paths, and betweefethapper and right lower paths. Points
of the polygon that are neither extremal nor double are Siaighle A simple square polygois a square
polygon without double points. Observe that ascending Bopdiints of a record polygon are fixed points
of the associated permutation, and descending doublespaietfixed points of the reverse permutation;
moreover, a non simple square polygon has either descendiagcending double points, but not both,
and these two classes of square polygons are mapped ondermther by vertical symmetry.

From now on we denote indifferently by= w75 . . . 7, a square permutation or the associated square
polygon, and bySP,, the class of square permutations (or square polygons)®f.siz

In Section 2 we present a construction for square permuatatb sizen. Our construction allows us
in Section 2.3 to recover easily the formula obtained by 8evend Mansour, but also to control various
parameters in Section 3: we show in particular that theiegaimg function according to the parameters
Irmin, Irmax, rimin and rimax is algebraic. This answerstia special case of square permutations a ques-
tion of Wilf during an invited communication at CRM [7], askj for a way yo keep track simultaneously
of these four types of records in permutations. Finally amstruction allows us to calculate the number
of square permutations with a simple record polygon.

2 A construction for the class of square polygons

2.1 The construction

We now define some operations to produce unambiguously atiggations in class$P,,; out of per-
mutations in clas$P,,.

In order to define these operations, we introduce the foligwiotations. Given a square permutation
w, let j. denote the least integer such tiat, 7, ) is a simple point belonging to the left lower path of
m. Observe that this point is well defined except for permategiwithout simple points in their left lower
path, in which case we defing as the absissa of its extremal point with ordinat&hen the points of left
lower path with absissa strictly between 1 gidform a (possibly empty) sequence&fr) descending

L1

(a) An ordinary one, (b) a square one, with as- (c) and a simple square one.
cending double points

Fig. 1. Some examples of record polygons.
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double points which we call thieitial double pointsof 7. Let also define the following interval:

H(r) = {[[”j* Fhml e L ith cardinality  A(r) = |H(x)| = {”1 ~ e My AL

[[1,7'('1]] if 7Tj7r:17 ™1 if ﬂ-jw:]-'

We are now in position to define the construction. For pry H (), let ¥ (7) andv¥4 () be respec-
tively the permutations = o1 ...0,41 andr = 71 ... 7,41 defined by:

P if m=1 TL = 02
Om =  Tm—1 if m>2andm,_1 <p and by Ty = 01
Tm_1+1 ifm>2andm,_1>p Tm = O If m > 3.

=T

(@) A permutation, (b) 9% (), (c) andv’(m).

Fig. 2. Example of thaj-construction

This construction is illustrated in Figure 2. In other teymiven a polygonr and an integep in the
interval H (7), we produce a polygoti] (r) by inflating the polygon between lings— 1 andp to insert
a point in a new first column, and a polygdfi(w) by exchanging the first two columns of the previous
polygon. Finally letd(w) be the set of al¥?(r) for i in {1,2} andp in H(p). This set has clearly
cardinality2h(r).

Theorem 1 All elements o5P,,; are produced in a unique manner by applying the opera#tdo all
objects inSP,,:
SPni1 = || d(x).

TESP,

Proof: Omitted. O

Observe thatt forms an ECO operator in the sense of [1], that s, it givesyaaf@roducing each square
permutation of sizex + 1 from exactly one square permutation of sizeand this recursive construction
translates into equations for the generating function absg permutations, which we exploit in the newt
sections. Figure 3 shows the first levels of the generatemdssociated with the previous construction.
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Fig. 3: The first levels of the generating tree of square permutstion

2.2 The succession rule

Now we want to describe the way the constructibaffects the parametér This leads us to distinguish
four different sub-classed,,, B, C,, andD,, of SP,,, depending on the values of andr;_:

T =N T <n
7. = 1| A(Fig. 4())| B (Fig. 4(b))

™

mi. > 1| C (Fig. 4(c)) | D (Fig. 4(d))

Figure 4 shows the shapes of generic square permutatiomcmseibclass, with a non-empty initial
sequence of double points, but of course this sequence may py.

For each one of the previous classes, we want to describevtihation of the parametes (the label
in ECO-terminology) by giving a so-callegsliccession rulewhich describes the types and labels of the
polygons generated out of a polygon with a given type and.labe
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J
(a) ClassA, (b) classs,
1.0 41
T =N T Py
n—1 |
|
nle b — =N
: h=m —7
I p
i>1F———
T i
I
L1 ve
j 1 J
(c) classC, (d) and clas9.

Fig. 4: The four subclasses of square polygons (cases of a non-énitiai/sequence of double points).

2.2.1 Class A, illustrated in Figure 5

For any polygonr € A, h(w) = n and the construction consists in adding a point with ordipat
1 < p < n, in the first or second column of the polygon. In the picturedigtinguish the cases in which
the added point has ordingte=1,1 < p < norp=n.

The first operation}; produces only polygons of type B sinces; = p < n + 1, and1 remains the
ordinate of the first simple point in the left lower pathcof{in other wordss; = 1); for these polygons,
h(o) = p.

The second operatioft, produces polygons of type A for p = 1 andp = n, since in these cases
71 = n + 1, andl remains the ordinate of the first simple point in the left lopath ofr. Hence for both
of these casel(r) = n + 1. Forl < p < n, the second operation produces a polygarf typeC since
79 = pis the first simple point in the left lower path of For these casdg ) =n + 1 — p.

Then this can be summarized by a succession rule as follows:
(na — (+1D% Ws2)s..- (M5 (2)c@)c-..(n—1)c
meaning that a polygon of typé and labeln produces:

¢ 2 polygons of typed with labelsn + 1,
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— 01 — N ¢
- 01 =D
p
p
G’]:]. —O'j:1 L d —O'j:]. &
(a) 91 () € B, with label1, (b) 97 () € B, with labelp, (c) 97 (w) € B, with labeln,
-~ n+1 |: n+1 -~ n+1
T =P | — —
p
p
L 7, =1 & L =1 Y
(d) 91(m) € A, with labeln + 1, (e) 95 () € C, with labeln + 1 — p, (f) 95 (7) € A, with labeln + 1.

Fig. 5: Construction for polygons of clasg (with shape as in Fig. 4(a)), in the three cages 1,1 < p < n and
p=n.

e 1 polygons of type3 with respective labels, 2, .. ., n,

e n — 2 polygons of type with respective label8, 3, ..., n — 1.

2.2.2 Class B, illustrated in Figure 6

Let r € B,,; observe that(w) = 7. In Figure 6 we distinguish the cage= 1 and the generic case
1<p<k.

The first operation?; produces polygons of type B sinces; # n + 1, and1 remains the ordinate of
the first simple point in the left lower path. For these polygh(c) = p.

The second operation produces foe= 1 a polygonr of type B sincer; # n + 1, and1 remains the
ordinate of the first simple point in the left lower path. Fhistpolygonh(r) = h(w) + 1. The other
polygons have typ® sincer; # n + 1 andr, = p > 1 is the ordinate of the first simple point in the left
lower path. Hencé(7) = h(w) + 1 — p for these polygons.

Therefore we have the following succession rule for thigcas

(h)B — (1)5(2)3...(h+1)3 (1)D(2)D...(h—1)p.
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01 =D¢
4
p
op =1 g; = 1 A4
(a) 91 () € B, with label1, (b) 97 (m) € B, with labelp,
- Ti e L ¢
=m +1 I:: m +1
T =P |
4
p
L 7,=1 e L
(c) ¥i(m) € B, with labelh(r) + 1, (d) 98 (m) € B, with labelh(7) + 1 — p.

Fig. 6: The construction for polygons of tygg(with shape as in Fig. 4(b)), in the two cages: 1 andl < p < h(w).

2.2.3 Class C, illustrated in Figure 7

Letw € C,,; observe that < h(w) < n — 1. We distinguish the cage= n and the cases — h(7) <
p<n.

The first operatior?; produces in any case a polygerf typeD, sinces; # n + 1 andn; # 1is the
ordinate of the first simple point in the left lower path. Heriior these polygons(c) = p — n + h(n).

The second operatioft, produces only polygons of type Indeed when, = p = n thenw; # 1
remains the ordinate of the first simple point in the left lopwath, andi(7) = h(w) + 1 for this polygon.
On the contrary, whem, = p < n thenp is the ordinate of the first simple point of the left lower patid
h(r) = n+ 1 — p for these polygons. Therefore we have the following sudoassile for this case:

(h)c — (2)c(3)c - (h + 1)c (1)9(2)9 e (h)p.
2.2.4 Class D, illustrated in Figure 8

Letn € D,. In this caser; < n andz; > 1, hencep may not be equal td norn.

The first operation; produces polygons of type D sinces; = p < n and the ordinate of the first
simple point of the lower path is the same asfoHenceh(o) = p — m1 + h(n).
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(@) 97 (w) € D, with label h(r), (b) 97 (m) € D, with labelp — n + h(r),
T1 T1
=n-+1 I: =n-+1
TP =p |
p p
T =Tj o — — — —
(c) 9% (m) € C, with labelh(r) + 1, (d) 95 () € C, with labeln — p.

Fig. 7: The construction for polygons of tyge(with shape as in Fig. 4(c)), in the two cages- n andn — h(w) <
p<n.

The second operatiaf, also produces polygonsof typeD sincer; = m +1 #n+ 1andp # 1is
the ordinate of the first simple point in the left lower patrerideh(r) = 71 + 1 — p for these polygons.

Therefore we have the following succession rule for thigcas

Finally, we remark that the permutatian= 1 belongs to the clasd and that the image of this permu-
tation by the application? consists of the permutatiar2, belonging to the clas8, and the permutation
21, still belonging to the clasgl. Then the complete succession rule is the following:
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T1 [
[:Fl-l-l

Ti=p k

(@) 97 (mr) € D, with labelp — 71 + h(r), (b) ¥5(m) € C, with labelr; + 1 — p.

Fig. 8: The construction for polygons of ty (with shape as in Fig. 4(d)), and — h(r) < p < m1.

1

(1)a

Ma — 2a (s

(Wa — (h+1)% (1)s2)5-..(M)s (2)cB)c...(h—1)c forh>2,
(g — Ws@2)s...(h+1)s (p2)p...(h—1)p forh > 1,
(h)e — (2)ecB)e---(h+1)c (H)p2)p...(h)p forh > 1,
(h)p — (1)%(2)%...(R)% forh > 1.

2.3 The generating function

Proposition 1 Let 7 and G be classes of objects with size functioand labelk. Then any succession
rule of the form(k)x — (1)g...(k)g gives in the equation for the generating functi6iz,y) =
> e 2"y of the clasg a contribution

Ty
1—y

[F(xv 1) - F(Iay)] s

whereF(z,y) = Y, » 2"(9y*°) is the generating function for the clags
More generally, arul€k)r — (1 +p)g ... (k + q)g for fixed integer® andg gives a contribution
ry

Ty " F(z,1) — y'F(z,y)] .

Proof: The contribution to the generating functiGhof objects generated at leveH 1 from the objects
at leveln by the rule(k)x — (1)g ... (k)g is:

k(o) .
Z Z xn(o)-&—lyz’

oeF i=1
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since each objectwith sizen (o) and labek (o) produces:(o) objects with size1(0) + 1 and respective

labell, ..., k(o). Then this contribution rewrites as
_ o k(o)+1
S anern i — T (F(a,1) - Fla,y).
oeF 1= Yy 1= Yy

a

According to this proposition we can easily translate thevimus succession rule in the following
system of functional equations for the generating functiofthe classedl, 5, C andD. Let

Aly) =Y 2"y,
TEA

and define similarhyB(y), C(y), andD(y) (we write explicitly only the variables that need to be sitbst
tuted); then:

Aly) = 2%y* + 2ayA(y),
Bly) = @' + 7= [AW) = A)] + 7= 1BO) —yB),
Cly) = 7= pA) —y ' AW)] + 72 [C1) = C)),
_ vy -1 ry xy
Dly) = 7= [BO) ~y7'B)] + 7= [C() = Cly)l + 277 D) = D(y)].

From the previous system, we see thHl) is rational. Replacingi(1) and A(y) by their explicit
expressions in the equation f®(y) leads to an equation for the unknowBsy) and B(1) that can be
solved by the kernel method, that is, a method for solvingdimequations with one catalitic variable [5,
Chapter VII1.8.1]. Doing the same thing f6X(y) and D(y) we obtain the following expressions:

2

x
All) = ———
1) = =5
_ x(r—1) x
B{) 1-2z * V1I—4z’
z? x
1 =
¢i) 1—2.%4_\/1—4x7
D(1) = 1— 7z + 1422 — 423 n z(1 — 3z)
(1 —-2z)(1 — 4x)? (1 —4x)3/2°

Now the generating function for square polygons accordirtpé number of points is given by
A1)+ B(1)+C(1) + D(1),
and this yields the result obtained by Severini and Manso([6]i
Theorem 2 (Severini-Mansour) The generating function of square polygons according tsthe is
22%(1 — 3z) 4a3
(1-42)2 (1-42)3
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3 Refined enumeration

3.1 New parameters

Square polygons consist in four paths, or faces, and we wattitly the number of points in each of these
paths: in other terms we consider the numbers of Irmin, rlitlnmax and rimax in square permutations.
Equivalently, we consider the number of edges in each fatbgsrthan the number of points.

As we look for a formula for the number of simple square peatiahs, we also want to keep track of
double points. Recall that polygons may have either desegioid ascending double points, but not both,
and that these two classes are mapped one onto the othertlpavgymmetry. The parameters we are
interested in are therefore the following: febe a square polygon and

e «(m) be the number of edges in the left lower pathmoiminus the number of descending double
points.

e (3(m) be the number of edges in the left upper path of

e ~(m) be the number of edges in the right upper path ofinus the number of descending double
points.

e 0(m) be the number of edges in the right lower pathrof

As before, let/(w) denote the number of initial double points(r) = k(7) + £(r), andm(r) be the
number of non initial double points: we need to refine the etarh of our first succession rule by
distinguishing the contribution of double points in theiaetregion.

3.2 The refined succession rule

The recursive construction given in Section 2 allows tadielthese new parameters. Consider for instance
the case of a square polyganof type A; as seen before; = 9¥1(n) is a square polygon of typd;

but this can be specified: has no initial double points, its left lower path is reducedhe segment
[(1,n + 1),(2,1)], its other double points are (the translated0f) ones, and initial double points af
become single points afs right upper path. This gives the following contributianthe succession rule,
according to the refined multilabgt, ¢, m, a, 3, v, 0):

(k,0,m,,0,7,0)a — (k+£+1,0,m,1,0,v+£,0+1)a4.
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Reconsidering all the special cases leads to the follonamgpdete succession rule (in sequences of mul-
tilabels of the same shape, bold symbols are used to emphEmiameters that fluctuate):

(1,0,0,0,0,0,0).4

(1,0,0,0,0,0,0) 4 — (1,0,0,0,1,0,1)5 (2,0,0,1,0,1,0)4
(ka‘gamvavoa'%é)A - (k+é+1,07m71,07’7+£,6+1)A (kvé""lumalaou/ya&)fl
(1,0,m,0,1,v+£,6 + 1)g

(2705m517137+€75)3 (k,(),m,l,l,”y—l—ﬁ,(s)g
(k717m713177+£_156)3 (ka‘eamalvla'y’d)lg
(2,00m+£—1,20,v+1,6)¢c ... (£+1,0,m,2,0,v+£,)c
£+2,0,m,2,0,7+£,0)¢c ... +k—1,0,m,2,0,v+¢,5)c
(kagamaaaﬁv’%(;)lf - 7Oam3076+17€+775+1)3 (k+€+1307m713537+€75+1)3

,00m, 1,84+ 1,v+4£,0) ... (k,0,m, 1,84+ 1,v+£,0)5
17m7136+17£_1+775)3 (k,f,m,l,ﬂ—i—l,’yﬁ)g
07m+‘e7a+17ﬁ7776)'D (£+1707m7a+17ﬁ77+£75)p
+2,0,m,0¢+1,5,’7+€,5)p (£+k—1,07m,a+1,ﬁ,’7+€75)p

)
)

(1
(2
(k
(1
(£

(k,¢,m,a,0,7,0)c — (k,+1,m,,0,7,0)c

2,00m+£—1,a+1,0,v+1,0)¢c ... £+1,00m,a+1,0,v+ £ )¢
£+2,00m,a+1,0,y+2£,6)c ... (0,4 k,0,m,a+1,0,7+40)c
(1,0,m,a,1,v+6,8)p ... (k,0,m,a,1,v+£,0)p
(k,1,m,a, 1,y +£—1,0)p ... (k,£,m,a,1,v,6)p

(k,¢,m,a,3,7,0)p — (1,0,m,a,8+1,v+£4,0)p ... (k,0,m,a,8+1,v+£)p
(k,1,m,a,8+1,v+€—1,8)p ... (k,&,m,a,8+1,7,6)p
1,00m+£L,a+1,68,v,0)p ... €+1,00m,a+1,8,v+4£6)p
(£+2,0,m,04+1,6,’7+€,5)p (£+k,0,m,04+17ﬁ,’7+£,6)p

3.3 The generating function

Proposition 2 Any succession rule of type, ¢) — (1,p+q—1)g ... (p, q)g gives in the equation for
the associated generating functiiy, z) = 3 g 2"(?y?(©) 22(°) of the clasg a contribution

o

whereF (y, z) = >, .z 2"(©)y?(©)2P(%) is the generating function for the clags
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Proof: According to the rulép, ¢) — (1,p+q —1)...(p,q) we have that:

p(0) p(0)
n(0)+1,i plo)+a(0)—i _ n(0)+1 ,p(0)+4(0) y)l
DD Oy DL 2 (2
oeF i=1 oeF
(U)P(0)+1
_ Z o 0)+1 0)+q(0) z_ \z
1_4
oeF z
Thatis: the contribution to the clagsis given byz - F(z, z) — 24 F(y, z). O

Proposition 3 Any succession rule of ty@e, ¢, 7, s)x — (0,1,p+ r,8)g...(0,p+ 1,7, s + p)g gives
in the equation for the associated generating functiégfy, z) = 5= g 2" (@ yP(©) 29()y(©)15(°) of the
classgG a contribution

T

F(w, 1,w,t) — tzF(tz,1,w,t
w—tz[w (w7 7w7) Z(Z7 7w7 )]7

whereF (y, z,w,t) = 3 2™ yP(2) za()yr(0)¢s(0) is the generating function for the clags

Proof: Omitted. O

Let

Ay, 20, 0) = 3 2@yl KD ()20 (0) 7(0)9(0)
o€ A

where we only indicate variables we substitute in the riggutd side of the equations, and similarly for
B, C andD. According to the previous propositions we can easily tetaghe refined succession rule in
the following system of functional equations:
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Ay, z,u,v) = 2°2%us + xzutA(sz, z,1,1) + zyuA(y, z,1,1)

By, z,u,v) = x2zut + xzvtA(s,1,1,1) + fzuv

(zA(s,1,1,1) — A(s,2,1,1))

—Zz

jy_uz (A(s,2z,1,1) — A(y, z,1,1)) + zzvtB(s, 1,1,v) + xzutB(sz, z,1,v)
f“_”z (2B(s,1,1,v) — B(s,z,1,v)) + fy_“z (B(s, 2 1,v) — B(y, z,1,v))
C(y, z,u,v) = zziuzj (A(w,1,1,1) — A(sz,1,1,1)) + xiﬂz (2% A(2s,1,1,1) — A(zs, 2,1,1))
+2yCly, z,u, 1) + xz_?us (C(w,1,u,1) — C(sz,1,u,1))
+ lxiuz (2C(sz,1,u,1) — C(sz,2,u, 1))
D(y, z,u,v) = wxf'; (wB(w,1,u,v) — szB(sz,1,u,v)) + 1:c_uz (2°B(sz,1,u,v) — B(sz, z,u,v))
fivz (C(s,1,u,1) —C(s,2,u,1)) + :fyy (C(s,z,u,1) — C(y,z,u,1))
fizz (D(s,1,u,v) — D(s,2,u,v)) + Sfﬁyy (D(s, z,u,v) — D(y, z,u,v))
L (wD(w, 1,u,v) — szD(sz,1,u,v)) + fﬁzz (zD(sz,1,u,v) — D(sz, z,u,v))

w — sz

Theorem 3 The series4, 13, C andD are algebraic series.

Proof:

e Settingy = sz in the first equation we obtaiA(sz, z,1,1) and thenA(y, z,1,1) and A(y, z, u, v),
all are rational in the variables.

e Settingy = sz andu = 1, the terms inB(s, z, 1,v) cancel and it remains an equation between
B(sz,z,1,v)andB(s, 1,1, v) which is solved by the kernel method for variableThen we apply
the kernel method for variablg to the original equation withy = 1, to get B(y, z,1,v) and
B(s, z,1,v). Finally returning again to the original equation we @, z, u, v) which is rational
in the variables and the Catalan refinement:

1—av+at — /(1 —av+at)? — dat

Zo(I;U,t): 20t

e \We subtract to the third equation with= 1, the same equation with = 1 andy = sz, to get
an equation betwee@(y, z,u,1) andC(sz, z,u, 1). Settingy = w andz = 1 in this equation
givesC(w,1,u,1) in terms ofC(s,1,u,1). Setting instead = 1 andy = sz in this equation
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givesC(sz,1,u, 1) in terms ofC(s, 1, u, 1). With these equation the original equation is rewritten
in terms ofC(sz, z,u, 1) andC(s, 1,u, 1) and the kernel method for variabteallows to express
these series, and thély, z, u, v) as rational functions of the variables and

1—zu+azs— /(1 —2u+xs)? —das
2xs '

Zo(x;u,8) =

e We subtract to the fourth equation, the same equationyvithsz, to get an equation (*) between
D(y, z,u,v), D(sz,z,u,v) andD(s, z,u,v). Applying the kernel method for the variabjethen
gives D(s, z,u, v) in terms of D(sz, z, u, v), which allows to rewrite (*) as an equation between
D(y, z,u,v) and D(sz, z,u,v) in which we can set = 1 (the terms of the formli—z have can-
celled). We then obtai(s, 1, u,v), D(y,1,u,v) and D(y, z,u,v) as rational functions of the
variablesZy(z; v, t) andZy(x; u, s).

4 Counting simple square polygons

Proposition 4 The numbes,, of simple square polygons of sizés
Spn = Pn — 2(pn - Qn)v

wherep,, is the number of square polygons of sizeandq,, is the number of square polygons without
descending double points.

Proof: p, — ¢, is the number of square polygons with at least one descemitingle point, and also
by symmetry, the number of square polygons with at least soeraling double point. Since a square
polygon cannot have both ascending and descending douiblis proe result follows. )

Let P = A + B + C + D be the generating function of all polygons. Then the gemggdtinction of
dn, Y, qnx™ With respect to the size is obtained by putting= 0 andw = 0 in P to select polygons
without double points, and the other variables to forget the other parameters. This gives:

1 <x2(8 —232) 31T+ 41:))

22+z) \ (1—42)2  (1—4x)3/?

Theorem 4 The generating function of simple square polygons withaes the size is

1 <x2(4— 13z + 627) 923 )

241 (1—4z)2 (1 —4x)3/?

Conclusion

In this paper we presented a recursive construction for ldees of square permutations. This led us to
count these permutations with respect to their size, recaya result of Severini and Mansour. More-
over we obtained the algebraic generating function of sgjparmutations with respect to the number of
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records of each type (Irmin, Irmax, rlmin, rimax). It would mteresting to extend the recursive construc-
tion to the class of all permutations, that is to construabsg permutations with interior points and count
them with respect to the four types of records. Moreovetgesthe number of square polygons according
to their size is almost the same as the number of convex pahaea [3] according to the semi-perimeter,
it would be nice to find a bijection between these two claséesay to do it would be to find a recursive
construction for convex polyominoes leading to the sameesgion rule for square polygons.
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