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A Note on the Transience of Critical
Branching Random Walks on the Line

Gerold Alsmeyer and Matthias Meiners
Institut für Mathematische Statistik, Fachbereich Mathematik, Einsteinstraße 62, D-48149 Münster, Germany

Gantert and Müller (2006) proved that a critical branching random walk (BRW) on the integer lattice is transient by
analyzing this problem within the more general framework of branching Markov chains and making use of Lyapunov
functions. The main purpose of this note is to show how the same result can be derived quite elegantly and even
extended to the nonlattice case within the theory of weighted branching processes. This is done by an analysis of
certain associated random weighted location measures which, upon taking expectations, provide a useful connection
to the well established theory of ordinary random walks with i.i.d. increments. A brief discussion of the asymptotic
behavior of the left- and rightmost particles in a critical BRW as time goes to infinity is provided in the final section
by drawing on recent work by Hu and Shi (2008).

Keywords: branching random walk, critical regime, recurrence, transience, minimal and maximal position, random
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1 Introduction
Consider a cloud of particles which moves on the line as follows. Initially there is one particle sitting at
the origin which after one unit of time splits into a random number of new particles having distribution
(pj)j≥0, where p0 = 0. The daughter particles are then independently displaced relative to their mother’s
site in accordance with the same step size distribution Q, say. This process continues indefinitely, i.e., each
new born particle splits after one unit of time in accordance with (pj)j≥0, and the relative displacement
of each daughter particle with respect to its mother’s site has distribution Q and is independent of the
relative displacements of its siblings as well as of the history of the process. This model describes a
special nonextinctive BRW, the specialization being that the relative displacements of siblings (given their
total number) are i.i.d. rather than chosen from a general point process on R. Likewise, one may adopt
the viewpoint as in Gantert and Müller (2006) that any new born particle lives forever and performs a
random walk with step size distribution Q. Right before each jump it produces j − 1 daughter particles
with probability pj (j ≥ 1) which start independent random walks of the same kind at initial positions
relative to their mother’s site chosen in accordance with Q. Note that the cloud size evolves as a simple
nonextinctive Galton-Watson process (Zn)n≥0 with one ancestor and offspring distribution (pj)j≥0. A
more detailed specification of the model will be given in Section 2 after having described the main problem
to be addressed in this note.
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Suppose that Q has positive mean but also positive mass on (−∞, 0). Then all particles in the cloud are
moving towards∞ with probability one while, on the other hand, their trajectories will also have negative
excursions. Hence the ever increasing number of independently moving particles might cause bounded
neighborhoods of 0 be visited infinitely often if the cloud is growing fast enough. We are thus led to the
question whether there exists a branching threshold m∗ such that any bounded neighborhood of 0 (or any
other x ∈ R in the same irreducibility class) is recurrent, i.e., a.s. visited by infinitely many particles, if
m > m∗, while being transient, if m < m∗, where m :=

∑
j≥1 jpj is the mean offspring (including the

reproducing particle). In the case of an irreducible lattice random walk, the positive answer has been given
by Comets et al. (1998) in their analysis of the more general BRW in random environment. Moreover,
transience holds true in the boundary case m = m∗, as recently been proved by Gantert and Müller (2006)
within the more general framework of branching Markov chains where the random walk is replaced with
an arbitrary irreducible Markov chain on a countable state space, see Benjamini and Peres (1994) for
the basics and also the classification of possible regimes of such models as to their recurrence behavior.
Further results on the recurrence or transience of various generalizations of the classical BRW may be
found in Machado and Popov (2000, 2003); Machado et al. (2001); Menshikov and Volkov (1997). An
essential tool in these works is the use of Lyapunov test functions, and this constitutes the main difference
to the present note. Our main purpose is in fact to demonstrate how certain random weighted location
measures to be defined in Section 2 and their connection to renewal and fluctuation theory for classical
random walks (cf. Section 3) may be utilized as an alternative tool in order to not only reproduce the
afore-mentioned results for lattice BRWs but to provide also without much additional effort an extension
to the situation where Q is nonlattice. Our main result will be stated in Section 2 after the necessary
formal details including a definition of recurrence and transience for BRWs. The proof will be given in
Section 4. Finally, Section 5 provides some fairly sharp information on the position of the leftmost and
the rightmost particle in a critical BRW as time goes to infinity. Our theorems stated there follow without
much ado from a recent result by Hu and Shi (2008).

2 Model description and main results
Let V be the infinite Ulam-Harris tree with vertex set

⋃
n≥0 Nn where N = {1, 2, ...} denotes the set of

positive integers and N0 := {∅} by convention. Each vertex v = (v1, ..., vn) of length |v| = n, shortly
written as v1v2...vn hereafter, is uniquely connected to the root ∅ by the path ∅ → v1 → v1v2 →
... → v1v2...vn. If w = w1...wm denotes another vertex, we write vw for the concatenation of v and w,
i.e., for v1...vnw1...wm. In the present context, each v is interpreted as a (potential) particle of the n-th
generation. It is the mother of the successors vi := v1...vni, i ∈ N, and an ancestor of any vw, w ∈ V. In
places where it occurs v1...vn := ∅ is stipulated whenever n = 0.

The following weighted branching model assigns a random weight L(v) ∈ {0, 1} and a random position
S(v) in R to each node v of the tree, where L(v) = 1 means that particle v is actually alive. Let (Ω,A, P)
be a given probability space which carries i.i.d. random sequences

T (v)⊗X(v) := (Ti(v), Xi(v))i≥1 : Ω → ({0, 1} × R)N, v ∈ V.

Furthermore, (Ti(v))i≥1 and (Xi(v))i≥1 are independent as well for each v ∈ V with

P(T1(v) = ... = Tj(v) = 1, Tj+1(v) = Tj+2(v) = ... = 0) = pj
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for j ≥ 1 and X1(v), X2(v), ... being i.i.d. having common distribution Q. Put L(∅) := 1, S(∅) := 0,
and define recursively

L(vi) := L(v)Ti(v) and S(vi) := S(v) + Xi(v)

for v = v1...vn ∈ V and i ∈ N, thus

L(v) =
n∏

j=1

Tvj
(v1...vj−1) and S(v) =

n∑
j=1

Xvj
(v1...vj−1).

The total size of the n-th generation (number of particles alive at time n) is now given by

Zn :=
∑
|v|=n

L(v)

for n ≥ 0 and forms a simple Galton-Watson process with offspring distribution (pj)j≥0. Throughout this
article, we will make the standing assumption that (Zn)n≥0 is supercritical, i.e., m > 1 or, equivalently,
p1 < 1 (as p0 = 0). In order to describe the positions of all living particles at time n, we introduce the
random location measures

Πn :=
∑
|v|=n

L(v)δS(v), n ≥ 0

and call (Πn)n≥0 a BRW on R with offspring distribution (pj)j≥0 and increment distribution Q. Put also

Π :=
∑
n≥0

Πn =
∑
v∈V

L(v)δS(v)

which is the associated overall empirical occupation measure and will be called branching renewal mea-
sure of (Πn)n≥0.

Definition 2.1 A BRW (Πn)n≥0 with increment distribution Q is called d-arithmetic if Q is d-arithmetic,
i.e., if

d := sup{c > 0 : Q(cZ) = 1} > 0,

and is called nonarithmetic (0-arithmetic) otherwise.

So the lattice-span of (Πn)n≥0 is just the lattice-span d of its increment distribution Q (= 0 in the
nonarithmetic case). Notice that d = ∞ if Q = δ0. Excluding this case, we may and will assume
hereafter w.l.o.g. that d = 1 whenever d > 0. It is convenient to further define G0 := R and G1 := Z.

Since our interest lies in those BRWs that do not move in one direction only we make the standing
assumption hereafter that the increment distribution Q puts mass on (−∞, 0) as well as (0,∞), that is,

Q((−∞, 0)) ∧Q((0,∞)) > 0.

Such a Q as well as an associated BRW is called genuinely two-sided hereafter. The definitions of recur-
rence and transience for a genuinely two-sided BRW (Πn)n≥0 are preceded by the following classification
result (a zero-one law) for its branching renewal measure Π. For intervals I ⊂ R, let HI : R → [0, 1] be
the function given by

HI(t) := P(Π(t + I) < ∞), t ∈ R.

Then put H := H(−∞,0), thus H(t) = P(Π((−∞, t)) < ∞), and Hε := H(−ε,ε), thus Hε(t) =
P(Π((t− ε, t + ε)) < ∞).
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Proposition 2.2 Let (Πn)n≥0 be a genuinely two-sided, d-arithmetic BRW, d ∈ {0, 1}, with increment
distribution Q. Suppose also p0 = 0 and p1 < 1. Then either Hε ≡ 0 for all ε > 0, or Hε ≡ 1 for all
ε > 0. Similarly, either H ≡ 0 or H ≡ 1.

Remark 2.3 (a) Plainly, in the 1-arithmetic case the dichotomy for the Hε reduces to the statement that
the Π({n}), n ∈ Z, are either all a.s. finite or all a.s. infinite. Moreover, a reflection argument (replace
X(v) with −X(v) for each v ∈ V) shows that the zero-one dichotomy holds for H(0,∞) as well.

(b) If Q is concentrated on one halfline and having an atom at 0, then Proposition 2.2 may fail. For
instance, if Q(N0) = 1, p := Q({0}) ∈ (0, 1) and mp > 1, then it is easily seen that P(Π({0}) < ∞)
(= Hε(0) for ε ∈ (0, 1)) equals the extinction probability q∗ ∈ (0, 1) of the supercritical Galton-Watson
process defined as Z∗

n :=
∑

|v|=n L(v)1{S(v)=0}, n ≥ 0. The function H in this situation equals 1 on
(−∞, 0], takes values in (0, q∗] on (0,∞) and converges to 0 as t →∞.

Definition 2.4 (a) A genuinely two-sided 1-arithmetic BRW (Πn)n≥0 is called recurrent if

Π({k}) =
∑
n≥0

Πn({k}) = ∞ a.s. (1)

for some (and then all) k ∈ Z, and transient otherwise.
(b) A genuinely two-sided nonarithmetic BRW (Πn)n≥0 is called (topologically) recurrent if

Π(I) =
∑
n≥0

Πn(I) = ∞ a.s. (2)

for some (and then all) nonempty bounded open intervals I , and transient otherwise.

In order to present our main result, we now confine to the case where Q has finite positive mean µ(Q).
Defining the Laplace transform of Q

Ψ(θ) :=
∫

e−θx Q(dx)

with domain DΨ := {θ : Ψ(θ) < ∞}, we make the additional assumption that there exists a (necessarily
unique) ϑ > 0 such that∫

|x|e−ϑx Q(dx) < ∞ and Ψ′(ϑ) = −
∫

xe−ϑx Q(dx) = 0. (3)

Positivity of ϑ follows from Ψ′(0) = −µ(Q) < 0 and the convexity of Ψ on DΨ (which contains at least
[0, ϑ]). If ϑ is not an interior point of DΨ, then Ψ′(ϑ) is actually the left-hand derivative of Ψ at ϑ

Theorem 2.5 Let (Πn)n≥0 be a genuinely two-sided, d-arithmetic BRW, d ∈ {0, 1}, with increment
distribution Q. Suppose also p0 = 0, p1 < 1, µ(Q) ∈ (0,∞), and that (3) holds true. Then (Πn)n≥0 is
recurrent, if mΨ(ϑ) > 1, and transient otherwise.

In view of this result, the BRW (Πn)n≥0 is called critical, if mΨ(ϑ) = 1, subcritical, if mΨ(ϑ) < 1,
and supercritical, if mΨ(ϑ) > 1.
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3 Random weighted location measures and an associated ran-
dom walk

This section is devoted to the necessary prerequisites in order to prove our main results in the next section.
We start by defining the random weighted location measures (r.w.l.m.)

Λn := m−nΠn = m−n
∑
|v|=n

L(v)δS(v), n ≥ 0

as well as their multivariate extensions

Λ0:n := m−n
∑
|v|=n

L(v)δS(v), n ≥ 0

where
S(v) := (S0(v), S1(v), ..., Sn−1(v), Sn(v)),

with Sk(v) := S(v1...vk) if v = v1...vn and 0 ≤ k ≤ n. Since Λ0:n(Rn+1) = Λn(R) = m−nZn, n ≥ 0,
forms a positive martingale with mean one, we see that

Λn := EΛn and Λ0:n := EΛ0:n

are both probability distributions for each n. Of course, EΛn and EΛ0:n are the measures more explicitly
given by

(EΛn)(A) = EΛn(A) and (EΛ0:n)(B) = EΛ0:n(B)

for measurable A ⊂ R and B ⊂ Rn+1.
For any θ ∈ DΨ, let us further define the r.w.l.m.

Λθ
n :=

1
(mΨ(θ))n

∑
|v|=n

L(v)e−θS(v)δS(v), Λ
θ

n := EΛθ
n,

Λθ
0:n :=

1
(mΨ(θ))n

∑
|v|=n

L(v)e−θS(v)δS(v), Λ
θ

0:n := EΛθ
0:n

as well as the probability distribution

Qθ(dx) := Ψ(θ)−1e−θx Q(dx).

We point out that the Λθ
n and Λθ

0:n are the counterparts of Λn, respectively Λ0:n for the weighted branching
model based upon (T θ(v)⊗X(v))v∈V, where

T θ(v) := (Ψ(θ)−1e−θXi(v)Ti(v))i≥1.

Plainly, Λn = Λ0
n, Λ0:n = Λ0

0:n, T (v) = T 0(v) and Q = Q0.
The following two lemmata provide the connection to random walks. The first of them has been given in

various places, see Lemma 4.1 in Biggins and Kyprianou (1997), Proposition 11 in Biggins and Kyprianou
(2005), Lemma 1 in Bingham and Doney (1975), or p. 289 in Durrett and Liggett (1983).
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Lemma 3.1 For each θ ∈ DΨ, let Pθ (= P if θ = 0) be a probability measure on (Ω,A) and (Sn)n≥0 a
sequence of random variables on (Ω,A) which, under Pθ, constitutes a random walk with S0 := 0 and
increment distribution Qθ. Then

Λ
θ

0:n = Pθ((S0, ..., Sn) ∈ ·),

in particular Λ
θ

n = Q∗n
θ for all n ≥ 0.

We will also need an extension of the previous lemma to a certain class of stopping lines, called homo-
geneous stopping lines (HSL) hereafter. Let σ : RN0 → N0 ∪ {∞},

σ(s0, s1, ...) := inf{n ≥ 0 : (s0, ..., sn) ∈ Bn}

be any formal stopping rule where Bn ∈ B(Rn+1) for n ≥ 0 and inf ∅ := ∞, and let

Υn := π0:n({σ = n}),

for n ≥ 0 where π0:n denotes the projection (sk)k≥0 7→ (s0, ..., sn). For v = (v1, v2, ...) ∈ NN (viewed
as the boundary of V), we further define

σv := σ(S(v)), S(v) = (Sn(v))n≥0 := (S(∅), S(v1), S(v1v2), ...),

and then
S := {v|σv : v ∈ NN} ∩ V = {v|σv : v ∈ NN, σv < ∞},

where v|0 := ∅, v|n := v1...vn for n ∈ N, and v|∞ := v. We call S the HSL associated with
σ. It consists of all nodes v ∈ V that are obtained as stopping places when applying the same rule σ
to the random walks S(v) along all infinite paths v of the tree. Notice that S may be empty and that
S = {v : |v| = n} in the case σ ≡ n. Stopping lines, also called optional lines, have been defined in
varying generality in the literature, the most general one appearing in Jagers (1989), which also provides
the basic framework. We mention further Chauvin (1991), Kyprianou (2000), and Biggins and Kyprianou
(2004) and note that the last reference contains the definition that is closest to that of an HSL and called
very simple line there.

Lemma 3.2 Given any HSL S associated with a stopping rule σ, put σ := σ(S0, S1, ...). Then the
following assertions hold true for each θ ∈ DΨ:

Pθ((S0, ..., Sn) ∈ B, σ = n)

=
1

(mΨ(θ))n
E

( ∑
v∈S,|v|=n

L(v)e−θS(v)δS(v)(B)

)
= Λ

θ

0:n(B ∩Υn) (4)

for all n ≥ 0 and B ∈ B(Rn+1), in particular

Pθ(σ = n) =
1

(mΨ(θ))n
E

 ∑
v∈S,|v|=n

L(v)e−θS(v)

 = Λ
θ

0:n(Υn) (5)
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for each n ≥ 0 and

Pθ(σ < ∞) =
∑
n≥0

Λ
θ

0:n(Υn) = E

(∑
n≥0

Λθ
0:n(Υn)

)
. (6)

Finally, putting Zθ
S :=

∑
v∈S L(v)e−θS(v) and ZS := Z0

S =
∑

v∈S L(v),

EZθ
S = Eθ(mΨ(θ))σ1{σ<∞} and EZS = Emσ1{σ<∞} (7)

for all θ ∈ DΨ.

Proof: Noting {σ = n} = {(S0, ..., Sn) ∈ Υn} and the fact that v ∈ S, |v| = n holds iff S(v) ∈ Υn, we
infer from Lemma 3.1

Pθ((S0, ..., Sn) ∈ B, σ = n)
= Pθ((S0, ..., Sn) ∈ B ∩Υn)

= Λ
θ

n(B ∩Υn)

=
1

(mΨ(θ))n
E

( ∑
|v|=n

L(v)e−θS(v)δS(v)(B ∩Υn)

)

=
1

(mΨ(θ))n
E

( ∑
v∈S,|v|=n

L(v)e−θS(v)δS(v)(B)

)
,

which proves (4). The assertions (5) and (6) being direct consequences, let us directly turn to (7). But for
θ ∈ DΨ, we infer with the help of (5)

EZθ
S =

∑
n≥0

E

( ∑
v∈S,|v|=n

L(v)e−θS(v)

)

=
∑
n≥0

(mΨ(θ))nPθ(σ = n)

= Eθ(mΨ(θ))σ1{σ<∞}

and thus the first half of (7). For the second choose θ = 0. 2

In view of the previous result a HSL S associated with σ will be called hereafter HSL associated with
σ, where σ = σ(S0, S1, ...).

4 Proofs of Proposition 2.2 and Theorem 2.5
The following common partial order relations ≺ and � on V will be needed hereafter: Write v ≺ w if
v 6= w and v belongs to the ancestral line of w, while v � w also allows v = w. Moreover, v ≺ (�) C
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for any C ⊂ V shall mean that w 6� (6≺)v for all w ∈ C. Now we can define the pre-S random location
measure as

Π≺
S :=

∑
v≺S

L(v)δS(v)

for an arbitrary HSL S. Finally, put also

T := {v ∈ V : L(v) = 1} and Tn := {v ∈ T : |v| = n}.

The following lemma provides the key to the proof of Proposition 2.2.

Lemma 4.1 In the situation of Proposition 2.2, the function HI is constant for each nonempty open
interval I .

Proof: Note that HI(t) = Ht+I(0) for all intervals I and t ∈ R. Hence it suffices to verify that, fixing
any nonempty open I with HI(0) < 1 and any t ∈ Gd, we have HI(t) = HI(0).

Case 1. I bounded.
Since Q is genuinely two-sided, the associated random walk (Sn)n≥0 is topologically irreducible on Gd,
that is,

sup
n≥1

P(Sn ∈ (x− ε, x + ε)) > 0 (8)

for all x ∈ Gd and ε > 0. For the subsequent argument, we restrict ourselves to the nonarithmetic
case, the arithmetic one being even simpler. If I = (x, x + 4ε) for some x ∈ R and ε > 0, put
I1 := (x, x+2ε), I2 := (x+ ε, x+3ε), and I3 := (x+2ε, x+4ε). By (8), there are k1, k2, k3, such that

P(Sk1 ∈ (t, t + ε)) > 0,

P(Sk2 ∈ (t− ε, t)) > 0,

and P(Sk3 ∈ (t− 2ε, t− ε)) > 0.

Consequently, with k := k1 ∨ k2 ∨ k3,

β := inf
s∈I

P(Sn+j ∈ t + I for some 1 ≤ j ≤ k|Sn = s) > 0.

Next, since HI(0) < 1, the event {Π(I) = ∞} has positive probability 1−HI(0), and on this event the
stopping times σ0 := 0,

σi := inf{n > σi−1 + k : S(v) ∈ I for some v ∈ Tn}, i ≥ 1,

are all a.s. finite. Let vi be the leftmost (with respect to lexicographic ordering) vertex in Tσi such that
S(vi) ∈ I (i ≥ 1). Then it follows with the help of the strong Markov property that

P(Π(I) = ∞, S(vi1j) 6∈ t + I for 1 ≤ i ≤ n and 1 ≤ j ≤ k)

≤ P(σn < ∞, S(vi1j) 6∈ t + I for 1 ≤ i ≤ n and 1 ≤ j ≤ k)

=
∫

I

P(Sj 6∈ t + I for 1 ≤ j ≤ k|S0 = s)

× P(S(vn) ∈ ds, σn < ∞, S(vi1j) 6∈ t + I for 1 ≤ i ≤ n− 1 and 1 ≤ j ≤ k)
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≤ (1− β) P(σn−1 < ∞, S(vi1j) 6∈ t + I for 1 ≤ i ≤ n− 1 and 1 ≤ j ≤ k)
≤ ... ≤ (1− β)n

for all n ≥ 1, where 1j := 1...1 (j times). Consequently, if Π(I) = ∞, then

Ei :=
{
σi < ∞ and S(vi1j) ∈ t + I for some 1 ≤ j ≤ k

}
occurs a.s. for at least one i ≥ 1, that is, ν1 := inf{i ≥ 1 : Ei occurs} < ∞ a.s. on {Π(I) = ∞}.
But the previous argument can be repeated (using again the strong Markov property) for the sequence
Eν1+1, Eν1+2, ... to infer ν2 := inf{i > ν1 : Ei occurs} < ∞ a.s. on {Π(I) = ∞} and thus via
induction that indeed {Π(I) = ∞} = lim supi→∞ Ei a.s. We have thus shown that

{Π(I) = ∞} = lim sup
i→∞

Ei ⊂ {Π(t + I) = ∞} a.s.

and thereby HI(t) ≤ HI(0) < 1. By interchanging the roles of I and t + I (now possible as Ht+I(0) =
HI(t) < 1), we get the reverse inequality and thus the constancy of HI .

Case 2. I unbounded.
Then I equals either R, in which case there is nothing to prove, or (−∞, x), or (x,∞) for some x ∈ R.
But for the last two alternatives, an even simpler geometric trials arguments than above may be employed
to give the asserted result. Further details are therefore omitted. 2

Proof of Proposition 2.2: Let f(s) :=
∑

j≥0 pjs
j denote the generating function of Z1 and observe that

p0 = 0 and p1 < 1 ensure f(s) ≤ s for all s ∈ [0, 1] with equality holding iff s ∈ {0, 1}. Put

[Π]v :=
∑
w∈V

Lv(w)δS(vw)−S(v)

with Lv(w) :=
∏k

j=1 Twj (vw1...wj−1) for any w = w1...wk ∈ V, thus Lv(w) = L(vw)
L(v) if L(v) > 0.

Then the [Π]v are just copies of Π, obtained by looking at the subtree rooted at v with weights (T (vw)⊗
X(vw))w∈V. Our independence assumptions further ensure that the [Π]v for v ∈ Nn are independent.

For any nonempty interval open I , note the obvious identity

Π(t + I) = δ0(t + I) +
Z1∑
j=1

[Π]j(t− S(j) + I), t ∈ R.

By combining this with the constancy of HI (Lemma 4.1), it follows that

HI(t) = P ([Π]j(t− S(j) + I < ∞, 1 ≤ j ≤ Z1)

=
∑
n≥1

P(Z1 = n)E

(
n∏

j=1

HI(t− S(j))

)
=

∑
n≥1

P(Z1 = n)HI(t)n

= f(HI(t)) (9)
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for all t ∈ R, that is,
HI = f ◦HI . (10)

But this shows HI ≡ 0 or ≡ 1, for {s : f(s) ≥ s} = {0, 1}.
If I = (−ε, ε) for any ε > 0, we must still verify that Hη = Hε for each η ∈ (0, ε). If Hε ≡ 1,

then Hη ≡ 1 for η ∈ (0, ε) is indeed a trivial consequence of Hη ≥ Hε. If Hε ≡ 0, then 1 −Hε(0) =
P(Π((−ε, ε)) = ∞) = 1 which in turn implies 1 − Hη(t) = P(Π(t − η, t + η)) = ∞) > 0 for some
t ∈ Gd and thus excludes Hη ≡ 1. Hence, Hη ≡ 0 by another appeal to Lemma 4.1 and the proof of the
asserted dichotomy is complete. 2

We proceed with two lemmata relevant to the proof of Theorem 2.4. The first provides a link between
the behavior of H(t) = Π((−∞, t)) and the following Galton-Watson process generated by ladder lines.
Let (σn)n≥0 be the possibly terminating renewal sequence of strictly descending ladder epochs associated
with (Sn)n≥0, defined by σ0 := 0 and

σn := inf{k > σn−1 : Sk < Sσn−1}, n ≥ 1,

where as usual inf ∅ := ∞. Denote by Sn the HSL associated with σn, called ladder line, and observe that
(ZSn

)n≥0 forms a Galton-Watson process (generated by these lines), possibly in the generalized sense
that individuals have an infinite number of offspring with positive probability. If so the process is trivially
supercritical.

Lemma 4.2 In the situation of Proposition 2.2 the following statements are equivalent:

(i) H ≡ 0, i.e., Π((−∞, x)) = ∞ a.s. for all x ∈ R.

(ii) (ZSn
)n≥0 is supercritical.

Proof: If (i) holds true then Sn is a.s. nonempty and thus (ZSn
)n≥0 an a.s. nonextinctive supercritical

Galton-Watson process. Conversely, the event of nonextinction of (ZSn
)n≥0 has positive probability

under (ii), and since S(v) < 0 for infinitely many v ∈ T on this event, we infer Π((−∞, 0)) = ∞ with
positive probability which in turn implies (i) by an appeal to Proposition 2.2. 2

Our second lemma is obtained by a geometric trials argument similar to the one in the proof of Propo-
sition 2.2.

Lemma 4.3 In the situation of Proposition 2.2 suppose additionally that Q has finite positive mean. Then
the following statements are equivalent:

(i) H ≡ 0.

(ii) Hε ≡ 0 for all ε > 0.

Proof: Clearly, it suffices to show that (i) implies (ii), that is, if any interval (−∞, x) is a.s. visited
infinitely often, then we have the same for any bounded open interval I .

The following argument is given for the nonarithmetic case, but the modifications in the case d = 1 are
straightforward and thus omitted. For b ≥ 0, let τ(b) := inf{n ≥ 1 : Sn > b} and Rb = Sτ(b) − b the
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associated overshoot (the first strictly ascending ladder height for b = 0). As Q has finite mean, the same
holds true for R0 and Rb converges in distribution to R∞, say, with distribution function

P(R∞ ≤ r) =
1

ER0

∫ r

0

P(R0 > x) dx, r ≥ 0.

Consequently, we can pick some positive t and ε such that

p := inf
b≥t

P(Rb ≤ ε) > 0.

After these observations the geometric trials argument goes as follows. Assuming (i) and thus a fortiori
Π((−∞,−t)) = ∞ a.s., we can pick a (random) sequence of nodes v1, v2, ... such that S(vj) ≤ −t
for each j ≥ 1. Start with v̂1 := v1 and follow the path v1, v11, v111, ... until the first v11ν with
S(v11ν) > 0 or, equivalently, S(v11ν) − S(v1) > −S(v1), where 1n := 1...1 (n-times) should be
recalled. But our assumptions ensure that (S(v11n) − S(v1))n≥1 is independent of S(v1) and having
the same distribution as (Sn)n≥1. Consequently, by our choice of t, ε and the stopping time ν, there is a
chance of at least p that S(v11ν) ∈ (0, ε]. Now pick the first node v̂2 from v2, v3, ... of length > |v1|+ ν,
follow the path v̂2, v̂21, v̂211, ... until S(v̂21k) > 0 for the first time. Again, the interval (0, ε] is hit with
probability at least p and independent of the first trial, by the strong Markov property. Continuing this
way, the interval (0, ε] is hit once after an a.s. finite number of rounds and then indeed infinitely often,
thus showing Π((0, ε)) = ∞ a.s. But Proposition 2.2 now ensures Π((x − η, x + η)) = ∞ a.s. for all
x ∈ R and η > 0, i.e., (ii) holds true. 2

Proof of Theorem 2.5: (a) We give first an argument which does not require the previous two lemmata
but works only in the 1-arithmetic case. Let σ = inf{n ≥ 1 : Sn = 0} and S be the associated HSL.
Then ZS = Zθ

S for all θ together with (7) in Lemma 3.2 shows that

EZS = EZθ
S = Eθ(mΨ(θ))σ1{σ<∞}

for each θ ∈ DΨ. Now choose θ = ϑ and notice that (Sn)n≥0 has drift Ψ′(ϑ) = 0 under Pϑ and is
therefore recurrent on Z, i.e., Pϑ(σ < ∞) = 1. Consequently,

EZS = Eϑ(mΨ(ϑ))σ

{
≤ 1, if mΨ(ϑ) ≤ 1,

> 1, if mΨ(ϑ) > 1.

Considering once again the Galton-Watson process (Ẑn)n≥0, say, of all particles visiting 0 with first
generation size ZS, we thus infer this process be critical or subcritical, if mΨ(ϑ) ≤ 1, and supercritical
otherwise. In the latter case, it has a positive chance of survival, that is, P(Π({0}) < ∞) < 1. Proposition
2.2 then ensures that this probability must be 0 as claimed, in other words, the BRW is recurrent. If
mΨ(ϑ) ≤ 1, then almost certain extinction of (Ẑn)n≥0 naturally gives P(Π({0}) < ∞) = 1 and hence
the transience of (Πn)n≥0. In the critical case we should mention that P(ZS = 1) = 1 is easily excluded.

(b) Suppose now we are in the nonarithmetic case. The following argument embarks on Lemma 4.3 by
which it suffices to consider the function H so as to assess recurrence or transience of the given BRW. By
Lemma 4.2 and in the notation from there, this can be done by computing the mean offspring EZS1

of the
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Galton-Watson process (ZSn
)n≥0. Suppose first mΨ(ϑ) ≤ 1 and notice that S(v) < 0 for all v ∈ S1 in

combination with ϑ > 0 implies
Zϑ

S1
> ZS1

.

Consequently, by (7) of Lemma 3.2,

EZS1
< EZϑ

S1
= Eϑ(mΨ(ϑ)σ11{σ1<∞}) ≤ 1.

The process (ZSn
)n≥0 thus being subcritical we infer, by Lemma 4.2, that Π((−∞, 0)) < ∞ a.s. and

thereby transience of (Πn)n≥0 as claimed.
If eϑε = mΨ(ϑ) > 1 (with ε > 0 defined by this equality), consider the stopping times σε

0 ≡ 0,

σε
n := inf{k > σε

n−1 : Sk − Sσε
n−1

∈ (−ε, 0)}

for n ≥ 1, and let Sε
n, n ≥ 0, be the associated HSL. Under Pϑ, all σε

n are a.s. finite as (Sn)n≥0 has drift
0 and is therefore recurrent. By another appeal to (7) of Lemma 3.2,

EZϑ
Sε
1

= Eϑ(mΨ(ϑ))σε
1 ≥ mΨ(ϑ)

which in combination with the inequality

e−ϑεZϑ
Sε
1

=
∑
v∈Sε

1

L(v)e−ϑ(S(v)+ε) < ZSε
1

leads to
EZSε

1
> e−ϑεEZϑ

Sε
1
≥ e−ϑεmΨ(ϑ) = 1.

We thus arrive at the conclusion that the Galton-Watson process (ZSε
n
)n≥0 is supercritical and therefore

surviving with positive probability. As

{ZSε
n

survives} ⊂ {ZSn
survives},

the process (ZSn
)n≥0 is also supercritical and therefore Π((−∞, 0)) = ∞ a.s. by Lemma 4.2. This

proves the recurrence of (Πn)n≥0. 2

5 Extremal particle positions in a critical BRW
Once knowing that the critical BRW is transient and thus drifting to ∞, it is natural ask for its minimal
speed or, equivalently, the asymptotic behavior of the leftmost particle in the cloud as time goes to infinity.
Define

Minn := min
|v|=n

S(v) and Maxn := max
|v|=n

S(v).

In the critical case, it is not surprising and in fact following from an old more general result by Biggins
(1976, 1977) that

Minn

n
→ 0 a.s.
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However, by drawing on recent work of Hu and Shi (2008) (see also Alsmeyer (2007)), we can provide far
more precise information about the behavior of Minn under some additional conditions, and also about the
naturally related one on the behavior of the rightmost particle (maximal speed) in the cloud. Towards this
end, we make the additional assumptions hereafter that the step size distribution Q has bounded support
and that

EZ2
1 =

∑
n≥1

n2pn < ∞. (11)

The following result then follows directly from the more general Theorem 1.2 in Hu and Shi (2008) (note
that ϑ = 1 in this work).

Theorem 5.1 Let (Πn)n≥0 be a genuinely two-sided critical BRW satisfying p0 = 0, p1 < 1, µ(Q) ∈
(0,∞) and (11). Suppose further the step size distribution Q to be bounded. Then (with ϑ defined by (3))

1
2ϑ

= lim inf
n→∞

Minn

log n
< lim sup

n→∞

Minn

log n
=

3
2ϑ

a.s.

as well as
Minn

log n

P−→ 3
2ϑ

.

The natural way for getting a similar result for the rightmost particle is to resort to the previous one
after a reflection of the given BRW at a suitable line x 7→ γx. Put Φ(µ) := inf{eθµΨ(θ) : θ ≤ 0} which
is strictly decreasing and continuous on {µ : 0 < Φ(µ) < Ψ(ϑ)} ⊂ (µ(Q),∞). Defining further

γ := sup{µ : mΦ(µ) ≥ 1}, (12)

Biggins (1976) also showed that
Maxn

n
→ γ a.s.

Now, if γ is given along with a κ > 0 such that (12) holds together with

1 = mΦ(γ) = me−κγΨ(−κ) and γ = −Φ′(−κ)
Φ(−κ)

(13)

(the latter identity is an equivalent statement for that the derivative of θ 7→ eθγΨ(θ) at θ = −κ be 0), then
one can easily check that the reflected BRW (Π̂n)n≥0, defined as

Π̂n :=
∑
|v|=n

L(v)δγn−S(v)

is again genuinely two-sided with positive drift, critical and satisfying all conditions of Theorem 5.1. As
for its leftmost particle position M̂inn at time n, we can thus apply Theorem 5.1 and have also the obvious
relation

Maxn = γn− M̂inn

for all n ≥ 0. Thus we finally arrive at the following result for the rightmost particle position.
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Theorem 5.2 Under the same conditions as in Theorem 5.1 let γ be defined by (12). Suppose additionally
the existence of a κ > 0 such that the pair (γ, κ) satisfies (13). Then

− 3
2κ

= lim inf
n→∞

Maxn−γn

log n
< lim sup

n→∞

Maxn−γn

log n
= − 1

2κ
a.s.

as well as
Maxn−γn

log n

P−→ − 3
2κ

.
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