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Within the language of propositional formulae built on incption and a finite number of variablés we analyze

the set of formulae which are classical tautologies but mifitionistic (we call such formulae - Peirce’s formulae).
We construct the large family of so called simple Peircetsridlae, whose sequence of densities for differeig
asymptotically equivalent to the seque@%@. We prove that the densities of the sets of remaining Psifoemulae

are asymptotically bounded from above gy for some constant € R. The result justifies the statement that in the
considered language almost all Peirce’s formulae are siniie result gives a partial answer to the question stated
in the recent paper by H. Fournier, D. Gardy, A. Genitrini &hdZaionc - although we have not proved the existence
of the densities for Peirce’s formulae, our result givesdoand upper bound for it (if it exists) and both bounds are
asymptotically equivalent tg;.
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1 Introduction

Intuitionistic logic was developed in the beginning of th¥-¥h century, in search for a basis for construc-
tive mathematics. Apart from philosophical origins, ititaistic logic emerged independently in many
different fields of mathematics. One of the most interestingmples is the Curry-Howard isomorphism,
which relates intuitionistic proofs to programs in lambaécalus. The intuitionistic logic is known to

be a proper subset of a classical one. An interesting formbleh witnesses this fact is the Peirce’s law
((p — q) — p) — p which cannot be proved constructively (it needs some fortheflaw of excluded

middle in the proof). Since implication turned out to be thestrinteresting connector in the intuitionistic
logic we focus on the language of formulae which does notadither connectors. One of the first results
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on the quantitative comparison between implicationalrfragts of both logics was obtained in the paper
of M. Moczurad, J. Tyszkiewicz and M. Zaionc [MTZ00]. Theyfied a family ofsimple tautologies
which are intuitionistic tautologies with some specifiusture. The conjecture stated in [MTZ00], that
almost all classical tautologies are simphas recently proved by H. Fournier, D. Gardy, A. Genitrini
and M. Zaionc in [FGGZO07].Interestingly, the authors of [B¥] obtained the analogous result for the
approach with unbounded number of variables.These simgrissults can be reformulated alsnost all
classical tautologies are intuitionistidn the present paper we extend one of the results from [FGGZ0
by estimating the density of formulae which are classicaldigies but not intuitionistic (we call them
Peirce’s formulae). Several results on the values of dessif intuitionistic logic in the classical one for
fixed numbers of variables can be found in [Zai06] and [KZ04].

Main results
LetV = {x1,z2,z3,...} be a countable set of variables. Bt be the set of implicational formulae
such that all the variables usedtibelongs to the s, = {z1,...,zx}. LetCl; C 7; be the set of all

Classical tautologiesind Int;, C 7; be the set of allntuitionistic tautologies For any set4 C 7; by
A(n) we denote the number of elements of the. 4etf sizen. We prove that:

.. . (Clg\ Intg)(n) . (Clg \ Intg)(n) i
lim inf Ti(n) koo M SUP === koo g2

Our proof is based on the construction of families of forneuldose union has density— O(1/k3).
These families are easily defined fgmily schemeg¢see e.g. Fig. 2). Similar approach was taken in
[FGGZ07]. However, to estimate the density of Peirce’s folae we need to consider another, more
detailed, partition of the set of all formulae. Also, the gignof each presented family must be calculated
more precisely, since we are interested in the order/éf. (The orderl /k is completely consumed by
the simple tautologies.)

2 Basic facts

In a straightforward way we identify implicational formelérom7;, with rooted binary planar trees with
leaves labelled by the variables fras and the inner nodes by:. For a formula (treep € 7, the goal

of ¢ (denoted byr(y)) is the label of its rightmost leaf. For a set or sequenceesfd6 we denote by
r(S) the set of all goals of trees frosl. The set of premises of a formula of the kigd— ¢ is the set

of premises of) enlarged by the element formula which is a leaf has no premises. For all considered
types of trees the size of a tree is the number of its leaves.

Generating functions
Generating functions and results of singularity analysisafgebraic functions are important tools for our
development. The exhaustive treatment of this subject ediolind in [FSO08]. The generating function
for some set of trees! is denoted byy4(z) (formally it is the generating function for the sequence
(A(n))nEN)

Easy construction shows thgt(z) = (1 — v/1 — 4kz)/2 is the generating function fdf;,. For any
distinguished subset of variabléswith cardinalityd < & the generating function for all the formulae
whose goal is not labelled with a variable frdmis bf (z) = 24 fi.(2).

Tree families

Definition 1 A family scheme is a finite planar rooted unary-binary treeoadi
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¢ leaves are labelled by the elements of some countable s#terhe variables (we use Greek letters),
e edges are labelled by eithét (we call these regular edges) 6r(scheme edges)

We demand additionally that all the edges which go to theflefh some node are labelled with and

all the edges going down from unary nodes are scheme edgesio\Wet distinguish family schemes
which can be transformed one into another (and back) by atije renaming of the scheme variables. In
the pictures regular edges are represented by solid lingsemme edges by dashed lines. We also usually
assign names to the scheme edges (see e.g. Fig. 3).

For a family schemé&” let s(T'), d(T') denote respectively the number of scheme edgds amd the
number of different labels assigned to the leave§ ofThe number of repetitionsep(T') in a family
schemd’ is the total number of its leaves diminishedd{") (e.g.((p — q) — p) — p has 2 repetitions).
We writes, d, rep instead ofs(T'), d(T), rep(T) if the family scheme is clear from the context. As usual,
the size of a scheniB is the number of its leaves (we denote it|&d).

For a family schem& an admissible substitution is any element of the{(ﬂt)*)sm x VAT, LetT be
a family schemeg = ((s1,. .., $a), (v1, ... vp)) be an admissible substitution for, let (eq, ..., e,) and
(I1,...,1y) be the lists of scheme edgesioind scheme variables occurrindlirboth listed according to
some fixed tree traversal order (lets say DFS). The appicati the substitution to the family scheme
T proceeds as follows:

o each leaf labelled withy; is relabelled ta;

e each scheme edggis locally expanded by the sequenge= (¢4, .. ) as depicted below:

Yy > —»A
CA >

Fig. 1: Scheme edge substitution.

The treatment of the substitution with sequences is sttfighard. If the substituting sequence is empty,
the scheme edge whose parent is a binary node become a redgtr In case when the parent of the
edge is unary, and the substituting sequence is empty tieat@ode of the scheme edge is replaced by
the child node. Obviously, the result of an application ofiastitution is a formula.

Definition 2 The substitution((s1, ..., s4), (v1,...vp)) IS NOt properif there exists a tree in some se-
quences; whose goat(t) equals some; or there exist different, j < b such that; = v;. Otherwise,
the substitution ipropet

The family of trees defined by the family scheffigdenoted byF;") consists of all the trees which

can be constructed from by the application of somproper substitution. By} we denote the set
of formulae which can be constructed frafnby any substitution (not necessarily proper). If there is a

family schemel” such thatF/' C ‘H;, C F' we say that the familg{, correspondso the schem&'.
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We would like to have one to one correspondence between tipepsubstitutions admissible f@ét
and the elements of. A scheme for which such correspondence exists is cadjedtive. In this paper
(section 3) we consider only injective schemes. Checkiag) phesented schemes are injective is quite
easy and we left it to the reader.

Densities
For any set of treegl C 7, we say thatd has density;(A) € Rif ug(A) = limy,— o %. It is easy
to observe that there are sets whose density does not eriseudr, the following limits always exist

- ... An) . Aln
y (A) = 11nIT_1)1£f Tk((n) and ) (A) = 111rln_)solip 7}((71))

We cite below a technical Lemma which is a consequence of lle®em VI1.8 from [FS08]. Gener-
ating functions of all families of trees we use, have the emsiproperty.

Lemma 3 Let f(z), g(z) be generating functions having both a unique dominatingudarity of square

root type inp € R,.. Then, the limifim,, [[iz}]j;gg exists and equalim, _, - %

We use this lemma to estimate densities of families of trefised by some family schemes.

Lemma 4 For every injective family schenféandk € N, the densityu, (F) exists and

Ty _ s(T) 1
,Uk(]:k ) - 22rep(T)+2d(T)—s(T)—1 . rep(T) +0 <krep(T)+l '

Proof: Let us fixk € N. SinceT is injective w can consider the proper substitutions adisgor 7
instead of the elements dof/. Let us define the size of a substitutiof, . . ., 55(1)); (V15 - - Va(ry)

as a sum of the sizes of all trees from the sequesges., s ). Itis easy to see that the size of the
formula corresponding to the substitution equals the sizBesubstitution increased by the size of the
schemel'. The generating function for the formulae whose goal dogscantain any of the variable
occurring in(vy,...vp) is easily seen to béZ(T)(z) = %(T)fk(z). Consequently, the generating
function for the sequences of such treeélis- bZ(T) (2))~t. Since we need(T') of such sequences and

—s(T)
the substitution is proper the generating function/r is (1 - %(T)fk(z)) k2D AITI where

kAL — k(k —1)...(k —d(T) 4+ 1). Fors(T) > 0 andd(T) < k (the remaining cases are trivial) the
function is easily seen to have unique dominating singtylarf the square root type ig- (in the same
point thatfx(z)). The application of the Lemma 3 yields

2k

I
R 5(1) - (1 BT R ) () s ()1
k)l - (k)T O

u(F) =

This estimation together with the fact that| = d(T") + rep(T) gives the estimation claimed in the
Lemma. O

By a similar reasoning we get the following Lemma.
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Lemma 5 For every injective family schenie we have:

1
krep(T)+1 ) (1)

i (FE) = i (F) + O(
Proof: The number of elements Ef,? of sizen is not greater than the number of all substitutions admis-
sible forT of sizen — |T'|. The generating function for these substitutionslis- fk(z))_S(T) -k HD),
hence the generating function for the farrﬁ.)éF is coordinatewise not greater than the functiquiz) =
(1= fa(2)) T k4D 41T (e, for everyn € N we have[z"|hi(z) > ;—'—E(n)). Application of the
Lemma 3 gives

o ) S(T) 1
M (‘7:k ) < nh_,ngo [Zn]fk(z) ~ 92rep(T)+2d(T)—s(T)—1 . Lrep(T) +0 krep(T)+1 | °

The last equation together with Lemma 4 gives (1). O

All considered families corresponding to some family schdmave densities. In most cases we omit
the proofs of the existence, which are typical but needs afloalculations.

Intuitionistic logic
We present a simple characterization of the propositianaitionistic logic. The proof of its equivalence
with other definitions and far more general view of the sutbjan be found in [SU98].

Let 7 be the set of open subsetRfwith respect to Euclidean topology. The functiansV,, — 7 are
called valuations in. We can extend every valuatian: V,, — 7 to the set of all the formulae by the
following rule:

v[p — Y] :=interior( (R\ v(y)) Uv(y) ).

The following theorem belongs to folklore (we treat thisdhem as a definition for the intuitionistic
tautologies):

Theorem 6 A formulay € 7 is anintuitionistic tautologyif and only if for every valuatiow : V, — 7
we havev[p] = R.

It is easy to derive from the statement above that all thdtiohistic tautologies are classical. The
converse is not true. To see it, let us analyze the formigla—~ ¢) — p) — p known as Peirce’s law.
Simple check shows that it is a classical tautology. To shwawit is not intuitionistic one, let us consider
a valuationv : V, — 7 such thaw[p] = R\ {0} andv[g] = 0. Then we gev[((p — q) — p) — p] =
R\ {0}. Such formulae are the main subject of our interest. We demofeeircey, the set of formulae
from 7, which are classical but not intuitionistic tautologies, @&l them Peirce’s formulae.

3 Densities of Peirce’s formulae

To estimate the density of Peirce’s formulae we need to densnore detailed partitions of the sets of all
formulae that the one considered in [FGGZ07]. We need als@ mi@cise estimations for the densities
of considered families, since the density of Peirce’s fdamus at most of the ordér—2. (According

to the results of [FGGZ07] the ordér! is completely consumed by the simple tautologies). A simple
tautology is a formula in which at least one premise is a lebélled by the same variable that the goal
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of the whole formula. Simple tautologies are easily seeretimtuitionistic tautologies (see [FGGZ07]).
Note also that if all the goals of the premises of some forramdabelled by different variables than the
goal of the formula, then the formula cannot be a classicdbtagy.

We present several families with estimations of their diéssi In the end we use a quantitative argument
to show that the set of formulae not belonging to the considiéamilies has low density (i.e. of the order
k—3). Therefore we need to consider also families which doesootain any Peirce’s formulae.

We start with the family of classical tautologies which am simple tautologies and which have at
least two premises with the same goal as the whole tree. @hidyf was also considered in [FGGZ07].
In the Lemma 7 we give an alternative simple proof that thesifgiof this family isO(1/k3). Then we
analyze the family of non simple tautologies with only onerpiseA such thatd has the same goal as
the whole tree andl has at least two premises. We prove in the Lemma 8 that thatgefishis set is
O(1/k?). Inthe last step we consider trees as above but witlaving exactly one premise. We show how
to split this kind of trees into six disjoint sets with highriéties. Finally, we use a quantitative argument
to prove in Theorem 10 that the density of Peirce’s formwuad¢ {2k2?) + O(1/k3). One of the considered
set is a family containing only Peirce’s formulae (we ca#irthsimple Peirce’s formulae) and the set of
formulae which have not been considered has density of ther br 3.

Lemma 7 Let G be the set of tautologies, but non simple tautologies 7, for which at least two
premises have goals equalt¢t). We have. (Gi) = O(1/k3).

Proof: Let H; be the set of formulaé € 7, which are not simple tautologies and which have at least
two premises with goal equal idt). Let T be the family scheme depicted in Fig. 2. Itis easy to see that

FI' ¢ Hy c Fl and that no element of is a tautology (putv = 3 = v = 0 and all the other variables

to 1). From the Lemma 4 we know that (F[) = 1= + O(1/k*). We know thalg, C H;, \ F. From

the Lemma 5 we gat; (Hx \ FF') = O(1/k?), which proves the Lemma. O

N Y

Fig. 2: A tree with at least two premises with a geal ~ F19- 3: The scheme corresponding to the fandly.

Let S;, be the family of trees frorT;, such that each trelec Sy, satisfies the following conditions:
e ¢ is not a simple tautology, i.e. no premiseta$ a leaf labelled with-(¢),

e ¢ has exactly one premise, sdy such that(A) = r(t) and A has at least two premises.
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Lemma 8 LetG? be the set of tautologies belonging$e. We have:; (GZ) = O(1/k?).

Proof: Family Sy can be constructed from the scheme in Fig. 3 by substitubiowhich no tree from the
sequences substituted 8y, S; has the goal labelled with the variable assigned.to

We show that densities of tautologies fra#ip areO(1/k?), by constructing a large subfamily of non
tautologies. First, we estimate the densitySpf The generating function fa§;, can be easily found and
it equalsgs, (z) = k*2*(1 — bi.(2))2(1 — fx(2)) 3. Therefore, we get

5 7
4k 2k?

We use the scheme from Fig. 3 to define four disjoint subfasitf non tautologies by imposing
restrictions on the allowed substitutions. For a subsbitu¢(S, Se, Ss, S4, S5), (o, 5,7)) we consider
the following cases (we abuse the notation using the samesfonthe scheme variables (resp. scheme
edges) and variables (resp. sequences) assigned to théwa s@yttstitution):

@ B=a,v#a,a,v¢r(S1)U...Ur(Ss),
(b) B# a, B¢ r(S1)Ur(S2)Ur(Ss), a ¢ r(S1)Ur(Sz) (no restrictions fory),

ik (Sk) = +O(1/k%). 2

(c) B # «, B occurs exactly once among the goals of trees ffamSs, S4, 8 ¢ r(S3) U r(S5), a,v ¢
r(S1)U...Ur(Ss),

(d) B # «, « occurs exactly once among the goals of trees ffam ¢ r(S1) Ur(S2) Ur(Ss) Ur(Ss),
v ¢ T(Sl) U...u T‘(S5).

We denote byS¢, SP, S¢, S the families of trees frorf, constructed from the scheme from Fig. 3 and
substitutions fulfilling corresponding condition (a), ((9), (d). Each of the above sets contains only non
tautologies. To falsify the elements of the familigg, S¢, S¢, valuatea and~y to 0 and all the other
variables to 1. For the familg? it suffices to put3 = o = 0 and all the other variables to 1.

The family S? is easily seen to be defined by some family schéipavith parameters = 5, d = 2
andrep = 2 (substitute3 with « in the scheme from Fig. 3). By the Lemma 4 the densitgpfs

% +O(1/k%). (3)

For the familyS? we need more accurate estimation. The generating funatio&f is gsp (z) =

k2 (k —1)24 (kb%(z))g (1ffi(z))2 . Thus, the density of} is
5 47

The family S5, is a disjoint union of three families corresponding to thkesnes depicted in Fig. 4.
Formally, letT,1, T2, T.3 be the family schemes depicted in Fig. 4, then it is easy tdtsde

(}‘de U Feu f,f*) c S c (Fl ur= uF= ). Each of this family schemes has parameters
s=17,d=3,rep = 2. By the Lemma 4 and the Lemma 5 we get that

p(SP) =3+ 113 + O(L/K) ©)
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Fig. 4: Scheme for trees in case (c).

The last case — (d) corresponds to the sché&gieom Fig. 5. We havel‘,fd cSlc }‘de. The family
scheme has parameters- 7,d = 3, rep = 2, hence, by the Lemma 4 and the Lemma 5, we get

7

(S = £ + O(1/K2). ©)

Fig. 6: Scheme corresponding to the fanify*.

Fig. 5: Scheme for trees in case (d).

Since no tautology fron$y, belongs taS; (fori = a, b, ¢, d), we haveG? C S — (SZ USP USE USY)
and finallyu)t (G2) = O(1/k3). 0

From now on we are going to consider treesith exactly one premisél with r(t) = r(A) and for
which the premised has only one premise. Such a family of trees, denoted,by corresponds to the
schemély; presented in Fig. 6.

The generating function faf!" is g7 (2) = k*2%(1 — by (2)) (1 — fu(2)) "', thus its density equals

3 5
k(T =

=gt O(1/k>). (7)

We divide the familyZ;!! into six disjoint subfamilies with large densities. One loése subfamilies,
denoted byPy, will contain only Peirce’s formulae, we call the elemenit$p simple Peirce’s formulae.
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The subfamilies, mentioned above, arise by putting sontecgtsns for the substitutions allowed for
the schemd&?;. For a substitutior{(.S;, 52, S3), (o, 3)) (again we abuse the notation) we consider the
following four cases:

(@ B8=a,a¢r(S)Ur(S2)Ur(Ss),
(b) B# a,a, B¢ r(S1) Ur(S2) Ur(Ss),

() B # «a, B ¢ r(S1) Ur(Sz) Ur(Ss), a occurs exactly once among the goals of trees fi&ym
a ¢ r(S1)Ur(Ss),

d) 8 # a,a ¢ r(S1) Ur(S2) Ur(Ss) andg occurs exactly once among the goals of the trees from
S1, 52, 53.

We denote byNV73 the set of formulae fron¥; which can be constructed froffi; by substitutions
fulfilling the condition (a) (the seNTﬁ is defined analogously). L&, be the scheme from Fig. 6 with
scheme variabl@ replaced byy. We haveN' 7§ = }‘,CT“, hence, by the Lemma 4, the densityd §; is

pNTE) = oy + O(1/K). (®)

The formulae fromV/'7 ¢ are easily seen not to be tautologies (valuate 0 and all the other variables to
1).

The formulae from/\/TZ are also non tautologies (to falsify them put= 5 = 0 and all the other
variables tol). We need more accurate estimation for the densﬂtjﬁ&\/Tﬁ) then the one provided by
the Lemma 4. The generating function {67 is gnre (2) = k(k —1)23(1 — b7 (2))~*. With simple
computations we get

3 33

b e
mWNTY = 4~ e

+O(1/k3). 9)

The family of formulae which can be constructed from the soh&}; by the substitutions fulfilling
the condition (c) is divided into two sets. In every such fatax there is only one treel in S3 such
thatr(A) = «. The first family, Py, (see its corresponding scheme in Fig. 7) is defined by gubstis
for which the subformulal is just a variablex. The second one\7¢, (see Fig. 7) is defined by the
remaining substitutions fulfilling the condition (c).

L WY

Fig. 7: Scheme of the family;, (left one) and the family\ 7%, (right one).
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The setPy, turns out to consist of Peirce’s formulae. Indeed, it suffimeconsider only valuations for
the variablex to see that every formula frof;, is a classical tautology. To see that each Py, is not
an intuitionistic tautology check the following valuationr, letv[a] = R \ {0}, v[F] = 0 andv[z] = R
for all other variables. It gives[t] = R\ {0}. Trees from the second s&f7, are non tautologies (put
a = [ =~ = 0and all the other variables 9. By the Lemma 4 we have

pie(Pr) = 2—,12+O(1/k3). (10)

Let T, be the scheme on the right in Fig. 7. We hé\‘/,? CNTj C ]-',F;FC, therefore by Lemma 4 and
5 we get

e NTE) = g+ O0/K) )
For the case (d) we also consider two sets of trees. The fiestZahy, is defined by the substitutions
fulfilling the condition (d) for which the unique tree frosy, Sz, S3 with a goal labelled bys is a leaf
(see its schemes in Fig. 8). The second d‘m’?,i, is defined by the remaining substitutions fulfilling the
condition (d) (see its corresponding schemes in Fig. 9)e§"rBNTZ are not tautologies (put = § =
~ = 0 and all the other variables 1. On the other hand, each treeZiff ;, is an intuitionistic tautology.
We prove this fact in the Lemma 9. The same reasoning as inréwopis cases (involving application

Fig. 8: Scheme of the familgZ 7 .

& S &S

Fig. 9: Scheme of the famil\w7¢.
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of Lemma 4 and Lemma 5) yields:

p(ITy) = 35+ O(1/K), (12)
pNTY) = 325 + 001/, (13)

Lemma 9 Each tree from the sét7, is an intuitionistic tautology.

Proof: The setZ7; is a disjoint union of three families defined by the family sgtes depicted in Fig. 8.
LetZ7,,ZI7%,TT; denote the families corresponding to the consecutive seaéram the picture.

Lett € ZT;. There is a premisél in t whose goal is labelled by the same variable t&t) and
whose only premise is a simple tautology. It means that ealtration inT valuates this premise .
But then, for every valuation im, the premised is valuated taw[r(T)]. Let A — B be the subformula
of t corresponding to the parent df. Note that the valuation of implication is increasing widspect
to the second argument (i.e[¢ — ] D v[)]). For every valuation in 7 we getv[B] D v[r(T")] and
sincev[A] = v[r(t)] we getv[A — B] = R. This value is then propagated to the root of the tree (by the
increasing property), which means thét = R.

It is easy to check that for every valuatienin = we havevjan — (8 — v)] = v[6 — (o — 7)].
Therefore it is enough to show that the elementgdf are not intuitionistic tautologies. Suppose that
t € I7; and letA — B be the subformula of such that4 is the premise of with r(A) = r(t). Then,
for every valuatiorv we havev[B] D interior(R \ v(8) Uv(a)) andv[A] C interior(R\ v(8) Uv(a)).

It givesv[A] C v[B], but thenv[A — B] = R and (again by the monotonicity of the valuation of
implication) we geb[t] = R. O

Theorem 10 For everyk € N let Peirce;, denote the set of formulae frof which are classical but not
intuitionistic tautologies. Then we have

1
wi (Peirceg) ~i, wy, (Peircey,) = oY) +O(1/k3).

Proof: Each formula € Peirce;, is a tautology. Therefore it must have at least one premite gaal
equal to the goal of. Moreover, since is not an intuitionistic tautology, it cannot be a simplettdogy;,
i.e. it has no premise equal to its goal.

We have already found a large set of Peirce’s formulae — tmélyfaP;, (see Fig. 7). We know (see
the equation (10)) thatt/(2k?) + O(1/k*) = u(Pk) < py (Peircey). To find the upper bound for the
densityuz(Peircek) we show that the density of the sBtircey, \ Py is relatively small.

Let Peirce;. be the set of all the formulag € Peirce, which have exactly one premisé with
r(A) = r(t) and letPeirce; denote the set of all € Peirce;, which have at least two premisesand
B such thatr(A) = #(B) = r(t). Obviously,Peirce, = Peircej, U Peirce; and by the Lemma 7 the
density of Peirce;, is small — we haves| (Peircei) = O(1/k%).

The setPeirce;. can be split further into two subsets. LBtirce;' denote the set of all € Peirce;,
with only one premiset such thai-(4) = r(t) andA has exactly one premise. LBtirce,? = Peirce;,\
Peirce;! (in the elements oPeirce;? the subformulad has at least two premises.) By the Lemma 8 the
densityy (Peirce;?) is O(1/k?).
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To estimate the density dPeirce;.' we need to consider all the treeg 7;, with only one premiset
such that'(A) = r(t), A # r(t) (it cannot be a simple tautology) anthas exactly one premise. Such a
family is denoted byZ;!! (see Fig. 6). As we knovZ,'! can be split into several subsets (see Fig. 7, 8
and 9) andZl;'' = NT¢UNTLUNT{UNTEUPL UIT U Resty,. No setN'TE, (fori = a, b, ¢, d)
contains a tautology?;, consists of Peirce’s formulae, each formul&in is an intuitionistic tautology
(see the scheme in Fig. 8 and the Lemma 9) Basl;, denotes the set of remaining trees. Therefore we
can write that

Peirce,lcl C Pr U Resty,.

Sinceuy,(Resty) = pn(T,Y) — e NTR) — f(N'T}) — w(N'TR) — pN'TR) — p(Py) — i(ZT 1), using
the equations (7), (8), (9), (10), (11), (12) and (13), we fimat . (Rest) = O(1/k3).
Finally, we can estimate the density of all Peirce’s forneuld/e know that

Peircey, C Pr U Resty U Peirce,lc2 U Peircei

and the densities oResty, Peirce;” and Peirce; are small, i.e. each density 3(1/k%). It gives
wi (Peircer) = 1/(2k%) + O(1/k3). O

4 Final remarks

Although we did not address directly the problem of the exist of the densities of Peirce’s formulae,
the presented technique can be used to obtain better upphémvaar bounds, by the systematic analysis
of more detailed partitions.

The intuitionistic logic can be also defined as the set of fda® which are true in every finite Kripke
structure. Therefore, a formula is not an intuitionistigttdogy;, if it can be falsified in some finite Kripke
structure. Interestingly, the familf?;, we considered, consists of classical tautologies whichbeafal-
sified in the Kripke structure of size 2. It is a minimal size fehich the difference between classical
and intuitionistic logics can be observed. We know also thatfamily of formulae which needs Kripke
structure of the size 3 to be falsified, has density of the matlenosts —3. It is not hard to prove (using
Drmota-Lalley-Woods theorem, see [FS08]) that for everyn € N the set of formulae frorT;, which
can be falsified in some Kripke structure of the sizéas a density. It is interesting to estimate the density
of Peirce’s formulae which needs a structure of sizto be falsified. It seems also that this approach can
be used to prove the existence of density of all Peirce’s fitaumn
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