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The size of random fragmentation intervals

Rafik Aguech†

Faculté des Sciences de Monastir, Département de Mathématiques, 5019 Monastir, Tunisia.

Two processes of random fragmentation of an interval are investigated. For each of them, there is a splitting probabil-
ity at each step of the fragmentation process whose overall effect is to stabilize the global number of splitting events.
More precisely, we consider two models. In the first model, the fragmentation stops which a probability p witch can
not depend on the fragment size. The number of stable fragments with sizes less than a given t ≥ 0, denoted by K(t),
is introduced and studied.
In the second one the probability to split a fragment of size x is p(x) = 1 − e−x. For this model we utilize the
contraction method to show that the distribution of a suitably normalized version of the number of stable fragments
converges in law. It’s shown that the limit is the fixed-point solution (in the Wasserstein space) to a distributional
equation. An explicit solution to the fixed-point equation is easily verified to be Gaussian.

Keywords: Fragmentation models, fixed point, contraction method, Mellin transform.

1 Introduction
Fragmentation is a widely studied phenomena [12] with applications ranging from conventional fracture
of solids [6] and collision induced fragmentation in atomic nuclei/ aggregates [1] to seemingly unrelated
fields such as disordered systems [4] and geology. Fragmentation processes are also relevant to spin
glasses, Boolean networks and genetic population.

We investigate two classes of stochastic fragmentation processes. In section 2 we consider a random
fragmentation process introduced by Krapivsky, Ben-Naim and Grosse [5] where fragmentation stops
stochastically, with a probability q of further fragmentation that not depend on the mass x of the fragment.
In section 3, we consider the random fragmentation process investigated by Janson and Neininger [16],
where splitting probability is, by nature, fragments length dependent. A particle having some mass x is
broken, with probability p(x) = 1 − e−x, into two pieces. The mass is distributed among the pieces at
random in such a way that the proportions of the mass shared among different daughters are specified
by some given probability distribution (the dislocation law). The process of fragmentation is repeated
recursively for all pieces. For this model we derive a closed form expression of the mean and variance
of the total number of stable fragments N(x). Finally, using the contraction method in continuous times
established by Janson Neininger [16], we prove a central limit Theorem of N(x).
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2 Homogeneous random fragmentation process
Let (ξ1, ξ2, · · · , ξm) be a given random vector. We assume that each ξj has a distribution that is absolutely
continuous on (0, 1) and

m∑
j=1

ξj
a.s= 1,

i.e., that (ξ1, · · · , ξm) belongs to the simplex.
We start with an interval of length 1. At step one, there is a probability p ∈ (0, 1) of splitting the interval

and so, with probability q := 1 − p the initial unit fragment remains unchanged for ever. In the case of
splitting, we obtain m (m ≥ 2) fragments with random sizes (ξ1, · · · , ξm). On each first generation sub-
fragment, the splitting process is then iterated, independently, a property which we refer to in the sequel
as the renewal structure of the process. Similar processes have been investigated by Krapivsky, Ben-Naim
and Grosse [5]. The term homogeneous refers to the fact that in such models, the splitting probability is
independent of fragment sizes at each step. This model can be understood from the discrete time binary
Galton-Watson branching process.

Let N be the total number of stable fragments.

2.1 The mean

By the recursive nature of the process, we can write, almost surely

N =
m∑

j=1

1I{jth stable} +
m∑

j=1

1I{jth unstable}N
(j), (1)

where (N (j)){1≤j≤m} are independent copies of N and independent of (ξ1, ξ2, · · · , ξm).
Hence, E(N) the mean of N is given by the following proposition

Proposition 1 .

E(N) =


mq

1−mp
, if p <

1
m

+∞, if p ≥ 1
m

.

The average total number of fragments diverges as the probability p approches the critical point pc =
1/m, reflecting the critical nature of the corresponding branching process.

Remark: Let ϕN (t) = E(etN ), t ∈]− ε, ε[ for some ε > 0.
To obtain moment of order k, it suffices to derive k times ϕN .

Using equation (1), one can note that, the function ϕN (t) is the solution of the equation

ϕN (t) =
(
qet + pϕN (t)

)m

, |t| < ε.



The size of random fragmentation intervals 521

2.2 Fragment length density
For t ∈ [0, 1], let K(t) be the total number of stable fragments of length less than t, and M(t) = E(K(t)).
For y ≥ 0 let K(y, t) be the total number of stable fragments of length less than t given by a fragment of
length y and let M(y, t) = E(K(y, t)). The recursive nature of the process can be used to obtain

K(t) =
m∑

j=1

1I{jth stable}1I{ξj≤t} +
m∑

j=1

1I{jth unstable}K(ξj , t)

=
m∑

j=1

1I{jth stable}1I{ξj≤t} +
m∑

j=1

1I{jth unstable}1I{ξj≤t}K(ξj , t)

+
m∑

j=1

1I{jth unstable}1I{ξj>t}K(ξj , t).

Moreover, for every s, t ∈ [0, 1], we have

M(s, t) =


M(1) = E(N), if s ≤ t

M(1,
t

s
) = M(

t

s
), if s ≥ t.

Consequently,

M(t) =
E(N)

m

m∑
j=1

Fj(t) + p

m∑
j=1

∫ 1

t

M(
t

s
)fj(s)ds, (2)

where Fj (respectively fj) is the distribution function (respectively the density ) of the random ξj .
With the help of the Mellin transform, Equation (2) can be solved, and we get:

M̂(s) =
∫ +∞

0

ts−1M(t)dt.

It is clear that M(t) is well defined and piecewise-continuous verifying

∀t ∈ [0, 1], M(t) ∈ [0, E(N)].

Then the Mellin transform of M exists in the half of complex plane

S = {s ∈ C, Re(s) > 0}.

Denoting, for each j ≤ m, by f̂j the Mellin transform of fj . The Mellin transform of M reads

M̂(s) =
E(N)

(
1− 1

m

∑m
j=1 f̂j(s + 1)

)
s(1− p

∑m
j=1 f̂j(s + 1))

, ∀s ∈ S. (3)

Using the Mellin inverse, we deduce that, for all c > 0 and t ∈ [0, 1]

M(t) =
1

2iπ

∫ c+i∞

c−∞
M̂(s)t−sds.



522 Rafik Aguech

2.3 Applications
2.3.1 Uniform m fragmentations
In this subsection each unstable fragment with size l splits into m fragments, using m − 1 independent,
uniformly distributed cut points in the interval [0, l].

K(t) =
m∑

j=1

1I{jth stable}1I{ξj≤t} +
m∑

j=1

1I{jth unstable}K(ξj , t)

=
m∑

j=1

1I{jth stable}1I{ξj≤t} +
m∑

j=1

1I{jth unstable}1I{ξj≤t}K(ξj , t)

+
m∑

j=1

1I{jth unstable}1I{ξj>t}K(ξj , t).

Let ξ be a generic spacing distributed like ξ1. It is known that ξ has the density

f(s) = fξ(s) = (m− 1)(1− s)m−2.

Thus

M(t) = E(N)Prob(ξ ≤ t) + m(m− 1)p
∫ 1

t

M(t/s)(1− s)m−2ds

= E(N)
[
1− (1− t)m−1

]
+ m(m− 1)pt

∫ 1

t

M(y)
ym

(y − t)m−2dy. (4)

From (3) one can obtain that, for all s ∈ S

M̂(s) =
E(N)

(
(s + 1) · · · (s + m− 1)− (m− 1)!

)
s
(
(s + 1) · · · (s + m− 1)− pm!

) . (5)

2.3.2 Uniform 3-fragmentation case
In the particular case, when m = 3, we get an explicit expression for M(t). In fact from equation (4), we
get

M(t) = 3qProb(ξ1 ≤ t) + 6p

∫ t

0

M(s, t)(1− s)ds + 6pt

∫ 1

t

M(s, t)(1− s)ds

= 3qProb(ξ1 ≤ t) + 6pE(N)
∫ t

0

(1− s)ds + 6p

∫ 1

t

M(t/s)(1− s)ds

= 3qt(2− t) + 6pt(1− t

2
)E(N) + 6pt

∫ 1

t

M(y)
y2

dy − 6pt2
∫ 1

t

M(y)
y3

dy. (6)

Let P (t) be the fragment length density of stable fragments of length t. It follows

M(t) =
∫ t

0

P (x)dx.
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Due to the last equality and (6), it follows

P (t) = 6q − 6qt + 6p

∫ 1

t

P (s)
s

ds− 6pt

∫ 1

t

P (s)
s2

ds. (7)

Then one can observe that the total length is conserved,∫ 1

0

tP (t) = 1.

Furthermore by integrating (7) we get the value of E(N) already given by Proposition 1,∫ 1

0

P (t)dt = E(N).

The Mellin transformation M̂ can be obtained, in this case from (5) choosing m = 3

M̂(s) =
E(N)(s + 3)

(s + 1)(s + 2)− 6p
.

Using the Mellin inverse, it leads to following Theorem

Theorem 1 For all t ∈ [0, 1],

M(t) =


E(N)√
1 + 24p

t
3+
√

1+24p
2

[3 +
√

1 + 24p

2
t−
√

1+24p +
√

1 + 24p− 3
2

]
, if p <

1
3

+∞, if p ≥ 1
3
.

Remark: Denoting by λ(s, t), for all 0 ≤ s ≤ t ≤ 1, the mean of the number of stable fragments with
length between s and t. It can be given by

λ(s, t) := M(t)−M(s).

3 Exponential fragmentation probability
Throughout this section we assume that the first segment is of length x (large enough) and the probability
p(s) that a new fragment remains unstable depends on the fragment size s. This is relevant for impact
fragmentation and DNA segmentation where fragments have an intrinsic size scale below which the frag-
mentation probability becomes negligible.
If p(s) = 1Is≥1, m = 2 and ξ is uniform on [0, 1], this model has been studied by Sibuya and Itoh [15].
Recently Janson and Neininger [16] studied the general case where p(s) = 1Is≥1, m ≥ 2 and the support
of the distribution of (ξ1, ξ2, · · · , ξm) on the standard simplex has an interior point.

In our model, we assume that, m = 2, ξ1 is uniform on [0, 1] and

p(s) = 1− e−s.
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It is natural to consider the fragmentation process as a tree T (∞), with the root representing the original
object (first fragment of size x), its children representing the pieces of the first fragmentation, and so on.
We let the fragmentation go on for ever, although we ignore what happens to stable pieces. Let us mark
each node with the mass of the corresponding object. A node is unstable if the corresponding fragment
is unstable. We define the fragmentation tree T (x) to be the subtree of T (∞) consisting of all unstable
nodes.

As mentioned in [16], our model can help to approximate the binary search tree by a fragmentation tree.
In fact, for binary search trees, we have n random (uniformly distributed) points in an interval, split the
interval by the first of these points, and continue recursively splitting each subinterval that contains at least
one of the points. If we scale the initial interval to have length n, then the probability that a subinterval of
length x contains at least one point is ≈ 1− e−x.

Let N(x) be the total number of stable fragments when we start with an interval of length x
(
N(x) is

also the number of nodes in T (x)
)

and

m(x) = E(N(x)), V (x) = Var(N(x)).

By the recursive construction of the fragmentation process, we have, almost surely

N(x) = 1I{x stable} + 1I{x unstable}

2∑
j=1

N (j)(ξjx), (8)

where (N (j)(.))j≥1 are copies of N(.), independent of each other and of (ξ1, ξ2).

3.1 The mean
By equation (8), the mean m(x) satisfies

m(x) = e−x +
2(1− e−x)

x

∫ x

0

m(t)dt. (9)

By the nature of the process, we have lim
x→0

m(x) = 1. The solution of the equation (9) can be written as

m(x) = ϕ(x)
[ ∫ x

0

{
[e−t − 2(1− e−t)

t
] exp(−

∫ t

0

2(1− e−s)
s

ds)
}

dt
]

+e−x − 2(1− e−x)
x

+ ϕ(x),

where

ϕ(x) =
2(1− e−x)

x
exp

( ∫ x

0

2(1− e−t)
t

dt
)
.

Consequently
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Theorem 2 As x → +∞ :
m(x) = 2γx + O(1), (10)

with

γ = exp
[ ∫ 1

0

2(1− e−t)
t

dt
]
exp

[
− 2

∫ +∞

1

e−t

t
dt

]
+

∫ +∞

0

{ 1
t2

[
e−t − 2(1− e−t)

t

]
exp

[
− 2

∫ +∞

t

e−s

s
ds

]}
dt.

Remark: If each unstable interval is divided at (b−1) randomly chosen points, that is, (b−1) independent
points from the uniform [0, x] distribution, in this case the mean function m(x) satisfy the following
differential equation

db−1

dxb−1

(
xb−1m(x)

)
− b!(1− e−x)m(x) = b!e−x.

3.2 The variance
Let S(x) = 1I{x stable} and V (x) = Var(N(x)). In view of (8)

V (x) = (e−x − e−2x) + 2Var
(
S(x)N(ξx)

)
− 4e−x(1− e−x)E

[
m(ξx)

]
+2(1− e−x)E

[
m(ξx)m((1− ξx))

]
− 2(1− e−x)2

(
E[m(ξx)]

)2

= (e−x − e−2x) + 2(1− e−x)E
[
N2(ξx)

]
− 2(1− e−x)2

(
E

[
m(ξx)

])2

+2(1− e−x)E
[
m(ξx)m((1− ξ)x)

]
− 4e−x(1− e−x)E

[
m(ξx)

]
− 2(1− e−x)2

(
E[m(ξx)]

)2

Finally, V (x), satisfies

V (x) =
2(1− e−x)

x

∫ x

0

V (t)dt + h(x), (11)

where

h(x) = 2(1− e−x)E
[
m(ξx)m((1− ξ)x)

]
+ (e−x − e−2x) +

(2e−x − 1)e−x(m(x)− e−x)2

2(1− e−x)
− 2e−x(m(x)− e−x).

Let H(t) = h(t)− 2(1− e−t)
t

. Then, the solution of equation (11) can be given by

V (x) =
2(1− e−x)

x
exp

( ∫ x

0

2(1− e−t)
t

dt
)

+ H(x)

+
2(1− e−x)

x
exp

( ∫ x

0

2(1− e−t)
t

dt
)[ ∫ x

0

H(t) exp
(
−

∫ t

0

2(1− e−s)
s

ds
)
dt

]
.

Consequently, we have the following Theorem, which describes an asymptotic expression of V (x), for
large values of x
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Theorem 3 Asymptotically, as x large enough, we have

Var(N(x)) = 2λx− 2
x

+ O(e−x/2), (12)

where

λ = exp
( ∫ 1

0

(
1− e−t

t
)dt−

∫ +∞

1

e−t

t
dt

)
+

∫ +∞

0

H(t)
t2

exp
(
− 2

∫ +∞

t

e−s

s
ds

)
dt.

3.3 Limit law
Let

N∗(x) =
N(x)−m(x)√

V (x)
.

Based on some heuristics in the structure of the problem, a solution is guessed for the limit distribution
of N∗(x). The guess is then verified by showing convergence of the distribution function to that of the
guessed limit in some metric space. The contraction method was introduced by Rï£¡sler [14]. Rachev
and Rï£¡schendorf [9] added several useful extensions. General contraction theorems and multivariate
extensions were added by Rï£¡sler [11], and Neininger [8]. Rï£¡sler and Rï£¡schendorf [13] provide a
valuable survey. Recently general contraction theorems and multivariate extensions were added, with
continuous parameter, by Janson and Neininger [16].

By the recursive decomposition of the process N(x), the mean m(x) satisfies

m(x) = e−x + (1− e−x)
2∑

j=1

E
(
m(ξjx)

)
. (13)

We start from the recursive decomposition (8), adapted in the form (using (13))

N(x)−m(x)√
V (x)

=
1I{x stable} − e−x√

V (x)

+1I{x instable}
N (1)(ξ1x)−m(ξ1x)√

V (ξ1x)

√
V (ξ1x)
V (x)

+1I{x instable}
N (2)(ξ2x)−m(ξ2x)√

V (ξ2x)

√
V (ξ2x)
V (x)

+
E

[
N (1)(ξ1x) + N (2)(ξ2x)

]
√

V (x)

[
1I{x instable} − (1− e−x)

]
,

where ξ is a random variable with law U[0,1]. The last equation can be written as

N∗(x) =
2∑

j=1

N
(j)
∗ (ξjx)

√
V (ξjx)
V (x)

+ D(x), (14)
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where

D(x) = 1I{x stable}

2∑
j=1

N
(j)
∗ (ξjx)

√
V (ξjx)
V (x)

+
1I{x stable} − e−x√

V (x)

+
E

[
N (1)(ξx) + N (2)((1− ξ)x)

]
√

V (x)

[
1I{x unstable} − (1− e−x)

]
.

In order to apply Theorem 5.1 [16], we introduce the map T on the space M of probability mesures on
R by

T : M−→M

T (µ) D=
2∑

j=1

√
ξjX

(j),
(15)

where X(j) D= µ for j = 1, 2. We need the following result

Proposition 2 As x −→ +∞, we have

(i) D(x) L3

−→ 0.

(ii)

√
V (ξjx)
V (x)

L3

−→
√

ξj , j = 1, 2.

(iii)
2∑

j=1

E
(√

ξj
3
) =

4
5

.

To prove this Proposition we need the following Lemma

Lemma 1 For all x > 0, E
(
[N(x)]3

)
< ∞. Furthermore sup

0≤y≤x
E

(
[N(y)]3

)
< ∞.

Proof:
For j = 2, 3, let mj(x) = E([N(x)]j) and

L(x) = 6(1− e−x)E
[
m2(ξx)m((1− ξ)x)

]
− 2(1− e−x)

x
.

By equation (8),

m3(x) = L(x) +
(2(1− e−x)

x
exp

( ∫ x

0

2(1− e−t)
t

dt
)

+
2(1− e−x)

x

∫ x

0

L(t) exp
( ∫ x

t

2(1− e−y)
y

dy
)
dt.
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This implies that
m3(x) < ∞.

The final statement follows because 0 ≤ N(y) ≤ N(x) when 0 ≤ y ≤ x. 2

Proof of Proposition :

(i) For x large enough we have, almost surely
V (ξjx)
V (x)

≤ 1. Then ∀j ∈ {1, 2}, by the dominated

convergence theorem

E
(
1I{x stable}N

(j)
∗ (ξjx)

√
V (ξjx)
V (x)

)3

≤ E
(
1I{x stable}N

(j)
∗ (ξjx)

)3

≤ E(1I{x stable})E
(
N

(j)
∗ (ξjx)

)3

≤ e−x sup
0≤y≤x

E(N(y)3).

Using Lemma 1, there exists a constant c such that

∥∥∥1I{x stable}

2∑
j=1

N
(j)
∗ (ξjx)

√
V (ξjx)
V (x)

∥∥∥
3
≤ ce−x/3.

(ii) Is trivially using Theorem 3.
(iii) The random variables ξ1 and ξ2 have the same law the (0,1) uniform distribution, then

2∑
j=1

E
(√

ξj
3
) = 2

∫ 1

0

t3/2dt = 4/5. 2

Since the conditions of Theorem 5.1 [16] are satisfied one can derive the following result.

Proposition 3 N∗(x) converges in distribution to a limit N∗,
where L(N∗) is the unique fixed point of T given in (15) subject to

E
(
N3
∗

)
< ∞, E(N∗) = 0 and Var(N∗) = 1.

It’s not difficult to prove that the lawN (0, 1) is a fixed point of the map T , leading to our last Theorem.

Theorem 4 As x −→ +∞, we have a version of the central limit Theorem

N∗(x) D−→ N (0, 1).
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