
Fifth Colloquium on Mathematics and Computer Science DMTCS proc. AI, 2008, 269–282

Random Records and Cuttings in Split Trees:
Extended Abstract

Cecilia Holmgren1

1 DEPARTMENT OF MATHEMATICS, UPPSALA UNIVERSITY, PO Box 480, SE- 751 06 UPPSALA, SWEDEN
cecilia.holmgren@math.uu.se

We study the number of records in random split trees on n randomly labelled vertices. Equivalently the number
of random cuttings required to eliminate an arbitrary random split tree can be studied. After normalization the
distributions are shown to be asymptotically 1-stable. This work is a generalization of our earlier results for the
random binary search tree which is one specific case of split trees. Other important examples of split trees include
m-ary search trees, quadtrees, median of (2k + 1)-trees, simplex trees, tries and digital search trees.

Keywords: Random Trees

1 Introduction
1.1 Preliminaries
We study the number of records in random split trees which were introduced by Devroye [2]. This number
is equivalent (in distribution) to the number of cuts to eliminate this type of tree as shown by Janson [9].

Given a rooted tree T with n nodes, let each vertex v have a random value λv attached to it, and assume
that these values are i.i.d. with a continuous distribution. We say that the value λv is a record if it is
the smallest value in the path from the root to v. Let Xv(T) denote the (random) number of records.
Alternatively one may attach random variables to the edges and let Xe(T) denote the number of edges
with record values. Because only the order relations of the λv’s are important, the distribution of λv does
not matter, i.e. one can choose any continuous distribution for λv .

The same random variables appear when we consider cuttings of the tree T as introduced by Meir and
Moon [14] with the following definition. Make a random cut by choosing one vertex [or edge] at random.
Delete this vertex [or edge] so that the tree separates into two parts and keep only the part containing the
root. Continue recursively until the root is cut [only the root is left for the edge version]. Then the total
(random) number of cuts made is Xv(T) [or Xe(T)]. More precisely, cuttings and records give random
variables with the same distribution. The proof of this equivalence uses a natural coupling argument as
shown in [9].

In [9] the asymptotic distributions for the number of cuts (or the number of records) are found for
random trees that can be constructed as conditioned Galton–Watson trees, e.g. labelled trees and random
binary trees. There the proof relies on the fact that the method of moments could be used.

1365–8050 c© 2008 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

http://www.dmtcs.org/proceedings/
http://www.dmtcs.org/proceedings/dmAIind.html

270 Cecilia Holmgren

For the deterministic (not random) complete binary tree it is however not possible to use the method
of moments for this purpose. Therefore Janson [8] introduced another strategy, which is to approximate
Xv(T) by a sum of independent random variables derived from λv , and then apply a classical limit
theorem for triangular arrays. We recently showed that Janson’s approach could also be applied for the
random binary search tree [6] .

In this paper we consider all types of random split trees defined by Devroye [2], where the binary search
tree that we consider in [6] is one example of such trees. Some other important examples of split trees
are m-ary search trees, quadtrees, median of (2k + 1)-trees, simplex trees, tries and digital search trees.
The split trees belong to the family of the so-called log n trees, that are trees with height (maximal depth)
O(log n). These have similar properties to the deterministic complete binary tree with height blog2 nc
considered in [8]. In the complete binary tree most vertices are close to blog2 nc (the height of the tree).
In split trees on the other hand most vertices are close to the depth ∼ c lnn , where c is a constant (it is
natural to use the e-logarithm); for the binary search tree that we investigated in [6] this depth is ∼ 2 ln n
(e.g. [3]).

The (random) split trees is a large class of random trees which are recursively generated. Their formal
definition is given in the “split tree generating algorithm” below. To facilitate the penetration of this rather
complex algorithm we will first provide a brief heuristic description.

All leaf vertices have between 1 and s=4 balls.

Note that s_1=0.

.All internal vertices have s_0=2 balls

All internal vertices have s_0=0 balls.

All leaf vertices have between 1 and s=4 balls.

Note that s_1=1.

Figure 1: This figure illustrates two split trees. The left one has parameters b = 3, s = 4, s0 = 2 and s1 = 0,
whereas the right one has parameters b = 3, s = 4, s0 = 0 and s1 = 1.

A skeleton tree Tb of branch factor b is an infinite rooted tree in which each vertex has exactly b
children that are numbered 1, 2, . . . , b. A split tree is a finite subtree of a skeleton tree Tb. The split tree
is constructed recursively by distributing balls one at a time to a subset of vertices of Tb. We say that the
tree has cardinality N if N balls are distributed. There is also a so-called vertex capacity, s > 0, which
means that each node can hold at most s balls. We say that a vertex v is a leaf in a split tree if the node

Random Records and Cuttings in Split Trees 271

itself holds at least one ball but no descendants of v hold any balls. The split tree consists of the leaves
and all the ancestors to the leaves, in particular the root of Tb, but no descendant to a leaf is included. In
this way the definition of leaves in split trees is equivalent to the usual definition of leaves in trees. See
figure 1 (taken from [2]), where two examples of split trees are illustrated (the parameters s0 and s1 in the
figure are introduced in the formal “split tree generating algorithm”).

The first ball is placed in the root of Tb. A new ball is added to the tree by starting in the root, and
then let the ball fall down to lower levels in the tree until it reaches a leaf. Each vertex v of Tb is given
an independent copy of the so-called random splitting vector V = (V1, V2 . . . , Vb) of probabilities, where∑

i Vi = 1, Vi ≥ 0. The splitting vectors control the path that the ball takes until it finally reaches a
leaf; when the ball falls down one level from vertex v to one of its children, it chooses the i’th child of v
with the probability Vi i.e. the i’th component of the splitting vector associated to v. When a full leaf (i.e.
a leaf which already holds s balls) is reached by a new ball it splits. This means that some of the s + 1
balls are given to its children, leading to new leaves so that more nodes will be included in the tree. When
all the N balls have been distributed we end up with a split tree with a finite number of nodes which we
denote by the parameter n.

The split tree generating algorithm: The formal, comprehensive “split tree generating algorithm” is
as follows with the following introductory notations. The (random) split tree has the parameters b, N, s
and V as we described above, there are also two other parameters: s0, s1 (related to the parameter s) that
occur in the algorithm below. Let Nv denote the total number of balls that the vertices in the subtree
rooted at vertex v hold together, and Cv be the number of balls that is hold by v itself. Note that an
equivalent definition of the leaves as the one we give above is to say that a vertex v is a leaf if and only
if Cv = Nv > 0. Also note that a vertex v ∈ Tb is included in the split tree if, and only if, Nv > 0. If
Nv = 0, the vertex v is not included and it is called useless.

Below there is a description of the algorithm how the N balls are distributed over the vertices. Initially
there are no balls, i.e. Cv = 0 for each vertex v. Choose an independent copy Vv of V for every vertex
v ∈ Tb. Add balls one by one to the root by the following recursive procedure for adding a ball to the
subtree rooted at v.

(i) If v is not a leaf, choose child i with probability Vi and recursively add the ball to the subtree rooted
at child i, by the rules given in steps (i), (ii) and (iii).

(ii) If v is a leaf and Cv = Nv < s, (s is the capacity of the vertex) then add the ball to v and stop.
Thus, Cv and Nv increase by 1.

(iii) If v is a leaf and Cv = Nv = s, the ball cannot be placed at v since it is occupied by the maximal
number of balls it can hold. Then, let Nv = s+1 and Cv = s0, by placing s0 ≤ s randomly chosen
balls at v and s + 1− s0 balls to its children. This is done by first giving s1 randomly chosen balls
to each of the b children . The remaining s + 1− s0 − bs1 balls are placed by choosing a child for
each ball independently according to the probability vector Vv = (V1, V2 . . . , Vb), and then using
the algorithm described in steps (i), (ii) and (iii) to the subtree rooted at the selected child. Note
that if s0 > 0 this procedure does not need to be repeated since no child could reach the capacity s,
whereas in the case s0 = 0 this procedure may have to be repeated several times.

From (iii) it follows that the integers s0 and s1 have to satisfy the inequality

0 ≤ s0 ≤ s, 0 ≤ bs1 ≤ s + 1− s0.

272 Cecilia Holmgren

Note that every nonleaf vertex has Cv = s0 balls and every leaf has 0 < Cv ≤ s balls. See figure 1 which
shows two split trees, one with cardinality 27 and parameters (b, s, s0, s1) = (3, 4, 2, 0) and the other with
cardinality 26 and parameters (b, s, s0, s1) = (3, 4, 0, 1).

We can assume that the components Vi of the splitting vector V = (V1, V2 . . . , Vb) are identically
distributed. (If this would not be the case they can anyway be made identically distributed by using a
random permutation.) This gives (because

∑
i Vi = 1) that E(Vi) = 1

b . We use the notation TN to denote
that we have a split tree with N balls. The only parameters that are important in this work (and in general
these parameters are the important ones for most results concerning split trees) are the cardinality N , the
branch factor b and the splitting vector V; this is illustrated in Subsubsection 1.2.1. In a binary search
tree b = 2, the splitting vector V = (V1, V2) is distributed as (U, 1 − U) where U is a uniform U(0, 1)
random variable which is equal to a beta (1, 1) random variable. In fact for many important split trees the
components in the splitting vector V are beta-distributed. (The other parameters for the binary search tree
considered as a split tree are s = 1, s0 = 1 and s1 = 0.) For the binary search tree the number of balls N
is the same number as the number of vertices n; this is not true for split trees in general.

1.2 Specific Background
1.2.1 Subtrees
For a split tree where the number of balls N > s, there are s0 balls in the root and the cardinalities of
the b subtrees are distributed as (s1, . . . , s1) plus a multinomial vector (N − s0 − bs1, V1, . . . , Vb). Thus,
conditioning on the splitting vector Vσ = (V1, . . . , Vb) that belongs to the root σ, the subtrees rooted at
the children of the root have cardinalities close to NV1, . . . , NVb. This is often used in applications of
random binary search trees. In particular we used this frequently in [6]. Recall that the total number of
balls in the subtree rooted at v is denoted by Nv (which is a random variable). Conditioning on all the
splitting vectors of a tree with N balls gives that the subtree size Nv for v at distance k to the root is close
to

NW1W2 . . .Wk, (1)

where Wr, r ∈ {1, . . . , k} are i.i.d. random variables given by the splitting vectors associated with the
nodes in the unique path from vertex v to the root (this means in particular that Wr

d= Vi). We note that
(1) implies that the Nv’s are not independent for different vertices. This follows since the paths to the root
for two different vertices consist of some common vertices (at least always the root is common for all of
those paths). Thus, it also follows that Nv for vertices that are close to each other are more dependent
than for vertices whose last common ancestor is far away.

1.2.2 A strong law and a central limit law for the depth
In [2] Devroye presents a strong law and a central limit law for the depth DN of the last inserted ball in a
split tree with N balls and splitting vector V . (Most vertices in the tree are also close to this depth.)

Let DN be the depth of the last inserted ball in a random split tree with N balls and splitting vector V .
Let

µ := bE
(
V ln

1
V

)
,

σ2 := bE
(
V ln2 V

)
− µ2. (2)

Random Records and Cuttings in Split Trees 273

If µ 6= 0 and P{V = 1} = 0, then

DN

lnN

p→ µ−1,

where
p→ denotes convergence in probability, and

E(DN)
lnN

→ µ−1. (3)

From (3) it is easy to deduce that also for the average depth D
′

N , i.e. the sum of all depths of the N balls
divided by N , we have

E(D
′

N)
lnN

→ µ−1. (4)

Furthermore, if σ > 0, then

DN − (lnN)/µ√
σ2(lnN)/µ3

d→ N(0, 1), (5)

where N(0, 1) denotes the standard Normal distribution and d→ denotes convergence in distribution. See
[2, Theorem 1].

1.3 The Main Theorem
Assumption 1 For technical reasons we assume that there is an ε > 0 and a constant α that depends on
the type of split tree such that

E(n) = αN +O
(
N1−ε

)
, (6)

and

Var(n) = O
(
N2−2ε

)
;

recall that N is the number of balls and n is the number of nodes.

Assumption 1 has previously been shown to hold for example m-ary search trees [13].

Assumption 2 The total path length of a tree T is the sum of all depths of the vertices in T (distances
to the root). Since the split tree TN is a random tree the total path length is a random variable which we
denote Υ(TN). In analogy with [15] we assume that the first moment of the total path length is of the
form

E(Υ(TN)) = µ−1αN lnN + ζαN + o(N), (7)

where α is the constant that occurs in Assumption 1 above and ζ is also a constant that depends on the
split tree.

274 Cecilia Holmgren

Note that the first asymptotic term in Assumption 2 follows immediately from (4) and (6) above. It is
not obvious that the second asymptotic term is of the form ζαN . Examples of split trees that have been
proved to have an expansion of the total path length as in (7) are binary search trees (e.g. [10]), random
m-ary search trees [12], quad trees [15] and the random median of a (2k + 1)-tree [16]. However, the
assumption in (7) is not necessary for our aim to prove that the distribution of Xv(TN) [or Xe(TN)] after
normalization is asymptotically 1-stable. If the second asymptotic term in (7) is not of the form ζαN , the
normalization of Xv(TN) [or Xe(TN)] is slightly different from the one in (8).

Theorem 1.1 Suppose that N →∞ and Assumptions 1 and 2 hold. Then(
Xv(TN)− αN

µ−1 lnN
− αN ln lnN

µ−1 ln2 N

) / αN

µ−2 ln2 N

d→ −W, (8)

where W has an infinitely divisible distribution with characteristic function

E
(
eitW

)
= exp

(
− µ−1

2
π|t|+ it(C)− i|t|µ−1 ln |t|

)
, (9)

where µ is the constant in (2) and α is the constant in Assumption 1. The same result holds for Xe(TN).

Remark 1.1 In the proof of (8) we get

E
(
eitW

)
= exp

(
it

(
C + µ−1(γ − 1)

)
+

∫ ∞

0

(eitx − 1− itx1[x < 1])dν(x)
)

, (10)

where C is the constant in (9), γ is the Euler constant and the Lévy measure ν is supported on (0,∞) and
has density

dν

dx
=

µ−1

x2
.

Recall that the Lévy measure ν gives that W is a weakly 1-stable distribution, see e.g. [5, Section XVII.3].
(The constant C can be expressed as

C = −µ−1 lnµ−1 + 2µ−1 − µ−2σ2 − µ−1γ − σ2 − µ2

2µ2
+ ζ,

where µ and σ2 are the constants in (2) and ζ is the constant in Assumption 2.) We can simplify the
expression in (10) to get (9) above.

Remark 1.2 We note in analogy with [8] and [6] that most records occur close to the depth where most
vertices are, i.e. ∼ µ−1 lnN for split trees. Also in analogy with [8] and [6], from Lemma 2.4 and the
proof of Theorem 2.1 it follows that most of the random fluctuations of Xv(TN) can be explained by the
values at depths close to ln lnN .

Remark 1.3 Let h(v) be the height of v (also called the depth of v) i.e. distance to the root. For deter-
ministic rooted trees (see [8]) E(Xv(T))=

∑
v

1
h(v)+1 and E(Xe(T))=

∑
v 6=σ

1
h(v) , where σ is the root.

For random trees E(Xv(T)) = E
(∑

v
1

h(v)+1

)
and E(Xe(T))=E

(∑
v 6=σ

1
h(v)

)
. Thus, as we noted for

the specific case of the binary search tree [6, Remark 1.3] also for all other split trees

E(Xe(TN))−E(Xv(TN)) = E
(∑

v 6=σ

1
h(v)(h(v) + 1)

)
− 1 ∼ C1

N

log2 N
,

Random Records and Cuttings in Split Trees 275

for some constant C1 > 0, while there is no similar difference in the limit distribution; see Theorem 1.1
above. As we noted in [6] (for the binary search tree), this behaviour suggests that it is impossible to use
the method of moments to find the asymptotic distribution of Xv(TN) [or Xe(TN)] for split trees as one
could do for the Galton–Watson trees. Instead we generalize the proofs in [6] by using similar methods
that Janson used for the complete binary tree [8].

Remark 1.4 Most likely the method that is used here should also work for other trees of logarithmic
height and thus the limiting distribution for these trees should also be infinitely divisible and probably
also weakly stable. This turns out to be the case for the random recursive tree (that is a logarithmic tree)
where the limiting distribution of Xe(T) was recently found to be weakly stable, see [4, Theorem 1.1]
and [7, Theorem 1.1]. However, the methods used for the recursive tree in [4, 7] differ completely from
our methods. The advantage of studying split trees compared to the whole class of log-n trees is that there
is a common definition that describes all split trees and this is the reason why we only consider these trees
in the present study.

2 The Method of Proof of the Main Theorem
The structure of the proof of the Main Theorem follows from the lemmas and Theorem 2.1 which are
presented below. However, in this extended abstract we have excluded the details of the proofs (which are
quite technical).

2.1 Notations
Most of our notations are similar to the ones that are used in [6], where the binary search tree is considered.

We use the standard notations logb for the b-logarithm (recall that a split tree with parameter b is a b-ary
tree) and ln for the e-logarithm. In the proof of Theorem 1.1 we treat the case Xv(TN) in detail and then
indicate why the same result also holds for Xe(TN). From now on, since it is clear that we consider the
vertex model we just write X(TN).

First recall from Subsection 1.1 that the λv’s are i.i.d. random values associated to the vertices in TN

and that λv is a record if it is the smallest value in the path from v to the root.
Let X(TN)y be X(TN)− 1 conditioned on the root label λσ = y. Recall that we denote the total path

length (the sum of all depths or equivalently the sum of the distances to the root) for all nodes in TN by
Υ(TN).

We say that, Yn = op(an) if an is a positive number and Yn is a random variable such that Yn/an
p→ 0

as n →∞. We say that, Yn = OLp(an) if an is a positive number and Yn is a random variable such that
(E(Yn

p))
1
p ≤ Kan for some constant K.

In the sequel we write T instead of TN . For a vertex v ∈ T , we let Tv be the subtree of T rooted at v.
Recall that Nv is the number of balls in Tv . We denote the number of nodes in Tv by nv . We can without
loss of generality assume that the labels λv have an exponential distribution Exp(1). As mentioned in
Subsection 1.1 this does not affect the distribution of X(TN).

Recall from Remark 1.3 that h(v) is the height of v (also called the depth of v) i.e. distance to the root.
Let L := bβ logb lnNc for some constant β. (Below we choose β > 1

− logb(EV 2
i)−1

.) Let Λvi be the

minimum of λv along the path P (vi) = σ, . . . , vi from the root σ of T to vi, 1 ≤ i ≤ bL, where vi are the
vertices at height L. Thus, the definition of Λvi and the assumption λv ∈ Exp(1) give Λvi ∈ Exp(1

L+1).
For simplicity we write Ti := Tvi , Ni := Nvi , ni := nvi and Λi := Λvi .

276 Cecilia Holmgren

We denote hi(v) := h(v)− L. This is the height in the subtree Ti, i ∈ {i, . . . , bL} of a vertex v ∈ Ti

i.e. the distance from v to the root vi of Ti.
In Lemma 2.1 and Lemma 2.2 we use the notation X(Ti)Λi which we can think of as X(Ti) − 1

conditioned on the root label λvi = Λi.
The conditional expected value of a random variable Z given the number of balls Ni of Ti is denoted

ENi(Z) := E(Z | Ni).
We denote ξv := Nvµ−1 ln N

N · e−λvµ−1 ln N that is used in the later part of the proof when we consider
triangular arrays.

Finally we use the notation ΩL for the σ-field generated by {Nv, h(v) ≤ L}.

2.2 Some Lemmas
One of the main ideas of the Main Theorem (that is used frequently in the proofs of the first two lemmas
below) is that most vertices in a split tree TN are close to the level µ−1 lnN and those vertices that are
not can be ignored since they are few enough. Recall that there is a central limit theorem for the depth of
nodes in (5) so that “most” nodes lie at µ−1 lnN + O

(√
lnN

)
. We say a vertex v in a split tree TN is

”good” if

µ−1 lnN − ln0.6 N ≤ h(v) ≤ µ−1 lnN + ln0.6 N,

and bad otherwise. In particular a vertex v in the subtree Ti is ”good” if

µ−1 lnNi − ln0.6 Ni ≤ hi(v) ≤ µ−1 lnNi + ln0.6 Ni; (11)

recall that hi(v) is the distance from v to the root vi of the subtree Ti.
For the specific case of the binary search tree that we investigated in [6] there are detailed results for

the profile of the nodes in [1] that imply that the bad nodes are bounded by a small error term. For split
trees in general there are no results of this type, instead we use large deviations to show that the number
of bad nodes in a split tree with N balls is bounded by a small enough error term. Thus, we only have to
consider the good vertices.

Recall that L = bβ logb lnNc, and Λi is the minimum of λv in the path from the root σ of T to vi at
height L. Also recall that Ni is the number of balls and ni is the number of nodes in the subtree Ti rooted
at vi.

Lemma 2.1 For all subtrees Ti rooted at vi with h(vi) = L, conditioned on Ni,

E(X(Ti)Λi | Ti,Λi) =
ni

µ−1 lnNi
(1− e−(µ−1 ln Ni)Λi)− Υ(Ti)− µ−1ni lnNi

µ−2 ln2 Ni

+

∑
good v∈Ti

(hi(v)− µ−1 lnNi)2

µ−3 ln3 Ni

+OL1

(Ni

ln2.2 Ni

)
,

where Υ(Ti) is the total path length of the subtree Ti.

Lemma 2.2 For all vertices vi with h(vi) = L, conditioned on Ni,

ENi

(
Var(X(Ti)Λi | Ti,Λi)

)
= O

(N2
i

ln3 Ni

)
.

Random Records and Cuttings in Split Trees 277

The estimate in Lemma 2.2 is used in the proof of the following result.

Lemma 2.3 In a split tree with N balls let vi, 1 ≤ i ≤ bL, be the vertices at height L = bβ logb lnNc
choosing β > 1

− logb E(V 2
i)−1

. Then

X(TN) =
bL∑
i=1

E(X(Ti)Λi
| Ti,Λi) + op

(N

ln2 N

)
.

We show by using Chebyshev’s inequality that

bL∑
i=1

∑
good v∈Ti

(hi(v)− µ−1 lnNi)2

µ−3 ln3 Ni

=
σ2n

ln2 N
+ op

(N

ln2 N

)
. (12)

We apply Lemma 2.1, Lemma 2.3 and (12), (and use the Markov inequality) to show that for β >
1

− logb EVi
2−1

(recall this is the constant in L that appears in Lemma 2.3),

X(TN) =
bL∑
i=1

2ni

µ−1 lnNi
−

bL∑
i=1

Υ(Ti)
µ−2ln2 Ni

− 1
µ−1 lnN

bL∑
i=1

nie
−(µ−1 ln N)Λi +

σ2n

ln2 N
+op

(N

ln2 N

)
.

(13)

Lemma 2.4 Choosing L = bβ logb lnNc for some constant β gives,

bL∑
i=1

nie
−(µ−1 ln N)Λi =

∑
h(v)≤L

nve−(µ−1 ln N)λv + op

(N

ln2 N

)
.

Thus, choosing β > 1
− logb EVi

2−1
from (13)

X(Tn) =
bL∑
i=1

2ni

µ−1 lnNi
−

bL∑
i=1

Υ(Ti)
µ−2ln2 Ni

− 1
µ−1 lnN

∑
h(v)≤L

nve−(µ−1 ln N)λv +
σ2n

ln2 N
+ op

(N

ln2 N

)
. (14)

We can simplify the expression of X(TN) in (14) to (15) below. For simplicity we also change the
notation ni, 1 ≤ i ≤ bL, to nv, h(v) = L and similarly for Ni. Thus, from (14) choosing the constant
β > 1

− logb E(V 2
i)−1

,

X(TN) =
∑

h(v)=L

nv

µ−1lnNv
− 1

µ−1 lnN

∑
h(v)≤L

nve−(µ−1 ln N)λv +
n(µ−2σ2 − ζ)

µ−2 ln2 N
+ op

(N

ln2 N

)
;

(15)

recall that ζ is the constant in Assumption 2.

278 Cecilia Holmgren

2.3 The Main Theorem 1.1 is implied by Theorem 2.1
As in [8] and [6] the proof of Theorem 1.1 will be completed by a classical theorem for convergence of
sums of triangular null arrays to infinitely divisible distributions, see e.g. [11, Theorem 15.28]. First we
recall the definition of ξv := Nvµ−1 ln N

N · e−λvµ−1 ln N above. Because of (15) and the notation of ξv we
get,

µ−2 ln2 N

αN

(
X(TN)− αN

µ−1 lnN
− αN ln lnN

µ−1 ln2 N

)
= −

∑
h(v)≤L

ξv +
µ−2 ln2 N

αN

∑
h(v)=L

αNv

µ−1 lnNv
− µ−1 ln lnN − µ−1 lnN + µ−2σ2 − ζ + op(1).

(16)

Since the Nv’s in the sums in (16) are not independent (as we explained in Sub-subsection 1.2.1), the ξv’s
are not independent and thus {ξv , h(v) ≤ L} is not a triangular array. For the sake of independence
we condition on the Nv’s in the sums in (16) and show that(16) converges in distribution to −W , where
W has an infinitely divisible distribution, that is not depending on the Nv’s we conditioned on. Then it
follows in the same way as we show for the specific case of the binary search tree in [6] that the normalized
X(TN) in (16) also unconditioned converges in distribution to −W .

The next theorem implies Theorem 1.1 above. Recall that the σ-field generated by {Nv, h(v) ≤ L} is
denoted ΩL .

Theorem 2.1 Suppose that N → ∞ and choose any constant c > 0 . Conditioning on the σ-field ΩL

defined above (where L = bβ logb lnNc, β ≥ 1
− logb E(V 2

i)−1
), the following hold

(i) sup
v

P
(
ξv > x

∣∣ΩL

)
→ 0 for every x > 0,

(ii)
∑

h(v)≤L

P
(
ξv > x

∣∣ΩL

) p→ ν(x,∞) =
µ−1

x
for every x > 0,

(iii)
∑

h(v)≤L

E
(
ξv1[ξv ≤ c]

∣∣ΩL

)
− µ−2 ln2 N

αN

∑
h(v)=L

αNv

µ−1 lnNv

+ µ−1 ln lnN + µ−1 lnN − µ−2σ2 + ζ
p→ −µ−1 lnµ−1 + µ−1 − µ−2σ2 − σ2 − µ2

2µ2
+ ζ + µ−1 ln c,

(iv)
∑

h(v)≤L

Var
(
ξv1[ξv ≤ c]

∣∣ΩL

) p→ µ−1c.

We show how this theorem will imply Theorem 1.1 above. Let

D =
µ−2 ln2 N

αN

∑
h(v)=L

αNv

µ−1 lnNv
− µ−1 ln lnN − µ−1 lnN + µ−2σ2 − ζ.

We apply [11, Theorem 15.28] to
∑

h(v)≤L ξv +
∑N

i=1 ξ
′

i conditioned on ΩL with ξ
′

i = −D
N deterministic.

Note that D
N → 0, thus because of (i), {ξv, h(v) ≤ L}

⋃
{ξ′i , i ∈ {1, . . . , N}} conditioned on ΩL is a

Random Records and Cuttings in Split Trees 279

triangular null array. From (ii) in Theorem 2.1 we have dν
dx = µ−1

x2 , hence∫ 1

c

xdν(x) =
∫ 1

c

µ−1

x
dx = −µ−1 ln c and

∫ c

0

x2dν(x) =
∫ c

0

µ−1dx = µ−1c.

Thus, the right hand sides of (iii) and (iv) are b−
∫ 1

c
xdν(x) and

∫ c

0
x2dν(x) respectively, where b is the

constant b = −µ−1 lnµ−1 + µ−1 − µ−2σ2 − σ2−µ2

2µ2 + ζ.
The convergence in Theorem 2.1 is in probability, while [11, Theorem 15.28] requires usual conver-

gence. However, if the convergence instead was a.s. in Theorem 2.1, then it would have been easy to
see from this theorem that conditionally on ΩL, the conditions of [11, Theorem 15.28] are fulfilled for∑

h(v)≤L ξv +
∑N

i=1 ξ
′

i . Thus, assuming a.s. convergence in Theorem 2.1 instead of convergence in prob-
ability, [11, Theorem 15.28] implies that conditioned on ΩL (and let N →∞)

∑
h(v)≤L

ξv +
N∑

i=1

ξ
′

i
d→ W, (17)

where W has an infinitely divisible distribution (in particular a weakly 1-stable distribution in this case)
with characteristic function

E
(
eitW

)
= exp

(
it(b) +

∫ ∞

0

(eitx − 1− itx1[x < 1])dν(x)
)

;

this is (10) in Remark 1.1 (since b = C + µ−1(γ − 1)) which can be simplified to (9) in Theorem
1.1. It follows from (17) that conditioning on ΩL has no influence on the distributional convergence of∑

h(v)≤L ξv +
∑N

i=1 ξ
′

i (unconditioned), since for any continuous bounded function g : < → <,

E
(

g
(∑

h(v)≤L

ξv +
N∑

i=1

ξ
′

i

)∣∣∣ΩL

)
N→∞−→ E

(
g(W)

)
.

Thus, taking expectation by dominated convergence

E
(

g
(∑

h(v)≤L

ξv +
N∑

i=1

ξ
′

i

))
N→∞−→ E

(
g(W)

)
.

This shows that also unconditioned
∑

h(v)≤L ξv +
∑N

i=1 ξ
′

i
d→ W . Thus, unconditioned (16) d→ −W .

It remains to show that convergence in probability which is the type of convergence in Theorem 2.1
actually is sufficient to get Theorem 1.1 from this theorem. In [6] we proved this fact for the binary search
tree in two ways one by using subsequences and the other by using Skorohod’s coupling theorem, see
e.g. [11, Theorem 3.30]. By analogy these proofs also work for general split trees. Thus, the proof of
Theorem 1.1 for Xv(T) is completed. Now it follows easily that the result also holds for Xe(T). One way
to see this is to consider T̂ as the tree T with the root deleted. Then there is a natural 1-1 correspondence
between edges of T and vertices of T̂ and this correspondence also preserves the record (and cutting)
operations. Since it is very unlikely that the root value would decide if values at high levels are records
or not it follows that asymptotically Xe(T) and Xv(T) have the same distribution. Thus, the proof of
Theorem 1.1 is completed.

280 Cecilia Holmgren

2.4 The Method of Proof of Theorem 2.1
This proof is the most technical part of this work (including many lengthy calculations). The idea of the
proof of Theorem 2.1 is as for the binary search tree [6, Theorem 2.1] to use the well-known Chebyshev
inequality for proving (ii), (iii) and (iv); (i) is very easy to prove.(Recall that Chebyshev’s inequality is
a useful tool for proving that a random variable is sharply concentrated about its mean value.)

The important observation is that the random variables in (ii), (iii) and (iv) in Theorem 2.1 only
depend on the (random) subtree sizes {Nv, h(v) ≤ L} since we can express

∑
h(v)≤L

P
(
ξv > x

∣∣ΩL

)
= (1 + o(1))

L∑
k=1

∑
h(v)=k

1
m

ln+
mNv

Nx
,

∑
h(v)≤L

E
(
ξv1[ξv ≤ c]

∣∣ΩL

)
=

∑
h(v)≤L

mNv

N(m + 1)
e−

m+1
m ln+(mNv

Nc),

∑
h(v)≤L

Var
(
ξv1[ξv ≤ c]

∣∣ΩL

)
=

∑
h(v)≤L

m2Nv
2

2mN2
e−

2m+1
m ln+(mNv

Nc) + o(1).

As we briefly explained in (1) in Sub-subsection 1.2.1 the subtree size Nv for v at height k, is close to
NW1W2 . . .Wk, where Wr, r ∈ {1, . . . k} are independent random variables distributed as the compo-
nents Vi in the splitting vector V . Now let Yk := −

∑k
r=1 lnWr and note that NW1W2 . . .Wk = Ne−Yk .

Recall that in a binary search tree, the splitting vector V = (V1, V2) is distributed as (U, 1−U) where U is
a uniform U(0, 1) random variable. For this specific case of split tree we frequently used in [6, Theorem
2.1] that the sum Yk, (where Wr, r ∈ {1, . . . k} in this case are i.i.d. uniform U(0, 1) random variables)
is distributed as a Γ(k, 1) random variable. For general split trees there is usually no simple distribution
function for Yk; instead we use renewal theory. We define the renewal function

U(t) =
∞∑

k=1

bkP(Yk ≤ t) =
∞∑

k=1

Fk(t), (18)

and also denote F (t) := F1(t) = bP(Wi ≤ t). For U(t) we obtain the following renewal equation

U(t) = F (t) +
∞∑

k=1

(Fk ∗ F)(t) = F (t) + (U ∗ F)(t).

The solution of this equation is given in the following lemma.

Lemma 2.5 Suppose that t →∞ then the renewal equation U(t) in (18) has the solution

U(t) = (µ−1 + o(1))et. (19)

The result in (19) is then frequently used in the proof of Theorem 2.1

Acknowledgements
I gratefully acknowledge the help and support of Professor Svante Janson, both for introducing me to this
problem area and for stimulating discussions and guidance throughout the work.

Random Records and Cuttings in Split Trees 281

References
[1] B. Chauvin, M. Drmota, and J. Jabbour Hattab, The profile of binary search trees. Ann. Applied

Probab. 11, 2001, 1042–1062.

[2] L. Devroye, Universal limit laws for depths in random trees. Siam J. Comput. Vol 28, no 2, 1998,
409–432.

[3] L. Devroye, Applications of Stein’s method in the analysis of random binary search trees. Steins
method and Applications, ed. Chen and Barbour, Institute for Mathematical Sciences Lecture Notes
Series, Vol. 5, World Scientific Press, Singapore, 2005, 247–297.

[4] M. Drmota, A. Iksanov, M. Moehle and U. Roesler, A limiting distribution for the number of cuts
needed to isolate the root of a random recursive tree. Preprint, 2006.

[5] W. Feller, An Introduction to Probability Theory and Its Applications. Volume II 2nd edition, Wiley,
New York, 1971.

[6] C. Holmgren, Random records and cuttings in binary search trees. Submitted 2007.

[7] A. Iksanov, M. Moehle, A probabilistic proof of a weak limit law for the number of cuts needed to
isolate the root of a random recursive tree. Preprint, 2006.

[8] S. Janson, Random records and cuttings in complete binary trees. Mathematics and Computer
Science III, Algorithms, Trees, Combinatorics and Probabilities (Vienna, 2004), Birkhäuser,
Basel/Switzerland, 2004, 241–253.

[9] S. Janson, Random cutting and records in deterministic and random trees. Random Struct. Alg. 29 ,
2006, 139–179.

[10] J. A. Fill and S. Janson, Quicksort asymptotics. J. Algorithms 44, 2002, 4–28.

[11] O. Kallenberg, Foundations of Modern Probability. 2nd edition, Springer Verlag, Reading, Mass.,
2002.

[12] H. Mahmoud, On the average internal path length of m-ary search trees. Acta Inform 23, 1986,
111–117.

[13] H. Mahmoud, B. Pittel, Analysis of the space of search trees under the random insertion algorithm.
J. Algorithms 10, 1989, no. 1, 52–75.

[14] A. Meir and J. W. Moon, Cutting down random trees. J. Australian Math. Soc. 11, 1970, 313–324.

[15] R. Neininger and L. Rüschendorf, On the internal pathlength of d-dimensional quad trees. Random
Structures Algorithms 15, 1999, no. 1, 25–41.

[16] U. Roesler, On the analysis of stochastic divide and conquer algorithms. Average-case analysis of
algorithms (Princeton, NJ, 1998), Algorithmica 29, 2001, no. 1-2, 238–261.

282 Cecilia Holmgren

	Introduction
	Preliminaries
	Specific Background
	Subtrees
	A strong law and a central limit law for the depth

	The Main Theorem

	The Method of Proof of the Main Theorem
	Notations
	Some Lemmas
	The Main Theorem 1.1 is implied by Theorem 2.1
	The Method of Proof of Theorem 2.1

