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Are even maps on surfaces likely to be
bipartite ?

Guillaume Chapuy

LIX, École Polytechnique, 91128 Palaiseau, France

It is well known that a planar map is bipartite if and only if all its faces have even degree (what we call an even
map). In this paper, we show that rooted even maps of positive genus g chosen uniformly at random are bipartite
with probability tending to 4−g when their size goes to infinity. Loosely speaking, we show that each of the 2g
fondamental cycles of the surface of genus g contributes a factor 1

2
to this probability.

We actually do more than that: we obtain the explicit asymptotic behaviour of the number of even maps and bipar-
tite maps of given genus with any finite set of allowed face degrees. This uses a generalisation of the Bouttier-Di
Francesco-Guitter bijection to the case of positive genus, a decomposition inspired by previous works of Marcus,
Schaeffer and the author, and some involved manipulations of generating series counting paths. A special case of our
results implies former conjectures of Gao.

Keywords: graphs on surfaces, labelled trees, algebraic series, lattice walks.

1 Introduction.
Maps are combinatorial objects which describe the embedding of a graph in a surface. The enumeration of
maps began in the sixties with the works of Tutte (for example the paper [Tut63]). By analytic techniques,
involving recursive decompositions and non trivial manipulations of power series, Tutte obtained beautiful
and simple enumerative formulas for several families of planar maps. His techniques were extended in
the late eighties by several authors to more sophisticated families of maps or to the case of maps of higher
genus. Bender and Canfield ([BC86]) obtained the asymptotic number of maps on a given orientable
surface. Gao ([Gao93]) obtained formulas for the asymptotic number of 2k-angulations on orientable
surfaces, and conjectured a formula for more general families (namely maps where the degrees of the
faces are restricted to lie in a given finite subset of 2N).

A few years later, Schaeffer ([Sch99]), following the work of Cori and Vauquelin ([CV81]), gave in
his thesis a bijection between planar maps and certain labeled trees which enables to recover the formulas
of Tutte, and explains combinatorially their remarquable simplicity. This bijection has suscited a lot of
interest in probability and physics, since it also enables to study geometrical aspects of large random
maps ([CS04, LG07, LGP, BG, Mie]). It has been generalized in two directions. First, Bouttier, Di
Francesco, and Guitter ([BDFG04]) gave a construction that generalizes Schaeffer’s bijection to the large
class of Eulerian maps, which includes for example maps with restricted face degrees, or constellations.
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Secondly, Marcus and Schaeffer ([MS]) generalized Schaeffer’s construction to the case of maps drawn on
orientable surfaces of any genus, opening the way to a bijective derivation ([CMS07]) of the asymptotic
results of Bender and Canfield.

The first purpose of this work is to unify the two generalisations of Schaeffer’s bijection: we show
that the construction of Bouttier, Di Francesco, and Guitter stays valid in any genus, and involves the
same kind of objects as developped in [MS]. Our second (and main) task is then to use this bijection to
perform the asymptotic enumeration of several families of maps of genus g, namely bipartite maps and
maps with even face degrees (recall that these two families coincide only in the planar case). Our first tool
is the reduction of the combinatorial objects inherited from the bijection to a finite number of schemes,
from which all the objects can be reconstructed by an involved arrangement of some families of paths.
The asymptotics estimates are then obtained by a precise study of the generating series of these paths,
by algebraic methods. The link between even maps and bipartite maps is made thanks to an unexpected
incursion of elementary algebraic graph theory, and the introduction of the cycle space of some minimal
maps of genus g.
Remark: this paper is a shorten version of [Cha], and a certain number of things had to be dropped. First,
in [Cha], the bijection is presented in the general case of Eulerian maps, and all the enumerative results
are proved in the general setting of m-constellations and m-hypermaps (this paper corresponds to the case
m = 2). Moreover, the size of the paper is not sufficient to contain proofs, for which we refer the reader
to [Cha].

2 Definitions and main results.
Let Sg be the torus with g-handles. A map on Sg (or map of genus g) is a proper embedding of a finite
graph G in Sg such that the maximal connected components of Sg \ G are simply connected regions.
Multiple edges an loops are allowed. The maximal simply connected components are called the faces of
the map. The degree of a face is the number of edges incident to it, counted with multiplicity.

We consider maps up to homeomorphism, i.e. we identify two maps such that there exists an orientation
preserving homeorphism that sends one to the other. In this setting, maps become purely combinatorial
objects (see [MT01] for a detailed discussion on this fact). In particular, there are only a finite number of
maps with a given number of edges, opening the way to enumeration problems.

All the families of maps considered in this article will eventually be rooted (which means that an edge
has been distinguished and oriented), pointed (when only a vertex has been distinguished), or both rooted
and pointed. In every case, the notion of oriented homeomorphism involved in the definition of a map is
adapted in order to keep trace of the pointed vertex or edge.

An even map is a map whose all faces have even degree. A bipartite map is a map whose vertices can
be coloured in two colors, such that only vertices of different colors are linked by an edge. All bipartite
maps are even maps, but the reverse implication is not true (it is, however, in the planar case). In the rest
of the paper, D ⊂ N>0 will be a finite subset of the positive integers whose maximum is at least 2. A map
with degree set 2D is a map whose all faces have a degree in 2D. Our main results are the two theorems:

Theorem 1 The number bg,D(n) of rooted bipartite maps of genus g and degree set 2D, with n edges,
satisfies:

bg,D(n) ∼ tg
gcd(D)
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when n tends to infinity along multiples of gcd(D), and where the constants βD, γD and z
(c)
D are defined

by: βD =
∑
k∈D

k
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)
[t(c)D ]k, γD =
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where t
(c)
D is the smallest positive root of:

∑
k∈D

(k− 1)
(

2k − 1
k

)
[t(c)D ]k = 1, and the constant tg is defined

in [BC86].

Theorem 2 The number cg,D(n) of rooted maps of genus g and degree set 2D, with n edges, satisfies:

cg,D(n) ∼ 22gbg,D(n)

when n tends to infinity along multiples of gcd(D).

Observe that the second theorem says that large even maps of fixed degree set are bipartite with probability
4−g + o(1). This was, to our knowledge, only known in the case of quadrangulations (see [Ben91] and
references therein). Putting Theorems 1 and 2 together gives an asymptotic formula for the number of
maps with degree set 2D, which Gao already proved when D is a singleton, and conjectured for general
D in the paper [Gao93]. All the other cases were, as far as we know, unknown.

3 Bijective decompositions.
3.1 The Bouttier, Di Francesco and Guitter construction.
We describe the Bouttier, Di Francesco and Guitter bijection on Sg , by unifying it with the construction
of [MS]. All constructions are similar to the planar case. The key point is to replace the notion of tree by
the one of map with one face (as it was already the case in [MS]).
Given a rooted and pointed map m on Sg , we procede to the following construction. First, we label each
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Figure 1: The Bouttier-Di Francesco-Guitter construction.

vertex of m by the minimum number of edges needed to reach it from the pointed vertex. Observe that
if two vertices are connected by an edge, then by the triangle inequality, their label differ at most by 1.
Then, we add a new vertex inside each face F of m, and for every edge e adjacent to F , we procede to the
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following construction (see Figure 1): if the label decreases by 1 along e when turning clockwise around
F , we add a new edge between the central vertex of F and the extremity of e of maximum label. Else, if
the label is constant along e, we add a new edge that links the central vertices of the two faces separated
by e. Moreover, we equip this edge with a flag, that remembers the label of the extremities of e. In the
third case (if the label increases along e) we do nothing.
Once we have applied the construction above to all faces and edges, we remove all the original edges of
m, and we also remove the pointed vertex. We let m̄ be the map obtained at this step. We use the root of
m to define in a unique way a root in m̄, with the convention of Figure 1. We have:

Lemma 1 m̄ is a connected map on Sg , which has only one face.

We now define what a mobile is (again, this is a copy of the planar case).

Definition 1 A g-mobile is a map of genus g, with one face, and with two types of vertices: labelled ones,
which carry integer labels, and unlabelled ones, such that:
i. each edge is adjacent to at least one unlabelled vertex. Edges linking two unlabelled vertices carry an
additional flag, which is itself labelled by an integer.
ii. around each unlabelled vertex, consider the sequence of its ajacent vertices and flags, read in counter-
clockwise order. Then a labelled vertex of label n is followed by a label ≥ n− 1 (vertex or flag), whereas
a flag of label n is followed by a label ≥ n (vertex or flag).
iii. the label carried by the root edge (flag or vertex) equals 0.

In a mobile, the effective degree of an unlabelled vertex adjacent to f flagged edges and l labelled
vertices is by definition the quantity f+2l. A mobile with degree set 2D is a mobile in which all unlabelled
vertices have an effective degree which belongs to 2D.

Observe that in the definition above, we do not ask the labels to be positive: they are elements of Z. We
let Mob(m) be the map obtained from m̄ by translating all its labels by the same integer in order that it
satifies condition iii. Then we have:

Proposition 1 The application Mob is a bijection between the set of rooted and pointed maps with n
edges and genus g, and the set of g-mobiles with n edges. This application induces a correspondance
between the faces of m and the unlabelled vertices of Mob(m)which sends the degree to the effective
degree.

Remark a: Observe that an even map is bipartite if and only if the labels by the distance of any two
adjacent vertices differ by ±1 (to see that, observe that a map is bipartite if and only if the distance from
the pointed vertex, taken modulo 2, realizes a bipartite coloration). Hence, an even map m is bipartite if
and only Mob(m) has no flagged edge: this will be of great importance in this paper.
Remark b: Only the proof that the construction is well-defined, and gives indeed a mobile, is different
from the planar case (see [Cha]). After that, to prove that Mob is a bijection, one can copy the proof of
[BDFG04].

3.2 The superchains of a mobile.
We follow the technique introduced in [CMS07], that enables to reduce the mobiles to a finite number of
objects. Let us start with a mobile t. We erase recursively all the vertices of t of degree 1, until there are no
more such vertices left. We are left with a map whose all vertices have degree at least 2. In that map, the
vertices of degree 2 are organised into maximal chains, connected together at vertices of degree at least
3. We call these chains the superchains of t. The vertices of degree ≥ 3 that are at the extremities of the
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Figure 2: (a) a mobile of genus 1; (b) the superchains are obtained by erasing recursively all the vertices of degree 1;
(c) replacing superchains by edges gives the scheme of the mobile. Each node is decorated by the elementary star of
which it was the center in the original mobile. Labels do not appear on this picture, to keep things legible: unlabelled
vertex are drawn in grey, and labelled ones in white.

superchains are the nodes of t: they can be labelled or unlabelled. This step is illustrated on Figure 2 (b).
We now need a simple observation: in a sequence of an even number of elements of {−1, 0, 1} that sum
to 0, there has to be an even number of 0’s. Consequently, if m is an even map, the unlabelled vertices
of its mobile Mob(m) are all linked to an even number of flagged edges. This implies that all the flagged
edges of of Mob(m) lie on the superchains (and not in the planar parts that are recursively removed in
the construction above ; otherwise, one of the trees forming these removed parts should contain either
an infinite sequence of distinct flagged edges, or a cycle, which is impossible). One can go further and
observe the following:

Lemma 2 The superchains of t can be of two types:
. superchains that contain no flagged edges (which we call superchains of type 0)
. superchains that contain only flagged edges (which we call superchains of type 1).

We now explain how to decompose superchains into elementary bricks. An elementary star is a star
formed by a central unlabelled vertex, joined to a certain number of labelled vertices and flags, that satisfy
condition ii of Definition 1 (see Figure 3). We consider elementary stars up to translation of the labels.
We now define what will be the building blocks of the superchains:

Definition 2 A cell of type 0 is an elementary star which carries two distinguished labelled vertices (the
in one and the out one), and has no flagged edge.
A cell of type 1 is an elementary star which carries exactly two flagged edges, one of them being distin-
guished as the in one and the other as the out one.
The increment of the cell is the difference between the labels of its out and in vertices or flags.
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Figure 3: An elementary star, and two cells type 0 and 1, and increment −3 and −1.
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Let us fix a superchain c. In the original mobile t (before we started deleting things), each unlabelled
vertex lying on c was at the center of an elementary star. We now re-draw all these stars around the
unlabelled vertices of c, as in Figure 4. If the extremities of c are unlabelled vertices, we say that the
associated stars are nodal stars of t ; observe that a nodal star necessarily belongs to several superchains.
Between the nodal stars, the superchain reduces to a sequence of cells of the same type (as in Figure 4).
The in (resp. out) vertex or flag of a superchain is the in (resp. out) vertex or flag of its first cell (resp. last
cell). Observe that that definition depends on a choice of an orientation of c, which will be precised later.
The increment of a superchain is the difference lout − lin of the labels of its in and out vertices or flags.
All those definitions are illustrated on Figure 4.

nodal star
nodal star

cells of type 1in flag, label lin = 2 out flag, label lout = 4
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Figure 4: A typical superchain of type 1.

We now explain what happens at the nodes of t. It can happen that k ≥ 3 superchains meet together at a
labelled vertex: in this case, they are all of type 0. The other case is that they meet at an unlabelled vertex,
or, speaking in terms of stars, at a nodal star ν. Each flagged edge of ν is attached to the in (or out) flag of
a superchain of type 1. Moreover, since we started with an even map, the number of such flagged edges
has to be even. This implies a very important fact: the number of superchains of type 1 meeting at a
given nodal star is always even. Here, superchains are counted with multiplicity, i.e. a superchain which
is adjacent twice to the same nodal star is counted twice.

3.3 Schemes and their typing space.
Definition 3 A scheme of genus g is a rooted map of genus g, which has only one face, and whose all
vertices have degree ≥ 3.
The typing space of a scheme is the set of applications τ : {edges of s} → {0, 1}, that satisfy the Kirchoff
law around each vertex v:

∑
e∼v τ(e) = 0 mod 2, where the sum is taken over all edges adjacent to v,

with multiplicities.
A typed scheme a pair (s, τ) formed by a scheme and an element of its typing space.

Observe that the typing space is a Z2 vector space. Actually, it coincides with the cycle space of s in
the classical sense of algebraic graph theory. Now it is classical (and easy to see by induction) that the
dimension of the cycle space of a connected graph equals its number of edges minus its number of vertices,
plus 1. Since s has one face, Euler characteristic formula precisely says that:

Proposition 2 The dimension of the typing space of a scheme of genus g is 2g.
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Let (s, τ) be a typed scheme. We say that (s, τ) is decorated if each vertex v of s is associated with an
elementary star Fv , and a “gluing” application that maps the half-edges of s adjacent to v to the labelled
vertices and flags of Fv ; this application must respect the clockwise order, and associate only edges of
type 1 with flags, and edges of type 0 with labelled vertices. In few words, a scheme is decorated once
we have chosen some elementary stars to put on its vertices, in a way which is compatible with the typing
(see Figure 2(c)). By convention, if only edges of type 0 meet at a vertex, we allow a single labelled vertex
◦ as a possible nodal star.

We now build the decorated scheme of t. We first replace each superchain by an edge: by construction,
we obtain a scheme s, which we call the scheme of t (we choose the root of s to be the edge corresponding
to the superchain that was carrying the original root of t on its right). This is illustrated in Figure 2(c).
The typed scheme of t is the pair (s, τ) where τ is the application that maps each edge to the type of
the corresponding superchain (which is a valid element of the typing space, from the remarks above).
Finally, the decorated scheme of t is the triple (s, τ, F ), where for each vertex v of s, Fv is the nodal
star corresponding to v in t ; if v corresponds to a labelled vertex in t, we just put Fv = ◦ (we are quite
unprecise here: our notation should keep track of the gluing application, which is implicit there, to keep
things lighter).

We assume that for each decorated scheme, and for each vertex v, the star Fv carries an arbitrary
labelled vertex or flag, fixed once and for all, which we call the canonical element of v. If (s, τ, F ) is the
decorated scheme of t, we let lv be the label in t of the canonical element of v. We now normalize the lv’s,
so that they form an integer interval of the form [0,M ]: precisely, we let M +1 be the number of different
lv’s, and λ be the unique increasing surjective application from {lv, v ∈ s} to [0,M ]. We say that the
quadruple (s, τ, F, λ) is the full scheme of t. To sum up, the full scheme of t contains four informations:
the combinatorial arrangement of superchains, given by s ; the types of the superchains, given by τ ; the
nodal stars that lie at the intersection of the superchains, given by F ; the relative order of the labels in t
of the canonical elements, given by λ. One can prove that for fixed g and D the number of distinct full
schemes is finite.

4 Re-constructing all mobiles from the full schemes.
In what precedes, we identified what are the building blocks of a mobile. We now compute the corre-
sponding generating series.

4.1 Some generating series.
Observe that elementary stars are in bijection with circular Motzkin walks (i.e. walks on a cycle with
steps in {−1, 0, 1}). Flagged edges correspond to steps 0, and labelled vertices to steps −1. Since all
the objects we are interested in are related to those elementary stars, and since, once they are rooted
somewhere, Motzkin walks are roughly speaking counted by binomial numbers, this will enable us to
perform the exact computation of the generating series we are looking for.

First, we let TD = TD(z) be the generating series of planar mobiles of degree set 2D by the number of

edges. One easily sees by decomposing a mobile at its root star that: TD = 1 +
∑
k∈D

(
2k − 1

k

)
(zTD)k.

We let PD(X, t) be the generating polynomial of elementary cells of type 0, where t counts the number
of labelled vertices, and X counts the increment. The subscript D stresses that we allow only stars with
effective degree in 2D. PD is therefore a polynomial in t and a Laurent polynomial in X , which is
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symmetric under the exchange X ↔ X−1. We let SD(X, t) be the generating series of sequences of cells
of type 0 by the total number of labelled vertices (counted with multiplicity) and the total increment; SD

is a formal power series in t with coefficients that are Laurent polynomials in X . We have by classical

symbolic combinatorics: SD(X, t) =
1

1− PD(X, t)
. The kernel is the polynomial 1 − PD(X, t). As a

Laurent polynomial in X , it has 2r roots, where r = max(D)− 1. r of these roots, say α1(t), . . . αr(t),
are finite at t = 0. By symmetry, the other r roots are then α−1

1 , . . . α−1
r . One of the finite roots, say

α1(t), is a positive increasing function for t ∈ [0, t
(c)
D ] ; on this interval α1 dominates in modulus all the

other αi’s. Moreover, one has α1(t
(c)
D ) = 1. We say that α1 is the principal branch.

The generating series MD,l(t) = [X l]S(X, t) of sequences of cells of type 0 of total increment l is
easily obtained by a partial fraction expansion of SD. We obtain:

Lemma 3 Let Ci(t) =

t2r
∏
j

(1− 1
αiαj

)
∏
j 6=i

(αi − αj)

−1

. Then MD,l(t) =
r∑

i=1

Ci(t)αi(t)|l|.

The substitution t← zTD(z) corresponds to attaching a (eventually trivial) planar mobile to each labelled
vertex of the sequence of cells. Hence, the series H0

D,l(z) := MD,l(zTD(z)) is the generating series
of sequences of cells of type 0, of total increment l, carrying planar mobiles attached on their labelled
vertices, by the total number of edges. We let H1

D,l(z) be the corresponding quantity for type 1: H1
D,l(z)

is the generating series of sequences of cells of type 1 and total increment l, where planar mobiles are
attached on the labelled vertices, by the total number of edges. One can prove, thanks to the close relation
between the Motzkin walks corresponding to cells of type 0 and 1:

Lemma 4 We have: H1
D,l

(
z
)

= TD(z)H0
D,l

(
z
)

4.2 Re-constructing mobiles.
Let us fix a full scheme f = (s, τ, F, λ). We say that an integer vector (lv)v∈s is compatible with λ if
normalizing it to an integer interval as we did above yields the vector λ. If we consider these vectors up
to translation, then all the vectors (lv) compatible with λ are of the form:

lv =
λ(v)∑
i=1

δi for some δ ∈ (N>0)M .

Assume that such a labelling has been fixed. To reconstruct a mobile, we have to do the inverse of what
precedes, and substitute a sequence of cells of the good type along each edge of s. Observe that, for
each edge e, the increment ∆(e) of the superchain to be substituted to e is fixed by the choice of (lv).
Precisely, if e+ and e− are the extremities of e, with the convention λ(e+) ≥ λ(e−), then we have
∆(e) = le+ − le− + aF (e), where aF (e) is a correction term that does not depends on the lv’s, and that
accounts for the fact that superchains do not necessarily begin and end at the canonical vertices. Putting
it in terms of the δi’s, we can write: ∆(e) = aF (e) + δe−+1 + . . . + δe+ = aF (e) +

∑
j Ae,jδj where for

each edge e and j ∈ [1,M ] we put Ae,j = 1e−<j≤e+ .
If we denote by eF (resp. vF ) the total number of edges (resp. labelled vertices) appearing in the

decoration F , we have to compute the following sum:
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Rf(z) := zeF (TD)vF

∑
(lv)compatible

∏
e:τ(e)=0

H0
D,∆(e)(z)

∏
e:τ(e)=1

H1
D,∆(e)(z)

= zeF (TD)vF T#edges of type 1
D

∑
δ1,...δM >0

∏
e

r∑
i=1

Ciα
|aF (e)+δe−+1+...+δe+ |
i (1)

where we noted TD, αi and Ci for TD(z), αi(zTD(z)) and Ci(zTD(z)), respectively. Observe that Rf is
not precisely the generating series of mobiles of scheme f, because we have not yet chosen a root in our
mobile. It is possible to distinguish an arbitrary edge by a derivation of the series: one obtains a rooted
mobile, whose scheme is equal to s as an unrooted map, but may have a different rooting. Precisely, if |s|
denotes the number of edges of s, each rooted mobile of scheme s can be obtained in |s| different ways as
above, which leads to:

Lemma 5 Let RD(z) be the series of all rooted mobiles of genus g and degree set 2D, and Rbip
D (z) the

series of such mobiles that carry no flagged edges. We have:

RD(z) =
zd

dz

∑
(s,λ,τ,F )

1
|s|

R(s,λ,τ,F )(z) , where the sum is taken over all the full schemes of genus g.

Moreover: Rbip
D (z) =

zd

dz

∑
(s,λ,~0,F )

1
|s|

R(s,λ,~0,F )(z) , where the sum is restricted to the full schemes of

genus g whose typing associates 0 to all edges.

It is therefore sufficient to compute the Rf’s. Now, observe that when the δi’s are large enough (say ≥
some number K), we can remove the absolute value in the exponent in Equation 1. Hence there exists a
polynomial p in the αi’s (that depends on the full scheme f and on K) such that:

Rf(z) = zeF (TD)vF T#edges of type 1
D

∑
δ1,...δM >0

∑
i∈[1,r]edges

∏
e

Cie
α
|aF (e)+

P
j Ae,jδj |

ie

= zeF (TD)vF T#edges of type 1
D

∑
i∈[1,r]edges

∏
e

Cie

p(α1, . . . , αr) +
∑

δ1,...δM >K

∏
e

α
aF (e)+

P
j Ae,jδj

ie


= zeF (TD)vF T#edges of type 1

D

∑
i∈[1,r]edges

∏
e

Cie

p(α1, . . . , αr) +
∏
e

α
aF (e)
ie

M∏
j=1

(∏
e α

Ae,j

ie

)K

1−
∏

e α
Ae,j

ie

(2)

where passing from the second to the third line is only a geometric summation. We now look for the radius
of convergence and singular behaviour of the series Rf. First, we are in a critical situation: the radius
of convergence t

(c)
D of the αi’s is exactly the value of the series zTD(z) at its radius of convergence z

(c)
D .

Hence the combinatorial exponents of the series, which are both of the half-integer type, will combine and
give birth to combinatorial exponents that are multiples of 1/4. Moreover, this critical point z

(c)
D is also the

first point where the principal branch α1 reaches the value 1, hence the first point where the denominator
of the last equation can cancel. The next lemma can be proved thanks to a study of the derivatives of the
kernel at the critical point (that can be computed combinatorially as the generating functions of certains
Motzkin walks with distinguished steps). We let δz = 1− z/z

(c)
D .



372 Guillaume Chapuy

Lemma 6 When z tends to z
(c)
D we have :

α1(zTD(z)) = 1−
23/431/2β

1/4
D

γ
1/4
D

δz1/4 + O(δz1/2) and C1(zTD(z)) =
√

3

23/4γ
3/4
D β

1/4
D

δz−1/4 + O(1).

There is a last phenomenon that could induce a singularity for Rf: the fact that two (or more) of the αi’s
collapse (if the kernel has a multiple root). First, one can show that this does not happen for z < z

(c)
D :

this would imply a growth constant for the coefficients bigger that 1/z
(c)
D , which is easily contradicted

combinatorially. Second, if it happens at z
(c)
D , it induces a divergence of the series Ci, but due to the

symmetry of the expression of Rf, this divergence compensates between conjugated roots. Precisely, one
can show that Equation 2 is dominated by the term corresponding to ie = 1 for all e. This leads to the
singular expansion of Rf at its radius of convergence:

Rf(z) = cs,λ · [z(c)
D ]eF [T (c)

D ]vF +#edges of type 1 · 3
|s|−M

2 γ
M−3|s|

4

2
3(|s|+M)

4 β
|s|+M

4

· δz−
|s|+M

4 + O(δz−
|s|+M

4 + 1
4 ) (3)

where the constant cs,λ :=
(∏

j

∑
e Ae,j

)−1

depends only on s and λ, and where T
(c)
D = TD(z(c)

D ). In
particular, the contribution to RD is dominated by the full schemes that maximises the quantity |s|+ M .
Euler characteristic formula enables to show:

Lemma 7 The maximum value of |s|+M is 10g−6. It is achieved when the scheme s has 4g−2 vertices
of degree 3, and 6g − 3 edges, and when the application λ is injective. Such a pair (s, λ) is called a
dominant pair, and the finite set of dominant pairs of genus g is denoted Pg .

At this point, we have determined the growth constant and the combinatorial exponent of mobiles of
degree set 2D. We now investigate the multiplicative factors induced by the decorations.

4.3 The multiplicative contributions of decorations.
Observe that Equation 3 has a remarquable multiplicative form: the contributions of the pair (s, λ), the
typing τ , and the decoration F are clearly separated. In particular, we will be able to perform a summation
on F .

Let us fix a triple (s, τ, λ) such that (s, λ) is dominant. Observe that the vertices of s can be of two
types: vertices that are adjacent to three edges of type 0, and vertices that are adjacent to two edges of
type 1 and one of type 0. Vertices of the first type can be decorated either by a single vertex ◦, either by
an elementary star with 3 marked labelled vertices and no flags. The corresponding generating series is:

1 +
1
2

∑
k∈D

(k − 2)(k − 1)
(

2k − 1
k

)
[z(c)

D T
(c)
D ]k =

γD

2
.

The analoguous quantity for vertices of the second type can be computed as well:

1
2

∑
k∈D

k(k − 1)
(

2k − 1
k

)
z
(c)
D

k
T

(c)
D

k−1
=

1

T
(c)
D

γD

2
.

Consequently, we have:
∑
F

[zD(c)]eF [T (c)
D ]vF =

(γD

2

)n0

(
1

T
(c)
D

γD

2

)n1

=

(
1

T
(c)
D

)n1 (γ

2

)n0+n1

,

where the sum is taken over all the decorations F compatible with (s, λ, τ), and where n0 (resp. n1)
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denotes the number of vertices of the first (resp. second) type of (s, τ). Now, the number of vertices of

the second type is clearly equal to the number of edges of type 1. Hence, the factor
(

1

T
(c)
D

)n1

simplifies

with the factor T
(c)
D

#edges of type 1
in Equation 3. Precisely, if we set Rs,λ,τ =

∑
F R(s,τ,λ,F ), then the first

term in the asymptotic expansion of Rs,λ,τ does not depend of τ . We obtain:

Lemma 8 For each (s, λ) ∈ Pg , and for each typing τ of s, one has when z tends to z
(c)
D :

Rs,λ,τ (z) = cs,λ · 3g2
13−23g

2 γ
g−1
2 β

3−5g
2 · δz

3−5g
2 + O(δz−

3−5g
2 + 1

4 )

Now, from the expression of Equation 2, Rs,λ,τ (z) is an algebraic series, and is therefore amenable to
singularity analysis, in the classical sense of [FO90]. Observe that, for combinatorial reasons, Rs,λ,τ (z)
is in fact a power series in zgcd(D). It can moreover be checked that the ej 2πi

gcd(D) z
(c)
D are its only dominant

singularities. Using Lemma 5, Proposition 1, and the classical transfer theorems of [FO90], it follows that
the number b•g,D(n) of rooted and pointed bipartite maps of genus g, degree set 2D, and n edges satifies,
when n tends to infinity along multiples of gcd(D):

b•g,D(n) ∼ Ag gcd(D)
(6g − 3)Γ

(
5g−3

2

)3g2
13−23g

2 γ
g−1
2 β

3−5g
2 · n

5g−3
2 · z(c)

D

−n

where Ag =
∑

(s,λ)∈Pg

cs,λ. Moreover, since the expression of Lemma 8 does not depend on τ , and since

from Proposition 2, each scheme has 22g valid typings, it follows from Lemma 5 again that the number
c•g,D(n) of rooted and pointed maps of degree set 2D satisfies: c•g,D(n) ∼ 22gb•g,D(n).

4.4 Our last step: an “un-pointing lemma”.
The last thing to do to prove Theorems 1 and 2 is to relate maps which are both rooted and pointed to
maps which are only rooted. First, each rooted map with v vertices corresponds to exactly v distinct
rooted and pointed maps. Second, observe that the vertices of a map correspond (except the root) to the
labelled vertices of its mobile. Now, in a mobile, a small proportion of those vertices (actually O(n−1/2))
is located on the superchains, whereas the rest is located on the “planar parts” which are attached to the
superchains. These planar parts form a forest of rooted planar mobiles. According to the famous theorem
of Drmota [Drm97] on the repartition of terminals in a context-free grammar, and due to the tree-like
structure of mobiles, the number of labelled vertices in a forest of rooted planar mobiles has linear growth
and is concentrated around its expectation when the number of edges tends to infinity. Precisely, we obtain
that the ratio between the number of edges and the number of labelled vertices in a large forest of planar
mobiles converges in probability to βD, which leads to:
Lemma 9 The numbers cg,D(n) and c•g,D(n) of rooted maps and rooted and pointed maps, with genus

g, degree set 2D, and n edges are asymptotically related by: c•g,D(n) ∼ n

βD
cg,D(n). The same holds for

bipartite maps: b•g,D(n) ∼ n

βD
bg,D(n).

This concludes the proof of Theorems 1 and 2, with tg = Ag3g27−11g

(6g−3)Γ( 5g−3
2 ) . The case D = {2} of rooted

bipartite quadrangulations (which are in bijection with general rooted maps, from a famous construction
of Tutte) shows that the constant tg is indeed the same as in [BC86], as claimed in the theorem.
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